
Aug 2016 edition – for NUS students only

1

DESIGN

[L7P1]

The View from the Top: Architecture

A software project is initially concerned with what to build (i.e establishing requirements and

deciding system features). This is called the analysis phase.

At some point, attention shifts to figuring out how to build it (i.e. internal details of the

implementation). This is called the design phase.

There is no clear line to mark the end of one phase and the start of the other. Often, a decision

taken during the analysis phase of one project could also be taken during the design phase of

another project. For example, the decision on the choice of the development platform for system

implementation can be taken during the analysis phase of one project and during the early

design phase of another project.

With simple projects, we can ‘design using code’: By using a mental image of how the program

ought to be structured, we can start coding without having to create a design. In fact, code

represents a very detailed level of design; it is after all the ‘blueprint’ that will be compiled into

the executable product. It would appear that coding is the most efficient way to design without

the need to draw numerous diagrams. However, this approach does not scale up to larger, more

complex, multi-person projects.

The design phase is generally divided into two levels:

 High-level design: In high-level design, designers take decisions considering the overall
system, i.e. decisions made here affect the system as a whole. The high-level overall
description of a system includes the top-level structure of subsystems, as well as the
roles of these subsystems and the interactions between them.

 Detailed (also called low-level) design: In detailed design, designers work at the module
or sub-system levels.

Software architecture

The software architecture shows the overall organization of the system. It can be viewed as a

very high-level design. It should be a simple and technically viable structure that is well-

understood and agreed-upon by everyone in the development team, and it forms the basis for

the implementation.

Here’s a formal description:

As the size and complexity of software systems increases, the design problem goes beyond the

algorithms and data structures of the computation. Structural issues include gross

organization and global control structure; protocols for communication, synchronization, and

data access; assignment of functionality to design elements; physical distribution; composition

of design elements; scaling and performance; and selection among design alternatives. This is

the software architecture level of design.

[An Introduction to Software Architecture, David Garlan and Mary Shaw]

Aug 2016 edition – for NUS students only

2

The architecture is typically designed by the software architect, who provides the technical

vision of the system and makes high-level (i.e. architecture-level) technical decisions on the

project.

System architecture addresses the big picture and usually consists of a set of interacting

components that fit together to achieve the required functionality. Figure 1 gives a possible

architecture for the Minesweeper game (screenshot given below). The high-level components

are:

GUI: Graphical user interface

TextUi: Textual user interface

ATD: An automated test driver used for testing the game logic

MSLogic: computation and logic of the game

MSStore: storage and retrieval of game data (high scores etc.)

GUI

MSLogic
TextUI

ATD

dependency

MSStore

Figure 1. A possible architecture for Minesweeper

Architecture diagrams

Architecture diagrams, such as the one given in Figure 1, are free-form diagrams. There is no

universally adopted standard notation for architecture diagrams. Any symbol that reasonably

describes the architecture may be used. However, the indiscriminate use of double-headed

arrows (<----->) to show interactions between components is discouraged. If double headed

arrows were used in Figure 1, it would not be possible to describe the dependency among the

components. Furthermore, the representation of arrows should be specified. Do they indicate a

dependency, data flow, or something else? Use arrows of different styles (e.g. dashed/solid,

thin/thick) to indicate the different representations.

Architectural styles

Given next are some examples of common architectural styles.

The n-tier architectural style

The main characteristic of an n-tier architectural style is that higher layers make use of services

provided by lower layers. Lower layers are independent of higher layers.

Operating systems and network communication software often use this style.

Aug 2016 edition – for NUS students only

3

Layer 0

Layer 1

Layer 2

Layer n

Storage

Logic

UI

Hardware Access

Network Protocol

Encryption

FTP Access GUI Console

1

The client-server architectural style

This is an architectural style for distributed applications. The main characteristic of the client-

server style is the presence of at least one component playing the role of a server, with at least

one client component accessing the services of the server.

The transaction processing architectural style

The main characteristic of a transaction processing architecture style is that the workload of the

system is broken down to a number of transactions. These transactions are then given to a

“dispatcher” that controls the execution of each transaction. Task queuing, ordering, “undo” etc.

are handled by the dispatcher.

The Service-oriented architectural style

The service-oriented architecture (SOA) is a relatively recent architectural style for distributed

applications. An SOA is essentially an application built by combining functionalities packaged as

programmatically accessible services. A prerequisite for SOA is the interoperability between

distributed services, which may not even be implemented using the same programming

language. A common way to implement SOAs is through the use of XML web services where the

Server

Client 2

Client 1 Client n

Web Server

Browser 2

Browser 1

Mobile
Browser

Game
Server

Game
Client 1

Game
Client 2

WebNetwork

Dispatcher

Transaction
creator n

Transaction
creator 1

Transaction
executor 1

Transaction
executor n

T4

T5

T6

T1

T3

T2

Dispatcher

Teller n

Teller1
Account
Manager

Currency Mgt
System

C4

A5

A6

A1

C3

A2

Aug 2016 edition – for NUS students only

4

web is used as the medium for the services to interact, and XML is used as the language of

communication between service providers and service users.

As an example, suppose that Amazon.com provides a web service for customers to browse and

buy merchandize, while HSBC provides a web service for merchants to charge HSBC credit

cards. Using these web services, an ‘eBookShop’ web application can be developed that allows

HSBC customers to buy merchandize from Amazon and pay for them using HSBC credit cards.

Since both Amazon and HSBC services follow the SOA architecture, their web services can be

reused by the web application, even if all three systems use different programming platforms.
In
te
rn
et

In
te
rn
et

eBookShop

Web service for
accessing book data

Web service for credit card
transactions

Web service for
purchasing

books

Your web application built
using SOA

Event-driven architectural style

An event is a notable occurrence that happens inside or outside the software, such as the user

clicking a button, a timer running out, minimizing a window, etc. In the event-driven

architectural style, events are detected and communicated to the affected components. These

components then react to the events, if required. For example, when the ‘button clicked’ event

occurs, functions that are tied to the button-click event is activated. This architectural style is

often used in GUIs.

Other architectural styles

Other well-known architectural styles include the pipes-and-filters architectures, the broker

architectures, the peer-to-peer architectures, and the message-oriented architectures.

Most applications use a mix of these architectural styles or adopt a style that is customized to

the requirements. For example, an application can use a client-server architecture where the

server component comprises several layers, i.e. it uses the multi-layer architecture.

APIs
The Minesweeper architecture given in Figure 1 depicts the high-level components of the

system and the anticipated dependencies between them. However, the architecture does not

describe how components communicate with each other, i.e. the operations that each

component should provide so that they can work with each other to achieve the features of the

system. In other words, the exact interface for these components needs to be defined. Here, the

term ‘interface’ means the list of public operations supported by a component and what each

Aug 2016 edition – for NUS students only

5

operation does. Once the interface is decided, implementation of various components can be

done simultaneously. The interface of a component is also called the Application Programming

Interface (API).

An API is a contract between the component and its users. It should be well-designed (i.e.

should cater for the needs of its users) and well-documented. As an example, refer to the API of

the Java String component given here

 http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

We can use UML sequence diagrams to analyze the required interactions between components.

Given below is an example.

As we analyze the interactions between components using sequence diagrams, we discover the

API of those components. For example, the diagram above tells us that the MSLogic component

API should have the methods:

 new() getWidth:int getHeight():int getRemainingMineCount():int

Different approaches to design
Top down vs bottom up

The approach taken in this handout is to start from the very high-level by viewing the system as

one big black box and then break it into a handful of smaller components. Each of these

components can be broken down further into a small number of sub components, and the

process continues until the complete detailed design is obtained. This approach is called top-

down design. When using top down design, low level details are not considered until much later

in the design process. Moreover, the low level details of a given component can be worked out

by those working on that component, without getting the whole team involved. The top-down

approach is often used when creating a big product from scratch.

The reverse of the top-down approach is bottom-up. That is, starting with lower level details

(e.g. data structures, storage formats, functions etc.) and progressively grouping them together

to create bigger components. This approach is often adopted when the system is small or when

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

Aug 2016 edition – for NUS students only

6

developing a variant of a previous product whereby a large collection of reusable assets can be

used in the new product.

Agile vs full-design-up-front

How much design is deemed sufficient before the coding phase can start? In the industry, there

are two schools of thought:

 Agile-design camp considers it enough if the design can support the feature that is going to
be implemented in the immediate future. They argue that since a product’s feature set can
evolve during its lifetime, there is no use trying to cater for all of them from the very
beginning.

 Full-design-up-front camp considers a full design so as to support the entire feature set and
even possible future features before we start implementing it.

As with the case with most alternative approaches, there are pros and cons for each and a

mixture is often the best.

Worked examples

[Q1] Consider the sequence diagrams given below (from the handout [L4P1] Object-Oriented
Programming: Intermediate Concepts)

8

MS SD – add MS Logic (new)

:TextUi

newgame

show minefield

:MSLogic

newGame()

getHeight()

getWidth()

W

H

Player

Figure 2. SD for 'new game' command

Aug 2016 edition – for NUS students only

7

MS SD – add MS Logic (mark OR clear)

:TextUi

mark x y OR
clear x y

Show updated
minefield

:MSLogic

markCellAt(x,y) OR
clearCellAt(x,y)

getGameState()

gameState

ref get minefield appearance

Show result

loop [until won|lost]

Th
is is h

o
w

 w
e refer to

 an
o

th
er

SD
 given

 elsew
h

ere

Player

Figure 3. SD for commands 'mark' and 'clear'

MS SD – add MS Logic (get cell appearance)

:TextUi :MSLogic

getAppearanceOfCellAt(x,y)

cellAppearance

sd get minefield appearance

loop [for all cells]

“s
d

”
st

an
d

s
fo

r
“s

eq
u

en
ce

d

ia
gr

am
”.

 T
h

is
 is

 t
h

e
U

M
L

w
ay

 o
f

la
b

el
in

g
an

 S
D

Figure 4. SD for 'get minefield appearance'

Here is the MSLogic API discovered by those diagrams:

newGame(): void

getWidth():int

getHeight():int

clearCellAt(int x, int y)

markCellAt(int x, int y)

getGameState() :GAME_STATE

getAppearanceOfCellAt(int x, int y): CELL_APPEARANCE

Modify those diagrams to accommodate the following features.

Feature id: tolerate

Description: Marking a cell incorrectly is tolerated as long as the number of cells marked

does not exceed the total number of mines.

Aug 2016 edition – for NUS students only

8

Depends on: show_remaining

…

Feature id: show_remaining

Description: The game shows the remaining number of mines during the game play. The

number is calculated as (total mines – marked cells).

Feature id: unmark

Description: Marked cells can be unmarked, turning them back to hidden cells.

[A1]

Aug 2016 edition – for NUS students only

9

:TextUI :MSLogic

getAppearanceOfCellAt(x,y)

cellAppearance

sd get minefield appearance

loop [for all cells]

getRemainingMineCount()

R

Add to MSLogic API -> getRemainingMineCount():int, unmarkCellAt(int, int)

Note how the feature ‘tolerate’ does not have any effect on the three diagrams.

[Q2]
Consider the sequence diagrams in Q1. Show the modified versions of them, if any, after
accommodating the following feature.

Feature id: standing_ground

Description: At the beginning of the game, the player chooses five cells to be revealed

without penalty. This is done one cell at a time. If the cell so selected is mined, it will be

marked automatically. The objective is to give some “standing ground” to the player from

which he/she can deduce remaining cells. The player cannot mark or clear cells until the

standing ground is selected.

[A2]

Insert this fragment between SD fragments shown below, between Figure 2 and Figure 3.

reveal x y

Show updated
minefield

revealCellAt(x,y)

ref get minefield appearance

loop [until 5 cells are revealed]

[Q3]

Same as the previous question, but for the feature given below:

Feature id: timing

Description: The game keeps track of the total time spent on a game. The counting starts

from the moment the first cell is cleared or marked and stops when the game is won or

lost. Time elapsed is shown to the player after every mark/clear operation.

Aug 2016 edition – for NUS students only

10

[A3]

mark x y

OR clear x y

Show updated
minefield and time elapsed

markCellAt(x,y) OR
clearCellAt(x,y)

getTimeElapsed()

gameState

ref get minefield appearance

Show result

loop [until won|lost]

timeElapsed

getGameState()

:TextUI :MSLogic
Player

[Q4]

Draw the sequence diagram for the following use case. Include components: GUI, MSLogic,

Storage. Here, we assume that Minesweeper allows saving and retrieving games. In addition,

assume that the player is using the GUI. What are the API operations you discovered?

Use case: 02 – retrieve game

Actors: Player

MSS:

1. Player requests to retrieve saved game.

2. Minesweeper shows a list of saved game by the same player.

3. Player chooses one of the games.

4. Minesweeper fetches the game from storage and informs the use it is ready to be

played.

Use case ends.

Aug 2016 edition – for NUS students only

11

[A4]

:GUI

Chooses to
retrieve

show game
names

:MSLogic

retrieveSavedGames()

Player
:Storage

retrieveGames(userID)

Game names Games

Chooses game
to retrieve

Inform ready
to play

restoreGame(gameName) retrieveGame(gameName)

game

MSLogic API (partial):

 retrieveSavedGames():String[]

Overview: Used for retrieving all previous games saved by the current player.

Returns: names of all games saved by the current player, sorted by the last

modified date, most recent game appears first.

Preconditions: none

Postconditions: none

 restoreGame(String gameName):void

Overview: Used to restore a game saved.

Preconditions: the same player has previously saved a game under the

gameName.

Postconditions: the game is loaded and ready to be continued.

Storage API (partial):

 retrieveGames(String userID):Game[]

…

 retrieveGame(String gameName):Game

--- End of handout ---

