
Aug 2016 edition – for NUS students only

1

[L3P2]

Exceptions: Stuff happens. Deal with it.

Exceptions are used to deal with ‘unusual’ but not entirely unexpected situations that the

program might encounter at run time.

An exception is an event, which occurs during the execution of a program, that disrupts

the normal flow of the program's instructions. –Java Tutorial (Oracle Inc.)

For example, a network connection might timeout due to a slow server. That is not a program

bug but rather an unusual situation that needs to be recovered from, if possible. However, the

code segement that encountered the unusual situation might not know how to recover from it.

That is why most languages allow a method to encapsulate the unusual situation in an Exception

object and ‘throw’ that object so that another piece of code can ‘catch’ it and deal with it.

Usually, an exception thrown by a method is caught by the caller method. If the called method

does not know how to deal with the exception it caught, it will throw the Exception object to its

own caller. If none of the callers is prepared to deal with the exception, the exceptions can

propagate through the method call stack until it is received by the main method and thrown to

the runtime, thus halting the system. In the Java code given below, processArray can potentially

throw an InvalidInputException. Because of that, processInput method invokes processArray

method inside a try{ } block and has a catch{ } block to specify what to do if the exception is

actually thrown.

public void processInput(String[] input) {
try {

processArray(input);
//do other things

} catch (InvalidInputException e) {
System.err.println(“Invalid input: "

+ e.getMessage());

}
}

public void processArray(String[] array) throws InvalidInputException {
if(array.size()==0){

throw new InvalidInputException(“empty array”);
}
//process array

}

Code that might throw an
exception is put inside a try

block

The catch block contains code
to ‘handle’ the exception

The method signature can
indicate which exceptions can

be thrown from it

The problem is encapsulated
in an Exception object and

thrown out

The ability to propagate error information through the call stack is one advantage of using

Exceptions. Another advantage is the separation of code that deals with ‘unusual’ situations

from the code that does the ‘usual’ work.

