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CS3245 – Information Retrieval

Last Time: Postings lists 
and Choosing terms
▪ Faster merging of posting lists

▪ Skip pointers

▪ Handling of phrase and proximity queries
▪ Biword indexes for phrase queries
▪ Positional indexes for phrase/proximity queries

▪ Steps in choosing terms for the dictionary
▪ Text extraction
▪ Granularity of indexing
▪ Tokenization
▪ Stop word removal
▪ Normalization
▪ Lemmatization and stemming

Information Retrieval 2
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Today: the dictionary and 
tolerant retrieval

▪ Dictionary

▪ "Tolerant" retrieval

▪ Wild-card queries

▪ Spelling correction

▪ Soundex

Information Retrieval 3

Ch. 3



CS3245 – Information Retrieval

Dictionary data structures for 
inverted indexes

▪ The dictionary data structure stores the term 
vocabulary, document frequency, pointers to each 
postings list … in what data structure?

Information Retrieval 4
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A naïve dictionary

▪ An (possibly unsorted) array of entries:

char[20]   int Postings Pointer

20 bytes   8 bytes   8 bytes  

Information Retrieval 5

Sec. 3.1

Quick Q: What’s wrong with using 
this data structure?

dict[0]

dict[1]

dict[…]

…
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A naïve dictionary

char[20]   int Postings Pointer

20 bytes   8 bytes   8 bytes 

▪ Words can only be at most 20 chars long.  Waste of space for 
some words, not enough for others.

▪ How do we store a dictionary efficiently? 
→ Later in W6

Information Retrieval 6

Sec. 3.1

Supercalifragilisticexpialidocious???
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A naïve dictionary

char[20]   int Postings Pointer

20 bytes   8 bytes   8 bytes 

▪ Slow to access, linear scan needed!

▪ How do we quickly look up elements at query time?

Information Retrieval 7

Sec. 3.1
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Dictionary data structures

▪ Two main choices:

▪ Hash table

▪ Tree

▪ Focus on the support of tolerant retrieval for this 
lecture

▪ See the textbook for other considerations!

Information Retrieval 8

Sec. 3.1
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Hash Table

Information Retrieval 9

Sec. 3.1
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Hash Table

▪ Pros:

▪ Faster (than Tree): O(1) for lookup

▪ Cons:

▪ No easy way to find minor variants:
▪ judgment/judgement

▪ No prefix search (e.g., terms starting with "hyp")

Information Retrieval 10
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Not very tolerant!
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Root

a-m n-z

a-hu hy-m n-sh si-z

Tree: binary tree

Information Retrieval 11

Sec. 3.1
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Trees

▪ Pros:

▪ Solves the prefix problem (e.g., terms starting with "hyp")

▪ Easier to find minor variants:
▪ judgment/judgement

▪ Cons:

▪ Slower: O(log M)  [and this requires a balanced tree]

Information Retrieval 12

Sec. 3.1

More tolerant!
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WILDCARD QUERIES

Information Retrieval 13
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Wildcard queries: *

▪ * matches with any sequence of letters

▪ Sample use cases

▪ File search based on extension (e.g., *.jpg)

▪ Variation in spelling (e.g., col*ur)

▪ Single vs plural form (e.g., cat*)

▪ …

Information Retrieval 14

Sec. 3.2
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Wildcard queries: *

▪ mon*: find docs with words beginning with "mon".

▪ Maintain a binary tree for terms

▪ Retrieve all words in range: mon ≤ w < moo

Information Retrieval 15
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mon…

…

money

monsoon

month

…
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Wildcard queries: *

▪ *mon: find docs with words ending in "mon"

▪ Maintain an additional tree for terms reversed

▪ Retrieve all words in range: nom ≤ w < non.

Information Retrieval 16

Sec. 3.2

nom…

…

nomel

nomlas

nommoc

…
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▪ How about pro*cient?

▪ Retrieve possible words for pro* and *cient from the 
trees and intersect

Handling general wildcard queries

Information Retrieval 17

Intersect!pro… tneic…

…

proceed

proficient

profile

…

…

tneiciffe

tneiciffus

tneiciforp

…
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Handling general wildcard queries

▪ General wildcard queries: X*Y

▪ Look up X* in a normal tree AND *Y in a reverse tree, 
and then intersect the two term sets

▪ Expensive

▪ The solution: transform wildcard queries into prefix 
queries (i.e., * occurs at the end)

▪ This gives rise to the Permuterm Index.
Information Retrieval 18
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Permuterm index

▪ For the term hello, add an end marker $ and index all 
rotations:

▪ hello$, ello$h, llo$he, lo$hel, o$hell and $hello

▪ For a wildcard query, add an end marker $ and look 
up using the rotation with * at the end

▪ X*   lookup on   $X* *X   lookup on X$*

▪ X*Y lookup on Y$X* *X* lookup on   X*

Information Retrieval 19

Sec. 3.2.1

Query = hel*o
X=hel, Y=o

Lookup o$hel*

Not so quick Q: 
What about X*Y*Z?
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Permuterm index

▪ Lexicon size blows up,  proportional to average word 
length

▪ E.g., A 5-letter word, hello, has 6 rotations

Information Retrieval 20

Sec. 3.2.1

Is there any other solution?
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Bigram (k-gram) index

▪ Enumerate all k-grams (sequence of k chars) 
occurring in any term

▪ e.g., from text "April is the cruelest month" we get 
the 2-grams (bigrams)

▪ As before "$" is a special word boundary symbol

▪ Maintain a second inverted index from bigrams to
dictionary terms that match each bigram.

Information Retrieval 21

$a,ap,pr,ri,il,l$,$i,is,s$,$t,th,he,e$,$c,cr,ru,

ue,el,le,es,st,t$,$m,mo,on,nt,h$

Sec. 3.2.2



CS3245 – Information Retrieval

Bigram index example

▪ The k-gram index finds terms based on a query 
consisting of k-grams (here k=2).

▪ Query mon* can now be run as an "AND" Query

▪ $m AND mo AND on

▪ Possible matches: month, moon, …
Information Retrieval 22

mo

on

among

$m mace

among

amortize

madden

axon

Sec. 3.2.2
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Bigram query processing

▪ Oops! We also included moon, a false positive!

▪ It also contains all 3 bigrams $m, mo, on

▪ Must post-filter these terms against query.

▪ Surviving enumerated terms are then looked up in the 
term-document inverted index.

▪ Fast, space efficient (compared to permuterm).

Information Retrieval 23

Sec. 3.2.2
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Processing wildcard queries

▪ After getting the possible terms, we still need to 
execute a Boolean query for each possible term.

▪ Wildcards can result in expensive query execution 
(very large disjunctions…)
▪ pyth* AND prog*

▪ If you encourage laziness, people will respond!

Which web search engines allow wildcard queries?
Information Retrieval 24

Search

Type your search terms, use ‘*’ if you need to.

E.g., Alex* will match Alexander.

Sec. 3.2.2
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SPELLING 
CORRECTION

Information Retrieval 25
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Query misspellings

▪ Need to correct user queries to retrieve "right" 
answers

▪ E.g., the query Ellon Mask

▪ We can

▪ Return several suggested alternative queries with the 
correct spelling
▪ "Did you mean … ?"

▪ Retrieve documents indexed by the correct spelling

Information Retrieval 26

Sec. 3.3
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Spellling corektion

▪ Two main flavors:

▪ Isolated word
▪ Check each word on its own for misspelling

▪ Will not catch typos resulting in correctly spelled words
e.g., from → form

▪ Context-sensitive
▪ Look at surrounding words 

e.g., I flew form Narita.

Information Retrieval 27

Sec. 3.3
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Fundamental premise

▪ There is a lexicon of correct spellings.

▪ Two basic choices for this

▪ A standard lexicon such as
▪ Merriam-Webster’s English Dictionary

▪ A domain-specific lexicon – often hand-maintained

▪ The lexicon of the indexed corpus
▪ E.g., all words on the web

▪ All names, acronyms, etc. (including misspellings)

Information Retrieval 28

Sec. 3.3.2
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Isolated word correction

▪ Given a lexicon and a character sequence Q, return 
the words in the lexicon closest to Q

▪ dof→ dog, dock, cat….?

▪ How do we define "closest"?

▪ We’ll study two alternatives

1. Edit distance (Levenshtein distance)

2. ngram overlap

Information Retrieval 29

Sec. 3.3.2
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1. Edit distance

▪ Given two strings S1 and S2, the edit distance 
D (S1, S2) is the minimum number of operations to 
convert one to the other

▪ Operations are typically character-level

▪ Insert, Delete, Replace

▪ E.g., D (dof , dog) = 1

▪ D (cat, act) = 2. 

▪ D (cat, dog) = 3.

▪ Generally found by dynamic programming

Information Retrieval 30

Sec. 3.3.3
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Information Retrieval

Dynamic Programming

Not dynamic and not programming

▪ Build up solutions of "simpler" instances from small 
to large

▪ Compute solutions of "simpler" instances

▪ Use these solutions to solve larger problems

▪ E.g., Fibonacci numbers

▪ Useful when problem can be solved using solution of 
two or more instances that are only slightly simpler 
than original instances

31

Fib(1) Fib(2) Fib(3) Fib(4) Fib(5)

1 1 1+1=2 1+2=3 2+3=5



CS3245 – Information Retrieval

Computing Edit Distance

▪ Let’s try to compute the edit distance 
between S1 = PAT and S2 = APT using this 
array E, where 

▪ E (i, j) = the distance between 
S1 (up to the i-th character) and 
S2 (up to the j-th character)

▪ "_" denotes an empty string

▪ E (0, 0) = D (_, _)

▪ E (1, 2) = D (P, AP)

▪ E (3, 3) = D (PAT, APT)

Information Retrieval 32
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Information Retrieval

Computing Edit Distance

▪ E.g., base cases 

▪ D (_, _) = 0

▪ D (P, _) = 1

▪ D (_, A) = 1

33
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Information Retrieval

Computing Edit Distance

▪ E.g., recursive cases

▪ D (PAT, APT) = ??

▪ What are the smaller problems?

▪ If we know D (PAT, AP), the final distance is D (PAT, AP) + 1 
since we need one insertion to add T to the end of AP.

▪ If we know D (PA, APT), the final distance is D (PA, APT) + 1 
since we need one insertion to add T to the end of PA.

▪ If we know D (PA, AP), the final distance is D (PA, AP) since 
inserting T to both PA and AP does not change the 
distance.

▪ What is the minimal distance?
34
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Computing Edit Distance

Information Retrieval 35

E(i, j) = min{ E(i, j-1) + 1, where m = 1 if Pi Tj, 

E(i-1, j) + 1, 0 otherwise

E(i-1, j-1) + m}

D(PAT, APT) @ E (3, 3) = min { 

D(PAT, AP) @ E(3, 2) + 1, 

D(PA, APT) @ E(2, 3) + 1, 

D(PA, AP) @ E(2, 2) + 0

} = 2
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Edit distance to all dictionary terms?

▪ Given a (misspelled) query – do we compute its edit 
distance to every dictionary term?

▪ Expensive and slow

▪ Alternative?

▪ How do we cut the set of candidate dictionary 
terms?

▪ One possibility is to use ngram overlap for this

▪ This can also be used by itself for spelling correction

Information Retrieval 36

Sec. 3.3.4
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2. Ngram overlap

▪ Enumerate all the ngrams in the query string as well 
as in the lexicon

▪ Query term: lord → Bigrams: {lo, or, rd}

▪ Lexicon term: lore→ Bigrams {lo, or, re}

▪ Lexicon term: border→ Bigrams {bo, or, rd, de, er}

▪ Count the overlaps between a pair of terms

▪ 2 between lord and lore

▪ 2 between lord and border

▪ Threshold to decide if you have a match

▪ E.g., if count >= 2, declare a match
Information Retrieval 37

Sec. 3.3.4

This favors longer 
terms by nature, why?
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A normalized option –
Jaccard coefficient
▪ Let X and Y be two sets; then the J.C. is

▪ Equals 1 when X and Y have the same 
elements and 0 when they are disjoint

▪ Does not favor longer terms.

▪ E.g., JC(lord, lore) = 2/4 
JC(lord, border) = 2/6

▪ Threshold to decide if you have a match

▪ E.g., if Jaccard >= 0.5, declare a match

Information Retrieval 38

YXYX  /

Sec. 3.3.4

A generally 
useful overlap 
measure, even 
outside of IR

"coefficient de 

communauté"
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Matching bigrams

▪ Index the dictionary terms using bigram.

▪ Identify words with at least 2 overlaps (and Jaccard 
>= 0.5) by merging.

Information Retrieval 39

lo

or

rd

alone lore sloth

lore morbid

border card

border

ardent

Standard postings "merge" enumerates 
terms with multiple overlaps

Sec. 3.3.4
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Context-sensitive correction

▪ Query: flew form Narita

▪ Need context to correct "form" to "from"

▪ Retrieve dictionary terms close (e.g., in edit distance) 
to each query term

▪ Enumerate all possible resulting phrases with one 
word "corrected" at a time
▪ flew from Narita 

▪ fled form Narita

▪ flew form Arita
Information Retrieval 40

Sec. 3.3.5

Which one to pick?
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Context-sensitive correction

▪ Decide which ones to present using heuristics

▪ Hit-based spelling correction

▪ The correction with most hits 

▪ E.g., flew from Narita (100,000 hits)  pick this!

fled form Narita (200 hits)

flew form Arita (500 hits)

Information Retrieval 41

Sec. 3.3.5
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General issues in spelling correction

▪ Confirm with the user vs. search automatically (e.g., 
with the most possible correction)

▪ Disempowerment or effort saved?

▪ High computational cost

▪ Avoid running routinely on every query?

▪ Run only on queries that matched few docs

Information Retrieval 42

Sec. 3.3.5
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SOUNDEX

Information Retrieval 43
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Soundex

▪ Class of heuristics to expand a query into phonetic
equivalents

▪ Language specific – mainly for names

▪ E.g., chebyshev→ tchebycheff

▪ Invented for the U.S. census … in 1918

▪ Available in most databases (Oracle, Microsoft, …)

▪ We’ll explore this just in the context of English

Information Retrieval 44

Sec. 3.4

Blanks on slides, you may want to fill in

To think about: what other languages 
does it make sense for?
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Soundex – typical algorithm

▪ Turn every token to be indexed into a 4-character 
reduced form

▪ Do the same with query terms

▪ Build and search an index on the reduced forms

(when the query calls for a Soundex match)

▪ See Wikipedia’s entry:
https://en.wikipedia.org/wiki/Soundex

Information Retrieval 45

Sec. 3.4

https://en.wikipedia.org/wiki/Soundex
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Soundex – typical algorithm

1. Retain the first letter of the word. 

2. Change all occurrences of the following letters to '0' 
(zero):

'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'. 

3. Change letters to digits as follows: 
▪ B, F, P, V → 1

▪ C, G, J, K, Q, S, X, Z → 2

▪ D,T → 3

▪ L → 4

▪ M, N → 5

▪ R → 6

Information Retrieval 46

Sec. 3.4

Herman

1. Herman

2. H0rm0n

3. H06505

…
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Soundex continued

4. Repeatedly remove one out of each pair of 
consecutive identical digits

5. Remove all zeros from the resulting string.

6. Pad the resulting string with trailing zeros and 
return the first four positions, which will be of the 
form <uppercase letter> <digit> <digit> <digit>. 

E.g., Herman becomes H655.

Information Retrieval 47

Will hermann generate the same code?

Sec. 3.4

…

3. H06505

4. H06505

5. H655

6. H655
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How useful is Soundex?

▪ Not very – for general IR, spelling correction

▪ Okay for "high recall" tasks (e.g., Interpol), though 
biased to names of certain nationalities

▪ Sucks for Chinese names: Xin (Pinyin) and Hsin (Wade-
Giles) mapped completely different

▪ Might be more useful with Voice Input

Information Retrieval 48

Sec. 3.4
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Now what queries can we process?

▪ We have

▪ Positional inverted index with skip pointers

▪ Wildcard index

▪ Spelling correction

▪ Soundex

▪ Queries such as

(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski)

Information Retrieval 49
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Summary

▪ Data Structures for the 
Dictionary

▪ Hash

▪ Trees

▪ Learning to be tolerant

1. Wildcards

▪ General Trees

▪ Permuterm

▪ Ngrams, redux

2. Spelling Correction

▪ Edit Distance

▪ Ngrams, re-redux

3. Phonetic – Soundex 

Information Retrieval 50
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Resources

▪ IIR 3, MG 4.2

▪ Efficient spelling retrieval:

▪ K. Kukich. Techniques for automatically correcting words in text. ACM 
Computing Surveys 24(4), Dec 1992.

▪ J. Zobel and P. Dart. Finding approximate matches in large 
lexicons. Software - practice and experience 25(3), March 1995. 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3856&rep=rep1&type=p
df

▪ Mikael Tillenius: Efficient Generation and Ranking of Spelling Error 
Corrections. Master’s thesis at Sweden’s Royal Institute of Technology. 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1392

▪ Nice, easy reading on spelling correction:

▪ Peter Norvig: How to write a spelling corrector 

http://norvig.com/spell-correct.html

Information Retrieval 51
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It’s in 
python!

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3856&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1392
http://norvig.com/spell-correct.html
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