
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 4: Dictionaries and Tolerant Retrieval4

Live Q&A

https://pollev.com/jin

CS3245 – Information Retrieval

Last Time: Postings lists
and Choosing terms
▪ Faster merging of posting lists

▪ Skip pointers

▪ Handling of phrase and proximity queries
▪ Biword indexes for phrase queries
▪ Positional indexes for phrase/proximity queries

▪ Steps in choosing terms for the dictionary
▪ Text extraction
▪ Granularity of indexing
▪ Tokenization
▪ Stop word removal
▪ Normalization
▪ Lemmatization and stemming

Information Retrieval 2

Ch. 2

CS3245 – Information Retrieval

Today: the dictionary and
tolerant retrieval

▪ Dictionary

▪ "Tolerant" retrieval

▪ Wild-card queries

▪ Spelling correction

▪ Soundex

Information Retrieval 3

Ch. 3

CS3245 – Information Retrieval

Dictionary data structures for
inverted indexes

▪ The dictionary data structure stores the term
vocabulary, document frequency, pointers to each
postings list … in what data structure?

Information Retrieval 4

Sec. 3.1

7

12

4

CS3245 – Information Retrieval

A naïve dictionary

▪ An (possibly unsorted) array of entries:

char[20] int Postings Pointer

20 bytes 8 bytes 8 bytes

Information Retrieval 5

Sec. 3.1

Quick Q: What’s wrong with using
this data structure?

dict[0]

dict[1]

dict[…]

…

CS3245 – Information Retrieval

A naïve dictionary

char[20] int Postings Pointer

20 bytes 8 bytes 8 bytes

▪ Words can only be at most 20 chars long. Waste of space for
some words, not enough for others.

▪ How do we store a dictionary efficiently?
→ Later in W6

Information Retrieval 6

Sec. 3.1

Supercalifragilisticexpialidocious???

CS3245 – Information Retrieval

A naïve dictionary

char[20] int Postings Pointer

20 bytes 8 bytes 8 bytes

▪ Slow to access, linear scan needed!

▪ How do we quickly look up elements at query time?

Information Retrieval 7

Sec. 3.1

CS3245 – Information Retrieval

Dictionary data structures

▪ Two main choices:

▪ Hash table

▪ Tree

▪ Focus on the support of tolerant retrieval for this
lecture

▪ See the textbook for other considerations!

Information Retrieval 8

Sec. 3.1

CS3245 – Information Retrieval

Hash Table

Information Retrieval 9

Sec. 3.1

CS3245 – Information Retrieval

Hash Table

▪ Pros:

▪ Faster (than Tree): O(1) for lookup

▪ Cons:

▪ No easy way to find minor variants:
▪ judgment/judgement

▪ No prefix search (e.g., terms starting with "hyp")

Information Retrieval 10

Sec. 3.1

Not very tolerant!

CS3245 – Information Retrieval

Root

a-m n-z

a-hu hy-m n-sh si-z

Tree: binary tree

Information Retrieval 11

Sec. 3.1

CS3245 – Information Retrieval

Trees

▪ Pros:

▪ Solves the prefix problem (e.g., terms starting with "hyp")

▪ Easier to find minor variants:
▪ judgment/judgement

▪ Cons:

▪ Slower: O(log M) [and this requires a balanced tree]

Information Retrieval 12

Sec. 3.1

More tolerant!

CS3245 – Information Retrieval

WILDCARD QUERIES

Information Retrieval 13

CS3245 – Information Retrieval

Wildcard queries: *

▪ * matches with any sequence of letters

▪ Sample use cases

▪ File search based on extension (e.g., *.jpg)

▪ Variation in spelling (e.g., col*ur)

▪ Single vs plural form (e.g., cat*)

▪ …

Information Retrieval 14

Sec. 3.2

CS3245 – Information Retrieval

Wildcard queries: *

▪ mon*: find docs with words beginning with "mon".

▪ Maintain a binary tree for terms

▪ Retrieve all words in range: mon ≤ w < moo

Information Retrieval 15

Sec. 3.2

mon…

…

money

monsoon

month

…

CS3245 – Information Retrieval

Wildcard queries: *

▪ *mon: find docs with words ending in "mon"

▪ Maintain an additional tree for terms reversed

▪ Retrieve all words in range: nom ≤ w < non.

Information Retrieval 16

Sec. 3.2

nom…

…

nomel

nomlas

nommoc

…

CS3245 – Information Retrieval

▪ How about pro*cient?

▪ Retrieve possible words for pro* and *cient from the
trees and intersect

Handling general wildcard queries

Information Retrieval 17

Intersect!pro… tneic…

…

proceed

proficient

profile

…

…

tneiciffe

tneiciffus

tneiciforp

…

CS3245 – Information Retrieval

Handling general wildcard queries

▪ General wildcard queries: X*Y

▪ Look up X* in a normal tree AND *Y in a reverse tree,
and then intersect the two term sets

▪ Expensive

▪ The solution: transform wildcard queries into prefix
queries (i.e., * occurs at the end)

▪ This gives rise to the Permuterm Index.
Information Retrieval 18

Sec. 3.2

CS3245 – Information Retrieval

Permuterm index

▪ For the term hello, add an end marker $ and index all
rotations:

▪ hello$, ello$h, llohe, lohel, o$hell and $hello

▪ For a wildcard query, add an end marker $ and look
up using the rotation with * at the end

▪ X* lookup on $X* *X lookup on X$*

▪ X*Y lookup on Y$X* *X* lookup on X*

Information Retrieval 19

Sec. 3.2.1

Query = hel*o
X=hel, Y=o

Lookup o$hel*

Not so quick Q:
What about X*Y*Z?

CS3245 – Information Retrieval

Permuterm index

▪ Lexicon size blows up, proportional to average word
length

▪ E.g., A 5-letter word, hello, has 6 rotations

Information Retrieval 20

Sec. 3.2.1

Is there any other solution?

CS3245 – Information Retrieval

Bigram (k-gram) index

▪ Enumerate all k-grams (sequence of k chars)
occurring in any term

▪ e.g., from text "April is the cruelest month" we get
the 2-grams (bigrams)

▪ As before "$" is a special word boundary symbol

▪ Maintain a second inverted index from bigrams to
dictionary terms that match each bigram.

Information Retrieval 21

a,ap,pr,ri,il,l,i,is,s,t,th,he,e,$c,cr,ru,

ue,el,le,es,st,t$,$m,mo,on,nt,h$

Sec. 3.2.2

CS3245 – Information Retrieval

Bigram index example

▪ The k-gram index finds terms based on a query
consisting of k-grams (here k=2).

▪ Query mon* can now be run as an "AND" Query

▪ $m AND mo AND on

▪ Possible matches: month, moon, …
Information Retrieval 22

mo

on

among

$m mace

among

amortize

madden

axon

Sec. 3.2.2

CS3245 – Information Retrieval

Bigram query processing

▪ Oops! We also included moon, a false positive!

▪ It also contains all 3 bigrams $m, mo, on

▪ Must post-filter these terms against query.

▪ Surviving enumerated terms are then looked up in the
term-document inverted index.

▪ Fast, space efficient (compared to permuterm).

Information Retrieval 23

Sec. 3.2.2

CS3245 – Information Retrieval

Processing wildcard queries

▪ After getting the possible terms, we still need to
execute a Boolean query for each possible term.

▪ Wildcards can result in expensive query execution
(very large disjunctions…)
▪ pyth* AND prog*

▪ If you encourage laziness, people will respond!

Which web search engines allow wildcard queries?
Information Retrieval 24

Search

Type your search terms, use ‘*’ if you need to.

E.g., Alex* will match Alexander.

Sec. 3.2.2

CS3245 – Information Retrieval

SPELLING
CORRECTION

Information Retrieval 25

CS3245 – Information Retrieval

Query misspellings

▪ Need to correct user queries to retrieve "right"
answers

▪ E.g., the query Ellon Mask

▪ We can

▪ Return several suggested alternative queries with the
correct spelling
▪ "Did you mean … ?"

▪ Retrieve documents indexed by the correct spelling

Information Retrieval 26

Sec. 3.3

CS3245 – Information Retrieval

Spellling corektion

▪ Two main flavors:

▪ Isolated word
▪ Check each word on its own for misspelling

▪ Will not catch typos resulting in correctly spelled words
e.g., from → form

▪ Context-sensitive
▪ Look at surrounding words

e.g., I flew form Narita.

Information Retrieval 27

Sec. 3.3

CS3245 – Information Retrieval

Fundamental premise

▪ There is a lexicon of correct spellings.

▪ Two basic choices for this

▪ A standard lexicon such as
▪ Merriam-Webster’s English Dictionary

▪ A domain-specific lexicon – often hand-maintained

▪ The lexicon of the indexed corpus
▪ E.g., all words on the web

▪ All names, acronyms, etc. (including misspellings)

Information Retrieval 28

Sec. 3.3.2

CS3245 – Information Retrieval

Isolated word correction

▪ Given a lexicon and a character sequence Q, return
the words in the lexicon closest to Q

▪ dof→ dog, dock, cat….?

▪ How do we define "closest"?

▪ We’ll study two alternatives

1. Edit distance (Levenshtein distance)

2. ngram overlap

Information Retrieval 29

Sec. 3.3.2

CS3245 – Information Retrieval

1. Edit distance

▪ Given two strings S1 and S2, the edit distance
D (S1, S2) is the minimum number of operations to
convert one to the other

▪ Operations are typically character-level

▪ Insert, Delete, Replace

▪ E.g., D (dof , dog) = 1

▪ D (cat, act) = 2.

▪ D (cat, dog) = 3.

▪ Generally found by dynamic programming

Information Retrieval 30

Sec. 3.3.3

CS3245 – Information Retrieval

Information Retrieval

Dynamic Programming

Not dynamic and not programming

▪ Build up solutions of "simpler" instances from small
to large

▪ Compute solutions of "simpler" instances

▪ Use these solutions to solve larger problems

▪ E.g., Fibonacci numbers

▪ Useful when problem can be solved using solution of
two or more instances that are only slightly simpler
than original instances

31

Fib(1) Fib(2) Fib(3) Fib(4) Fib(5)

1 1 1+1=2 1+2=3 2+3=5

CS3245 – Information Retrieval

Computing Edit Distance

▪ Let’s try to compute the edit distance
between S1 = PAT and S2 = APT using this
array E, where

▪ E (i, j) = the distance between
S1 (up to the i-th character) and
S2 (up to the j-th character)

▪ "_" denotes an empty string

▪ E (0, 0) = D (_, _)

▪ E (1, 2) = D (P, AP)

▪ E (3, 3) = D (PAT, APT)

Information Retrieval 32

_ P A T

_

A

P

T

S
1

S
2

0 1 2 3

0

1

2

3

CS3245 – Information Retrieval

Information Retrieval

Computing Edit Distance

▪ E.g., base cases

▪ D (_, _) = 0

▪ D (P, _) = 1

▪ D (_, A) = 1

33

_ P A T

_ 0 1

A 1

P

T

S
1

S
2

0 1 2 3

0

1

2

3

CS3245 – Information Retrieval

Information Retrieval

Computing Edit Distance

▪ E.g., recursive cases

▪ D (PAT, APT) = ??

▪ What are the smaller problems?

▪ If we know D (PAT, AP), the final distance is D (PAT, AP) + 1
since we need one insertion to add T to the end of AP.

▪ If we know D (PA, APT), the final distance is D (PA, APT) + 1
since we need one insertion to add T to the end of PA.

▪ If we know D (PA, AP), the final distance is D (PA, AP) since
inserting T to both PA and AP does not change the
distance.

▪ What is the minimal distance?
34

CS3245 – Information Retrieval

Computing Edit Distance

Information Retrieval 35

E(i, j) = min{ E(i, j-1) + 1, where m = 1 if Pi Tj,

E(i-1, j) + 1, 0 otherwise

E(i-1, j-1) + m}

D(PAT, APT) @ E (3, 3) = min {

D(PAT, AP) @ E(3, 2) + 1,

D(PA, APT) @ E(2, 3) + 1,

D(PA, AP) @ E(2, 2) + 0

} = 2

_ P A T

_ 0 1 2 3

A 1 1 1 2

P 2 1 2 2

T 3 2 2 2

S
1

S
2

0 1 2 3

0

1

2

3

CS3245 – Information Retrieval

Edit distance to all dictionary terms?

▪ Given a (misspelled) query – do we compute its edit
distance to every dictionary term?

▪ Expensive and slow

▪ Alternative?

▪ How do we cut the set of candidate dictionary
terms?

▪ One possibility is to use ngram overlap for this

▪ This can also be used by itself for spelling correction

Information Retrieval 36

Sec. 3.3.4

CS3245 – Information Retrieval

2. Ngram overlap

▪ Enumerate all the ngrams in the query string as well
as in the lexicon

▪ Query term: lord → Bigrams: {lo, or, rd}

▪ Lexicon term: lore→ Bigrams {lo, or, re}

▪ Lexicon term: border→ Bigrams {bo, or, rd, de, er}

▪ Count the overlaps between a pair of terms

▪ 2 between lord and lore

▪ 2 between lord and border

▪ Threshold to decide if you have a match

▪ E.g., if count >= 2, declare a match
Information Retrieval 37

Sec. 3.3.4

This favors longer
terms by nature, why?

CS3245 – Information Retrieval

A normalized option –
Jaccard coefficient
▪ Let X and Y be two sets; then the J.C. is

▪ Equals 1 when X and Y have the same
elements and 0 when they are disjoint

▪ Does not favor longer terms.

▪ E.g., JC(lord, lore) = 2/4
JC(lord, border) = 2/6

▪ Threshold to decide if you have a match

▪ E.g., if Jaccard >= 0.5, declare a match

Information Retrieval 38

YXYX  /

Sec. 3.3.4

A generally
useful overlap
measure, even
outside of IR

"coefficient de

communauté"

CS3245 – Information Retrieval

Matching bigrams

▪ Index the dictionary terms using bigram.

▪ Identify words with at least 2 overlaps (and Jaccard
>= 0.5) by merging.

Information Retrieval 39

lo

or

rd

alone lore sloth

lore morbid

border card

border

ardent

Standard postings "merge" enumerates
terms with multiple overlaps

Sec. 3.3.4

CS3245 – Information Retrieval

Context-sensitive correction

▪ Query: flew form Narita

▪ Need context to correct "form" to "from"

▪ Retrieve dictionary terms close (e.g., in edit distance)
to each query term

▪ Enumerate all possible resulting phrases with one
word "corrected" at a time
▪ flew from Narita

▪ fled form Narita

▪ flew form Arita
Information Retrieval 40

Sec. 3.3.5

Which one to pick?

CS3245 – Information Retrieval

Context-sensitive correction

▪ Decide which ones to present using heuristics

▪ Hit-based spelling correction

▪ The correction with most hits

▪ E.g., flew from Narita (100,000 hits)  pick this!

fled form Narita (200 hits)

flew form Arita (500 hits)

Information Retrieval 41

Sec. 3.3.5

CS3245 – Information Retrieval

General issues in spelling correction

▪ Confirm with the user vs. search automatically (e.g.,
with the most possible correction)

▪ Disempowerment or effort saved?

▪ High computational cost

▪ Avoid running routinely on every query?

▪ Run only on queries that matched few docs

Information Retrieval 42

Sec. 3.3.5

CS3245 – Information Retrieval

SOUNDEX

Information Retrieval 43

CS3245 – Information Retrieval

Soundex

▪ Class of heuristics to expand a query into phonetic
equivalents

▪ Language specific – mainly for names

▪ E.g., chebyshev→ tchebycheff

▪ Invented for the U.S. census … in 1918

▪ Available in most databases (Oracle, Microsoft, …)

▪ We’ll explore this just in the context of English

Information Retrieval 44

Sec. 3.4

Blanks on slides, you may want to fill in

To think about: what other languages
does it make sense for?

CS3245 – Information Retrieval

Soundex – typical algorithm

▪ Turn every token to be indexed into a 4-character
reduced form

▪ Do the same with query terms

▪ Build and search an index on the reduced forms

(when the query calls for a Soundex match)

▪ See Wikipedia’s entry:
https://en.wikipedia.org/wiki/Soundex

Information Retrieval 45

Sec. 3.4

https://en.wikipedia.org/wiki/Soundex

CS3245 – Information Retrieval

Soundex – typical algorithm

1. Retain the first letter of the word.

2. Change all occurrences of the following letters to '0'
(zero):

'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.

3. Change letters to digits as follows:
▪ B, F, P, V → 1

▪ C, G, J, K, Q, S, X, Z → 2

▪ D,T → 3

▪ L → 4

▪ M, N → 5

▪ R → 6

Information Retrieval 46

Sec. 3.4

Herman

1. Herman

2. H0rm0n

3. H06505

…

CS3245 – Information Retrieval

Soundex continued

4. Repeatedly remove one out of each pair of
consecutive identical digits

5. Remove all zeros from the resulting string.

6. Pad the resulting string with trailing zeros and
return the first four positions, which will be of the
form <uppercase letter> <digit> <digit> <digit>.

E.g., Herman becomes H655.

Information Retrieval 47

Will hermann generate the same code?

Sec. 3.4

…

3. H06505

4. H06505

5. H655

6. H655

CS3245 – Information Retrieval

How useful is Soundex?

▪ Not very – for general IR, spelling correction

▪ Okay for "high recall" tasks (e.g., Interpol), though
biased to names of certain nationalities

▪ Sucks for Chinese names: Xin (Pinyin) and Hsin (Wade-
Giles) mapped completely different

▪ Might be more useful with Voice Input

Information Retrieval 48

Sec. 3.4

CS3245 – Information Retrieval

Now what queries can we process?

▪ We have

▪ Positional inverted index with skip pointers

▪ Wildcard index

▪ Spelling correction

▪ Soundex

▪ Queries such as

(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski)

Information Retrieval 49

CS3245 – Information Retrieval

Summary

▪ Data Structures for the
Dictionary

▪ Hash

▪ Trees

▪ Learning to be tolerant

1. Wildcards

▪ General Trees

▪ Permuterm

▪ Ngrams, redux

2. Spelling Correction

▪ Edit Distance

▪ Ngrams, re-redux

3. Phonetic – Soundex

Information Retrieval 50

CS3245 – Information Retrieval

Resources

▪ IIR 3, MG 4.2

▪ Efficient spelling retrieval:

▪ K. Kukich. Techniques for automatically correcting words in text. ACM
Computing Surveys 24(4), Dec 1992.

▪ J. Zobel and P. Dart. Finding approximate matches in large
lexicons. Software - practice and experience 25(3), March 1995.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3856&rep=rep1&type=p
df

▪ Mikael Tillenius: Efficient Generation and Ranking of Spelling Error
Corrections. Master’s thesis at Sweden’s Royal Institute of Technology.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1392

▪ Nice, easy reading on spelling correction:

▪ Peter Norvig: How to write a spelling corrector

http://norvig.com/spell-correct.html

Information Retrieval 51

Sec. 3.5

It’s in
python!

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3856&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1392
http://norvig.com/spell-correct.html

	Slide 1
	Slide 2: Last Time: Postings lists and Choosing terms
	Slide 3: Today: the dictionary and tolerant retrieval
	Slide 4: Dictionary data structures for inverted indexes
	Slide 5: A naïve dictionary
	Slide 6: A naïve dictionary
	Slide 7: A naïve dictionary
	Slide 8: Dictionary data structures
	Slide 9: Hash Table
	Slide 10: Hash Table
	Slide 11: Tree: binary tree
	Slide 12: Trees
	Slide 13: Wildcard queries
	Slide 14: Wildcard queries: *
	Slide 15: Wildcard queries: *
	Slide 16: Wildcard queries: *
	Slide 17: Handling general wildcard queries
	Slide 18: Handling general wildcard queries
	Slide 19: Permuterm index
	Slide 20: Permuterm index
	Slide 21: Bigram (k-gram) index
	Slide 22: Bigram index example
	Slide 23: Bigram query processing
	Slide 24: Processing wildcard queries
	Slide 25: Spelling correction
	Slide 26: Query misspellings
	Slide 27: Spellling corektion
	Slide 28: Fundamental premise
	Slide 29: Isolated word correction
	Slide 30: 1. Edit distance
	Slide 31: Dynamic Programming
	Slide 32: Computing Edit Distance
	Slide 33: Computing Edit Distance
	Slide 34: Computing Edit Distance
	Slide 35: Computing Edit Distance
	Slide 36: Edit distance to all dictionary terms?
	Slide 37: 2. Ngram overlap
	Slide 38: A normalized option – Jaccard coefficient
	Slide 39: Matching bigrams
	Slide 40: Context-sensitive correction
	Slide 41: Context-sensitive correction
	Slide 42: General issues in spelling correction
	Slide 43: Soundex
	Slide 44: Soundex
	Slide 45: Soundex – typical algorithm
	Slide 46: Soundex – typical algorithm
	Slide 47: Soundex continued
	Slide 48: How useful is Soundex?
	Slide 49: Now what queries can we process?
	Slide 50: Summary
	Slide 51: Resources

