
Aug 2016 edition – for NUS students only

1

[L8P2]

Quality Assurance: Testing and Beyond

Quality assurance (QA) is the process of ensuring that the software being built has the required

levels of quality.

Quality Assurance = Validation + Verification

QA involves checking two aspects:

a) Building the right system, i.e. are the requirements correct? This is called validation.
b) Building the system right, i.e. are the requirements implemented correctly? This is called

verification.

Whether something belongs under validation or verification is not that important. What is more

important is both are done, instead of limiting to verification (i.e., remember that the

requirements can be wrong too).

In this handout, the testing of the product as a whole is discussed. This is in contrast to

developer testing that is performed on a partial system.

Testing is the most common way of assuring quality, however there are other complementary

techniques such as formal verification. The second part of the handout gives a brief introduction

to such QA techniques.

Unit testing
Unit testing is a form of early developer testing. Unit testing involves testing individual units

(methods, classes, subsystems, …) and finding out whether each piece works correctly in

isolation. A proper unit test require the unit we are testing to be isolated from other code. If the

unit depends on other code, we may have to use stubs to isolate the unit from its dependencies.

Stubs/Mocks

A stub or a mock7 is a dummy component that receives outgoing messages from the SUT. During

unit testing, stubs are used in place of collaborating objects in order to isolate the SUT from

these objects. Doing this prevents bugs within the collaborating objects from interfering with

the test. A stub has essentially the same interface as the collaborator it replaces, but its

implementation is meant to be so simple that it cannot have any bugs. A stub does not perform

any real computations or manipulate any real data. Typically, a stub could do the following

tasks:

 Do nothing – A stub could simply receive method calls without doing anything at all.
When a method is required to return something, it will return a default value.

 Keep records – A stub could dutifully record information (e.g. by writing to a log file)
about the messages it receives. This record can later be used to verify whether the SUT
sent the correct messages to collaborating objects.

 Return hard-coded responses – A stub could be written to mimic the responses of the
collaborating object, but only for the inputs used for testing. That is, it does not know
how to respond to any other inputs. These mimicked responses are hard-coded in the
stub rather than computed or retrieved from elsewhere, e.g. from a database.

7 Although this handout uses stub and mock interchangeably, some define them slightly differently.
However, such subtle differences are beyond the scope of this handout.

Aug 2016 edition – for NUS students only

2

Dependency injection
Dependency injection is the process of ‘injecting’ objects to replace current dependencies with a

different object. This is often used to inject stubs to isolate the SUT from other collaborating

objects so that it can be tested independently. In the example below, a Foo object normally

depends on a Bar object, but we have injected a BarStub object so that the Foo object no longer

depends on a Bar object. Now we can test the Foo object in isolation from the Bar object.

:Bar

:Foo

:BarStub

:Foo

Normal dependency After dependency injection

Given next is a sample testing scenario that tests the totalSalary of the Payroll class. The

production version of the totalSalary method collaborates with the SalaryManager object to

calculate the return value. During testing, the SalaryManager object is substituted with a

SalaryManagerStub object which responds with hard-coded return values.

public class PayrollTestDriver {
 public static void main(String[] args) {
 //test setup
 Payroll p = new Payroll();
 p.setSalaryManager(new SalaryManagerStub()); //dependency injection
 //test case 1
 p.setEmployees(new String[]{"E001", "E002"});
 assertEquals(2500.0, p.totalSalary());
 //test case 2
 p.setEmployees(new String[]{"E001"});
 assertEquals(1000.0, p.totalSalary());
 //more tests
 System.out.println("Testing completed");
 }
}

//----------------------------
class Payroll{
 private SalaryManager manager = new SalaryManager();
 private String[] employees;

 void setEmployees(String[] employees) {
 this.employees = employees;
 }

 /*the operation below is used to substitute the actual SalaryManager
 with a stub used for testing */
 void setSalaryManager(SalaryManager sm) {
 this. manager = sm;
 }

Aug 2016 edition – for NUS students only

3

 double totalSalary(){
 double total = 0;
 for(int i=0;i<employees.length; i++){
 total += manager.getSalaryForEmployee(employees[i]);
 }
 return total;
 }
}

//----------------------------
class SalaryManager{
 double getSalaryForEmployee(String empID){
 //code to access employee’s salary history
 //code to calculate total salary paid and return it
 }
}

//----------------------------
class SalaryManagerStub extends SalaryManager{
 /* this method returns hard coded values used for testing */
 double getSalaryForEmployee(String empID){
 if(empID.equals("E001")) {
 return 1000.0;
 }else if(empID.equals("E002")){
 return 1500.0;
 }else {
 throw new Error("unknown id");
 }
 }
}

Integration testing
In Integration testing we test whether different parts of the software ‘work together’ (i.e.

integrates) as expected. Here, we assume the individual parts have been unit tested already.

Therefore, integration tests aim to discover bugs in the ‘glue code’ that are often the result of

misunderstanding of what the parts are supposed to do vs what the parts are actually doing. For

example let us assume a class Car users classes Engine and Wheel.

 First, we should unit test Engine and Wheel.

 Next, we should unit test Car in isolation of Engine and Wheel, using stubs for Engine and
Wheel.

 After that, we can do an integration test for Car using it together with the Engine and
Wheel classes to ensure the Car integrates properly with the Engine and the Wheel.

In the example above, if the Car class assumed a Wheel can support 200 mph speed but the

Wheel can only support 150 mph, it is the integration test that is supposed to uncover this

discrepancy.

System testing
Taking the whole system, instead of a part of the system, and testing it against the system

specification is called system testing. System testing is typically done by a testing team (also

called a QA team). System test cases are based exclusively on the specified external behavior of

the system. Sometimes, system tests go beyond the bounds defined in the specification. This is

useful when testing that the system fails ‘gracefully’ having pushed beyond its limits. Take the

example of an SUT (software under test) that is a browser capable of handling web pages

containing up to 5000 characters. A test case can involve loading a web page containing more

Aug 2016 edition – for NUS students only

4

than 5000 characters. The expected ‘graceful’ behavior would be to ‘abort the loading of the

page and show a meaningful error message’. This test case would fail if the browser attempted

to load the large file anyway and crashed.

Note that system testing includes testing against non-functional requirements too. Here are

some examples.

 Performance testing – to ensure the system responds quickly.
 Load testing (also called stress testing or scalability testing) – to ensure the system can

work under heavy load.
 Security testing – to test how secure the system is.
 Compatibility testing, interoperability testing – to check whether the system can work

with other systems.
 Usability testing – to test how easy it is to use the system.
 Portability testing – to test whether the system works on different platforms.

Acceptance testing
Acceptance testing, also called User Acceptance Testing (UAT), is a type of validation test carried

out to show that the delivered system meets the requirements of the customer. Similar to

system testing, acceptance testing involves testing the whole system against the requirements

specification (rather than the system specification). Note the two specifications need not be the

same. For example, requirements specification could be limited to how the system behaves in

normal working conditions while the system specification can also include details on how it will

fail gracefully when pushed beyond limits, how to recover, additional APIs not available for

users (for the use of developers/testers), etc.

Acceptance testing comes after system testing. It is usually done by a team that represents the

customer, and it is usually done on the deployment site or on a close simulation of the

deployment site. UAT test cases are often defined at the beginning of the project, usually based

on the use case specification. Successful completion of UAT is often a prerequisite to the project

signoff.

Acceptance tests gives an assurance to the customer that the system does what it is intended to

do. Besides, acceptance testing is important because a system could work perfectly on the

development environment, but fail in the deployment environment due to subtle differences

between the two.

Alpha and Beta testing
Alpha testing is performed by the users, under controlled conditions set by the software

development team. Beta testing is performed by a selected subset of target users of the system

in their natural work setting. An open beta release is the release of not-yet-production-quality-

but-almost-there software to the general population. For example, Google’s Gmail was in ‘beta’

for years before the label was finally removed.

GUI testing
If a software product has a GUI component, all product-level testing (i.e. the types of testing

mentioned above) need to be done using the GUI. However, testing the GUI is much harder than

testing the CLI (command line interface) or API, for the following reasons:

 Most GUIs contain a large number of different operations, many of which can be
performed in any arbitrary order.

Aug 2016 edition – for NUS students only

5

 GUI operations are more difficult to automate than API testing. Reliably automating GUI
operations and automatically verifying whether the GUI behaves as expected is harder
than calling an operation and comparing its return value with an expected value.
Therefore, automated regression testing of GUIs is rather difficult. However, there are
testing tools that can automate GUI testing. For example, TestFx and support automated
testing of JavaFX GUIs and Selenium (http://seleniumhq.org/) can be used to automate
testing of Web application UIs. VisualStudio supports ‘record replay’ type of GUI test
automation.

 The appearance of a GUI (and sometimes even behavior) can be different across
platforms and even environments. For example, a GUI can behave differently based on
whether it is minimized or maximized, in focus or out of focus, and in a high resolution
display or a low resolution display.

One approach to overcome the challenges of testing GUIs is to

minimize logic aspects in the GUI. Then, bypass the GUI to test

the rest of the system using automated API testing. While this

still requires the GUI to be tested manually, the number of such

manual test cases can be reduced as most of the system has been

tested using automated API testing.

Test coverage
In the context of testing, coverage is a metric used to measure the extent to which testing

exercises the code. Here are some examples of different coverage criteria:

 Function/method coverage measures the coverage in terms of functions executed e.g.
testing executed 90 out of 100 functions.

 Statement coverage measures coverage in terms of the number of line of code executed e.g.
testing executed 23k out of 25k LOC.

 Decision/branch coverage measures coverage in terms of decision points e.g. an if
statement evaluated to both true and false with separate test cases during testing.

 Condition coverage measures coverage in terms of boolean sub-expressions, each
evaluated to both true and false with different test cases. Condition coverage is not the same
as the decision coverage; e.g. if(x>2 && x<44) is considered one decision point but two
conditions. For 100% branch or decision coverage, two test cases are required:

(x>2 && x<44) == true : [e.g. x = 4]

(x>2 && x<44) == false : [e.g. x = 100]

For 100% condition coverage, three test cases are required

(x>2) == true , (x<44) == true : [e.g. x = 4]

(x<44) == false : [e.g. x = 100]

(x>2) == false : [e.g. x = 0]

 Path coverage measures coverage in terms of possible paths through a given part of the
code executed. 100% path coverage means all possible paths have been executed. A
commonly used notation for path analysis is called the Control Flow Graph (CFG). For an
introduction to CFGs, refer to the side-note below.

 Entry/exit coverage measures coverage in terms of possible calls to and exits from the
operations in the SUT.

Measuring coverage is often done using coverage analysis tools. Coverage measurements are

used to improve testing E&E (Effectiveness and Efficiency). For example, if a set of test cases

does not achieve 100% branch coverage, more test cases are added to cover missed branches.

G
U

I

Logic

Automated
API tester

Manual
testing

http://seleniumhq.org/

Aug 2016 edition – for NUS students only

6

[Side-Note] Control Flow Graphs (CFG)
This topic is not examinable
CFG is a graphical representation of the execution paths of a code fragment. A CFG
consists of:
 Nodes: Each node represents one or more sequential statements with no branches
 Directed Edges: Each edge represents a branch, a possible execution path
Given below is the CFG notation :

A set of sequential statements

(without any branches) is

represented as a single node. E.g.

 x=2; //node 1

 y=3; //node 1

 z=x+y; //node 1

 print (z); //node 1

1

Conditional statements: E.g.

if (x < 10) then //node 1

 z = x + y; //node 2

else z = x – y; //node 3

z = z + 2; //node 4

1

2

3

T

F

4

Loops: E.g.

x++; //node 0

while (x < 10) { //node 1

 z = x+ y; //node 2

 x++; //node 2

}

resetX(); //node 3

1 2
T

F

30

Multi-way branching: E.g.

x++; //node 0

switch (x){ //node 1

 case 0:

 z = x; break; //node 2

 case 1:

 case 2:

 z = y; break; //node 3

 default:

 z = x-y; //node 4

}

z = x+y ; //node 5

1

2

3
5

4

0

Note how the same edge represents

both case 1 and case 2.

Aug 2016 edition – for NUS students only

7

The figure below shows the complete CFG for the min function given below.

void min(int[] A){

 int min = A[0]; //node 1

 int i = 1; //node 1

 int n = A.length; //node 1

 while (i < n){ //node 2

 if (A[i] < min) //node 3

 min = A[i]; //node 4

 i++; //node 5

 }

 print(min); //node 6

}

1

2

3

TF

45
6

TF

It is recommended to have exactly one entry edge and exactly one exit edge for
each CFG. Sometimes a logical node (i.e. a node that does not represent an actual
program statement) is added to enforce the “exactly one exit edge” rule. Node 5 in the
figure below is a logical node.

void foo(){

 int min = A[0]; //node 1

 if (A[i] < min) //node 2

 min = A[i]; //node 3

 else

 i++; //node 4

 }

}

1

5

2

43

FT

A path is a series of nodes that can be traversed from the entry edge to the exit edge in
the direction of the edges that link them. For example, 1-2-4-5 in the above CFG is a path.

Other QA techniques
There are many QA techniques that do not involve executing the SUT. Given next are a number

of such techniques that can complement the testing techniques discussed so far.

Inspections & reviews
Inspections involve a group of people systematically examining a project artefact to discover

defects. Members of the inspection team play various roles during the process, such as the

author - the creator of the artefact, the moderator - the planner and executer of the inspection

meeting, the secretary - the recorder of the findings of the inspection, and the inspector/reviewer

- the one who inspects/reviews the artefact. All participants are expected to have adequate

prior knowledge of the artefact inspected. An inspection often requires more than one meeting.

For example, the first meeting is called to brief participants about the artefact to be inspected.

The second meeting is called once the participants have studied the artefact. This is when the

actual inspection is carried out. A third meeting could be called to re-inspect the artefact after

the defects discovered as an outcome of the inspection are fixed. An advantage of inspections is

Aug 2016 edition – for NUS students only

8

that it can detect functionality defects as well as other problems such as coding standard

violations. Furthermore, inspections can verify non-code artefacts and incomplete code, and do

not require test drivers or stubs. A disadvantage is that an inspection is a manual process and

therefore, error prone.

Formal verification
Formal verification uses mathematical techniques to prove the correctness of a program. An

advantage of this technique over testing is that it can prove the absence of errors. However, one

of the disadvantages is that it only proves the compliance with the specification, but not the

actual utility of the software. Another disadvantage is that it requires highly specialized

notations and knowledge which makes it an expensive technique to administer. Therefore,

formal verifications are more commonly used in safety-critical software such as flight control

systems.

Static analyzers
These are tools that automatically analyze the code to find anomalies such as unused variables

and unhandled exceptions. Detection of anomalies helps in improving the code quality. Most

modern IDEs come with some inbuilt static analysis capabilities. For example, an IDE will

highlight unused variables as you type the code into the editor. Higher-end static analyzers can

check for more complex (and sometimes user-defined) anomalies, such as overwriting a

variable before its current value is used.

