
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 5: Index Construction 5

Live Q&A

https://pollev.com/jin

CS3245 – Information Retrieval

Last Time

▪ Dictionary data structures

▪ Tolerant retrieval

▪ Wildcards

▪ Spelling correction

▪ Soundex

a-hu

hy-m

n-z

mo

on

among

$m mace

abandon

amortize

madden

among

2Information Retrieval

CS3245 – Information Retrieval

Today: Index construction

▪ How to make index construction scalable?

1.BSBI (simple method)

2.SPIMI (more realistic)

3.Distributed Indexing

▪ How to handle changes to the index?

1.Dynamic Indexing

Ch. 4

3Information Retrieval

CS3245 – Information Retrieval

Hardware basics

Many design decisions in information retrieval are
based on the characteristics of hardware

Especially with respect to the bottleneck:

Hard Drive Storage

▪ Seek Time – time to move to a random location

▪ Transfer Time – time to transfer a data block

Sec. 4.1

4Information Retrieval

CS3245 – Information Retrieval

Hardware basics

▪ Disk seeks: No data is transferred from disk while the
disk head is being positioned.

▪ Transferring one large chunk of data from disk to memory
is faster than transferring many small chunks.

▪ Memory is much faster but limited in quantity.

▪ Servers used in IR systems now typically have hundreds of
GB of main memory.

▪ Available disk space is several (2–3) orders of magnitude
larger.

Sec. 4.1

5Information Retrieval

CS3245 – Information Retrieval

Hardware assumptions

symbol statistic value

s average seek time 8 ms = 8 x 10−3 s

b transfer time per byte 0.006 μs = 6 x 10−9 s

processor’s clock rate 349 s−1 (Intel i7 6th gen)

p low-level operation 0.01 μs = 10−8 s
(e.g., compare & swap a word)

size of main memory 8 GB or more

size of disk space 1 TB or more

Sec. 4.1

6Information Retrieval

Stats from a 2016 HP Z Z240
3.4GHz Black SFF i7-6700

CS3245 – Information Retrieval

Hardware assumptions (Flash SSDs)

symbol statistic value

s average seek time .1 ms = 1 x 10−4 s

b transfer time per byte 0.002 μs = 2 x 10−9 s

Sec. 4.1

7Information Retrieval

100x faster seek,
3x faster transfer time.

(But price 8x more per GB of storage)

WD 4 TB Black

S$ 311 (circa Jan 2016)

Samsung 850 Evo (1 TB)

S$ 630 (circa Jan 2016)

Seek and transfer
time combined in
another industry
metric: IOPS

https://en.wikipedia.org/wiki/IOPS

CS3245 – Information Retrieval

RCV1: Our collection for this lecture

▪ The successor to the Reuters-21578, which you used
for your homework assignment. Larger by 35 times.

▪ Not really large, but publicly available and a more plausible
example.

▪ One year of Reuters newswire
(part of 1995 and 1996)

Sec. 4.2

8Information Retrieval

CS3245 – Information Retrieval

Reuters RCV1 statistics

symbol statistic value

N documents 800,000

L avg. # tokens per doc 200

M terms 400,000
(= vocabulary size)

avg. # bytes per term 7.5

T term-docID pairs 100,000,000
(= tokens)

Sec. 4.2

9Information Retrieval

CS3245 – Information Retrieval

Key Step in Index Construction

We focus on this sort step.
We have 100M pairs to sort.

Sec. 4.2

10Information Retrieval

▪ Sort by terms
▪ And then docID

CS3245 – Information Retrieval

Scaling index construction

▪ At ~11.5 bytes per pair: ~7.5 bytes for term + 4 bytes
for docID

▪ T = 100M in the case of RCV1: ~1.1GB

▪ So … we can do this easily in memory nowaday, but typical
collections are much larger. E.g. the New York Times
provides an index of >150 years of newswire

▪ Thus, we need to store intermediate results on disk.

Sec. 4.2

11Information Retrieval

CS3245 – Information Retrieval

BSBI: Blocked sort-based Indexing

▪ Map terms to termIDs of 4 bytes with
an in-memory dictionary.

▪ 8-byte (4+4) records (termID, docID)

▪ Must now sort 100M 8-byte records (~0.8 GB) by
termID.

Sec. 4.2

12Information Retrieval

CS3245 – Information Retrieval

BSBI: Blocked sort-based Indexing

▪ Define a Block as ~ 10M such records

▪ Can easily fit a couple into memory.

▪ Will have 10 such blocks for our collection.

▪ Basic idea of algorithm:

▪ Accumulate records for each block, sort, create the posting
lists, write to disk.

▪ Then merge the blocks into one long sorted order.

Sec. 4.2

13Information Retrieval

CS3245 – Information Retrieval Sec. 4.2

14Information Retrieval

f1

f2

(The actual terms are
shown for clarity.)

CS3245 – Information Retrieval

Example of Merging in BSBI

Sec. 4.2

15Information Retrieval

(The actual terms are
shown for clarity.)

CS3245 – Information Retrieval

How to merge the sorted runs?

▪ 2-way Merge: Merge tree of log210 ~= 4 layers.

Sec. 4.2

16Information Retrieval

f1 f2 f4f3 f5 f7f6 f8 f9 f10

CS3245 – Information Retrieval

How to merge the sorted runs?

2-way vs N-way merge

▪ More efficient to do a n-way merge by reading from all blocks
simultaneously

▪ Need to read and write in decent-sized chunks to fit data into
memory yet minimize disk seeks

Sec. 4.2

17Information Retrieval

Disk

… … … ……

In
memory
readers

…

In
memory

writer

CS3245 – Information Retrieval

How to merge the sorted runs?

▪ 5-way Merge: Merge tree of log510 ~= 2 layers.

Sec. 4.2

18Information Retrieval

f1 f2 f4f3 f5 f7f6 f8 f9 f10

CS3245 – Information Retrieval

Remaining problems with BSBI

▪ The dictionary must fit into memory

▪ Hard to guarantee since it grows dynamically

▪ May end up crashing if the dictionary is too big

▪ A fixed block size must be decided in advance

▪ Too small: could be slow since more blocks need to be
processed.

▪ Too big: may end up crashing if too much memory is used
by other applications.

Sec. 4.3

19Information Retrieval

CS3245 – Information Retrieval

SPIMI:
Single-pass in-memory indexing

▪ Key idea 1: Generate an index (i.e., a real dictionary
+ postings lists) as the pairs are processed

▪ Key idea 2: Go as far as memory allows, write out the
index and then merge later

▪ Advantages:

▪ No need to keep a single dictionary in memory

▪ No need to wait for a fixed-size block to be filled up

▪ Able to adapt to the availability of memory

Sec. 4.3

20Information Retrieval

CS3245 – Information Retrieval

SPIMI:
Single-pass in-memory indexing

Sec. 4.3

21Information Retrieval

Hash the pairs into
a table and consolidate
the postings.

Create a sorted list of
terms and write out the
table in sorted order.

Merge with
others later.

enact 1

julius 1

caesar 1

killed 1

let 2

it 2

be 2

with 2

caesar 2

killed 2

… …

be 2

with 2

caesar 1,2

it 2

enact 1

julius 1
killed 1,2

let 2

be 2

caesar 1,2

enact 1

it 2

julius 1

killed 1,2
let 2

with 2

CS3245 – Information Retrieval

SPIMI-Invert

▪ Merging of blocks is analogous to BSBI.

Sec. 4.3

22Information Retrieval

CS3245 – Information Retrieval

SPIMI: Efficiency

▪ Faster than BSBI

▪ No sorting of pairs

▪ Only sorting of dictionary terms

▪ Even faster with compression

▪ Compression of terms

▪ Compression of postings

Sec. 4.3

23Information Retrieval

More about

this in W6.

CS3245 – Information Retrieval

DISTRIBUTED
INDEXING

Information Retrieval 24

CS3245 – Information Retrieval

Distributed indexing

▪ For web-scale indexing (don’t try this at home!):

must use a distributed computing cluster

▪ Individual machines are fault-prone

Can unpredictably slow down or fail

How do we exploit such a pool of machines?

Sec. 4.4

25Information Retrieval

CS3245 – Information Retrieval

Google Data Centers

▪ Google data centers mainly contain
commodity machines, and are
distributed worldwide.

• One here in Jurong West (~200K
servers back in 2011)

• Must be fault tolerant. Even with
99.9+% uptime, there often will be one
or more machines down in a data
center.

• As of 2001, they have fit their entire
web index in-memory (RAM; of course,
spread over many machines)

Sec. 4.4

26Information Retrieval

https://youtu.be/BRH3ST4yK10

http://www.google.com/about/datacent

ers/inside/streetview/

http://www.straitstimes.com/business/

10-things-you-should-know-about-

google-data-centre-in-jurong

https://youtu.be/BRH3ST4yK10
http://www.google.com/about/datacenters/inside/streetview/
http://www.straitstimes.com/business/10-things-you-should-know-about-google-data-centre-in-jurong

CS3245 – Information Retrieval

Architecture of distributed indexing

▪ Maintain

▪ a master machine directing the indexing job – considered
"safe" (but also "replaceable")

▪ a pool of worker machines – considered "easily replaceable"

▪ Break down indexing into (sets of) parallel tasks.

▪ Master machine assigns each task to an idle worker
machine.

Sec. 4.4

27Information Retrieval

Index!
Woof
(ok)!

CS3245 – Information Retrieval

Parallel tasks

▪ We will use two sets of parallel tasks

▪ Parsing – handled by Parsers

▪ Inversion – handled by Inverters

▪ Preprocessing

▪ Break the input document collection into subsets of
documents called splits.

Sec. 4.4

28Information Retrieval

CS3245 – Information Retrieval

Parallel tasks

▪ Parsing

▪ The manager assigns a split to a parser.

▪ Parser reads the documents from the split and emits
(term, doc) pairs.

▪ Parser writes pairs into its own j partitions based on the
first letter of the terms, e.g., a-b, c-d, …, y-z → j = 13.

▪ Inversion

▪ Manager assign a range to an inverter.

▪ An inverter collects all (term, doc) pairs for partitions for
the specified range.

▪ Inverter sorts and writes the pairs into postings lists.

Sec. 4.4

29Information Retrieval

CS3245 – Information Retrieval

Data flow

Information Retrieval 30

…

Master
Parsers

a-b c-d y-z…

a-b c-d y-z…

a-b c-d y-z…

Inverters

Map phase Reduce phaseSegment files

a-b

c-d

y-z

Postings

…

s
h
u
f
f
l
e

…

CS3245 – Information Retrieval

MapReduce

▪ The index construction algorithm we just described is
an instance of MapReduce.

▪ Robust and conceptually simple framework for distributed
computing.

▪ Can be easily implemented using Apache Hadoop.

▪ Widely used in the Google indexing system in the past.

Sec. 4.4

31Information Retrieval

CS3245 – Information Retrieval

MapReduce

Schema of map and reduce functions

▪ map: input → list(k, v)

▪ reduce: (k, list(v)) → output

Instantiation of the schema for index construction

▪ map: web collection → list(term, docID)

▪ reduce: (<term1, list(docID)>, <term2, list(docID)>, …) →
(postings list1, postings list2, …)

Sec. 4.4

32Information Retrieval

CS3245 – Information Retrieval

MapReduce

▪ map

▪ d1 : Caesar came, Caesar conquered. d2 : Caesar died →

▪ <caesar, d2>, <died,d2>, <caesar, d1>, <came, d1>, <caesar,
d1>, <conquered, d1>

▪ Reduce

▪ <caesar, (d2, d1, d1)>, <died, (d2)>, <came, (d1)>,
<conquered, (d1)> →

▪ <caesar, (d1, d2)>, <came, (d1)>, <conquered, (d1)>, <died,
(d2)>

Information Retrieval 33

CS3245 – Information Retrieval

DYNAMIC
INDEXING

Information Retrieval 34

CS3245 – Information Retrieval

Dynamic indexing

▪ In practice, collections are rarely static!

▪ Documents come in over time and need to be inserted.

▪ Documents are deleted and modified.

▪ This means that the dictionary and postings lists have
to be modified:

▪ Postings updates for terms already in dictionary

▪ New terms added to dictionary

▪ Simplest (yet impractical) approach: re-index every
time

Sec. 4.5

35Information Retrieval

CS3245 – Information Retrieval

2nd simplest approach

▪ Two indexes

▪ One "big" main index (let say I)

▪ One "small" (in memory) auxiliary index (let say Z)

▪ Mechanism

▪ Add: new docs goes to the auxiliary index

▪ Delete: maintain a list of deleted docs

▪ Update: delete + add

▪ Search: search both, merge results and omit deleted docs

▪ Need to perform linear merge when auxiliary index is
too large.

Sec. 4.5

36Information Retrieval

CS3245 – Information Retrieval

Linear Merge

▪ Let say…

▪ The capacity of the auxiliary index Z is n pairs of (term,
docID)

▪ The main index I can be arbitrarily large

▪ Initially both are empty

▪ The algorithm

▪ Once Z is full, write out Z and merge with I

Sec. 4.5

37Information Retrieval

CS3245 – Information Retrieval

Linear Merge

▪ Example:

▪ The 1st set of n pairs, write out Z (n items) and merge with
I (0 items) → merge n + 0 = n items into I

▪ The 2nd set of n pairs, write out Z (n items) and merge with
I (n items) → merge n + n = 2*n items into I

▪ The 3rd set of n pairs, write out Z (n items) and merge with
I (2*n items) → merge n + 2*n = 3*n items into I

▪ The 4th set of n pairs, write out Z (n items) and merge with
I (3*n items) → merge n + 3*n = 4*n items into I

▪ …

Sec. 4.5

38Information Retrieval

CS3245 – Information Retrieval

Linear Merge

▪ Let say there are a total T pairs for which require k
merges (i.e., k = T / n)

▪ Cost of merging

▪ n + 2 * n + 3 * n + 4 * n … + k * n
= (k * (k+1) / 2) * n
~= nk2

~= O(T2)

Sec. 4.5

39Information Retrieval

CS3245 – Information Retrieval

Logarithmic merge

▪ Idea: maintain a series of indexes

▪ Z0: In memory, with the same capacity as I0 (= n)

▪ I0, I1, …: on disk, each twice as large as the previous one.

▪ If Z0 gets too big (= n), write to disk as I0,
or merge with I0 (if I0 already exists) as Z1

▪ Either write Z1 to disk as I1 (if no I1),
or merge with I1 to form Z2

… etc.

Sec. 4.5

40Information Retrieval

L
o
o
p

f
o
r

l
o
g

le

v
e
ls

CS3245 – Information Retrieval

Logarithmic merge

▪ Example:

▪ The 1st set of n pairs, write out Z0 (n items) as I0

▪ The 2nd set of n pairs, write out Z0 (n items) but I0 already
exists → merge n + n = 2*n items into I1 (and remove I0)

▪ The 3rd set of n pairs, write out Z0 (n items) as I0

▪ …

Sec. 4.5

41Information Retrieval

I0 I1 I2

0 0 0 0
n 1 0 0

2*n 0 1 0
3*n 1 1 0
4*n 0 0 1

The presence (1)
or absence (0) of
the indexes on disk

CS3245 – Information Retrieval

Logarithmic merge

▪ Example:

▪ …

▪ The 4th set of n pairs, write out Z0 (n items) but I0 already
exists → merge n + n = 2*n items into a new index I1 but I1

already exists → merge 2*n + 2*n = 4*n items into a new
index I2 (and remove I0 and I1)

Sec. 4.5

42Information Retrieval

I0 I1 I2

0 0 0 0
n 1 0 0

2*n 0 1 0
3*n 1 1 0
4*n 0 0 1

The presence (1)
or absence (0) of
the indexes on disk

CS3245 – Information Retrieval Sec. 4.5

43Information Retrieval

CS3245 – Information Retrieval

Logarithmic merge

▪ Cost of merging

▪ Each posting is touched O(log T) times, so complexity is
O(T log T)

▪ E.g., let n = 4, T = 32, the first pair is touched 4 times (as
compared to 8 times in linear merge)

▪ So logarithmic merge is much more efficient for
indexing

▪ But query processing now is slower

▪ Merging results from O(log T) indexes (as compared to 2)

Sec. 4.5

44Information Retrieval

CS3245 – Information Retrieval

Summary

▪ Indexing

▪ Both basic as well as important variants
▪ BSBI – sort key values to merge, needs dictionary

▪ SPIMI – build mini indexes and merge them, no dictionary

▪ Distributed
▪ Described MapReduce architecture – a good illustration of

distributed computing

▪ Dynamic
▪ Tradeoff between querying and indexing complexity

Information Retrieval 45

CS3245 – Information Retrieval

Resources for today’s lecture

▪ Chapter 4 of IIR

▪ MG Chapter 5

▪ Original publication on MapReduce: Dean and
Ghemawat (2004)

▪ Original publication on SPIMI: Heinz and Zobel (2003)

Ch. 4

46Information Retrieval

	Slide 1
	Slide 2: Last Time
	Slide 3: Today: Index construction
	Slide 4: Hardware basics
	Slide 5: Hardware basics
	Slide 6: Hardware assumptions
	Slide 7: Hardware assumptions (Flash SSDs)
	Slide 8: RCV1: Our collection for this lecture
	Slide 9: Reuters RCV1 statistics
	Slide 10: Key Step in Index Construction
	Slide 11: Scaling index construction
	Slide 12: BSBI: Blocked sort-based Indexing
	Slide 13: BSBI: Blocked sort-based Indexing
	Slide 14
	Slide 15: Example of Merging in BSBI
	Slide 16: How to merge the sorted runs?
	Slide 17: How to merge the sorted runs?
	Slide 18: How to merge the sorted runs?
	Slide 19: Remaining problems with BSBI
	Slide 20: SPIMI: Single-pass in-memory indexing
	Slide 21: SPIMI: Single-pass in-memory indexing
	Slide 22: SPIMI-Invert
	Slide 23: SPIMI: Efficiency
	Slide 24: Distributed Indexing
	Slide 25: Distributed indexing
	Slide 26: Google Data Centers
	Slide 27: Architecture of distributed indexing
	Slide 28: Parallel tasks
	Slide 29: Parallel tasks
	Slide 30: Data flow
	Slide 31: MapReduce
	Slide 32: MapReduce
	Slide 33: MapReduce
	Slide 34: Dynamic Indexing
	Slide 35: Dynamic indexing
	Slide 36: 2nd simplest approach
	Slide 37: Linear Merge
	Slide 38: Linear Merge
	Slide 39: Linear Merge
	Slide 40: Logarithmic merge
	Slide 41: Logarithmic merge
	Slide 42: Logarithmic merge
	Slide 43
	Slide 44: Logarithmic merge
	Slide 45: Summary
	Slide 46: Resources for today’s lecture

