# CS3245 Information Retrieval

#### Lecture 7: Scoring, Term Weighting and the Vector Space Model



Live Q&A https://pollev.com/jin



#### Last Time: Index Compression

- Collection and vocabulary statistics: Heaps' and Zipf's laws
- Dictionary compression for Boolean indexes
  - Dictionary string, blocks, front coding
- Postings compression:
  - Gap encoding and variable byte encoding

| Data structure                        | Size in MB |
|---------------------------------------|------------|
| dictionary, fixed-width               | 11.2       |
| dictionary, term pointers into string | 7.6        |
| with blocking, $k = 4$                | 7.1        |
| with blocking & front coding          | 5.9        |
| postings, uncompressed (32-bit words) | 400.0      |
| postings, variable byte encoded       | 116.0      |



# Today: Ranked Retrieval

- Scoring documents
- Term frequency
- Collection statistics
- Weighting schemes
- Vector space scoring
- Parametric and zone indexes (Section 6.1) will be covered next week.

# Problem with Boolean search: Difficulty in query formulation



Ch. 6

- Boolean queries
  - Terms + Boolean operators
- Most (non-expert) users are likely to have difficulty in writing Boolean queries.
  - What are the correct terms to use?
  - What do the operators mean and how to use them?

Ch. 6

## Problem with Boolean search: Feast or Famine with no differentiation

- Boolean logic is quite strict
- They can result in either too few (=0) or too many (1000s) results.
  - Q1: "Windows 10" AND login AND KB3081444  $\rightarrow$  0 hits
  - Q2: "Windows 10" OR login OR KB3081444  $\rightarrow$  377M hits
    - Also called "information overload"
- All the returned results are considered equally good by the search engine...

# Problem with Boolean search: Feast or Famine with no differentiation

- Good for expert users with precise understanding of their needs and the collection.
  - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
  - Most users don't want to wade through 1000s of results.

Ch. 6



#### **Ranked retrieval**

- Free text queries: The user's query is just one or more words in a human language.
- Ranked results: The results are ranked in the order of estimated relevance.
- Two separate choices, but a common combination.



#### Ranked retrieval

- All the users need to do is:
  - Write a free-text query and check the top k (  $\approx$  10) results
    - If the results are good, the search is done.
    - Otherwise, repeat this process with a reformulated query.
- Simple and cost-effective, however...
  - The ranking algorithm must work (i.e., most relevant documents should be ranked as the top results.)



# Scoring as the basis of ranked retrieval

How to rank the documents in the collection with respect to a query?

- Assign a score to each document
  - A number in [0, 1] which measures how well the query and the document match.
- Sort the documents based on the scores
  - Documents with score = 1
  - Documents with score = 0.99



# Take 1: Jaccard coefficient

- From Chapter 3 (spelling correction)
- Measures the overlap of two sets A and B Jaccard (A, B) = |A ∩ B| / |A ∪ B| Jaccard (A, A) = 1 Jaccard (A, B) = 0 if A ∩ B = 0
- Let A = the set of terms in the query, B = the set of terms in a document
  - Jaccard provides an estimate of how well the query and the document match



# Jaccard coefficient: Scoring example

What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?

- Query: ides of march
- Doc 1: caesar died in march
- Doc 2: the long march
- Results:
  - Doc 2
  - Doc 1

Jaccard (Q, Doc 1) = 1/6 Jaccard (Q, Doc 2) = 1/5



### Information not considered in Jaccard

#### Term Frequency

- Query: Caesar
- Doc A (A story about Caesar): Caesar ... Caesar ... Caesar ...
- Doc B (A list of dictators): Caesar ... Hitler ...
- A > B since Caesar appears more often in A (i.e., of higher term frequency).

CS3245 – Information Retrieval

# Recap: **Binary** term-document incidence matrix (from Week 2)



Sec. 6.2

|           | Antony and Cleopatra | Julius Caesar | The Tempest | Hamlet | Othello | Macbeth |
|-----------|----------------------|---------------|-------------|--------|---------|---------|
| Antony    | 1                    | 1             | 0           | 0      | 0       | 1       |
| Brutus    | 1                    | 1             | 0           | 1      | 0       | 0       |
| Caesar    | 1                    | 1             | 0           | 1      | 1       | 1       |
| Calpurnia | 0                    | 1             | 0           | 0      | 0       | 0       |
| Cleopatra | 1                    | 0             | 0           | 0      | 0       | 0       |
| mercy     | 1                    | 0             | 1           | 1      | 1       | 1       |
| worser    | 1                    | 0             | 1           | 1      | 1       | 0       |



#### 1. Term frequency matrix

Contains the frequency of a term in a document:

|           | Antony and Cleopatra | Julius Caesar | The Tempest | Hamlet | Othello | Macbeth |
|-----------|----------------------|---------------|-------------|--------|---------|---------|
| Antony    | 157                  | 73            | 0           | 0      | 0       | 0       |
| Brutus    | 4                    | 157           | 0           | 1      | 0       | 0       |
| Caesar    | 232                  | 227           | 0           | 2      | 1       | 1       |
| Calpurnia | 0                    | 10            | 0           | 0      | 0       | 0       |
| Cleopatra | 57                   | 0             | 0           | 0      | 0       | 0       |
| mercy     | 2                    | 0             | 3           | 5      | 5       | 1       |
| worser    | 2                    | 0             | 1           | 1      | 1       | 0       |

# Term frequency tf



- The term frequency tf<sub>t,d</sub> of term t in document d is defined as the number of times that t occurs in d.
- We want to use *tf* when computing query-document match scores. But how?
- Relevance does not increase proportionally with raw term frequency
  - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence. But not 10 times more relevant.



# Log-frequency weighting scheme

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0\\ 0, & \text{otherwise} \end{cases}$$

e.g.  $0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 1.3, 10 \rightarrow 2, 1000 \rightarrow 4$ , etc.

| Let say:                                                   |           | Antony and Cleopatra |
|------------------------------------------------------------|-----------|----------------------|
| Q = Antony Cleopatra Calpurnia                             | Antony    | 157                  |
| D - the play Anthony and Cleonatra                         | Brutus    | 4                    |
| D = the play Anthony and Cleopatra                         | Caesar    | 232                  |
| Score (D, Q) = $(1 + \log_{10} 157) + (4 + \log_{10} 157)$ | Calpurnia | 0                    |
| $(1 + \log_{10}57) + 0$                                    | Cleopatra | 57                   |



## Information not considered in Jaccard

#### Document Frequency

- Query: the emperor
- Document A: emperor
- Document B: the
- A > B since the is too common (i.e., of higher document frequency) and hence less important than emperor

### 2. Document frequency



- Rare terms are more informative than frequent terms
  - Given a query: the emperor, it is more important to match "emperor" than to match "the".
- We want...
  - Lower weights for more common words like the, increase, and line, and
  - Higher weights for rarer ones like emperor, and arachnocentric.
- This can be captured by the inverse document frequency (idf) weighting scheme.

# idf weighting scheme



- *df<sub>t</sub>* is the <u>document</u> frequency of *t*: the number of documents that contain *t*
  - *df<sub>t</sub>* is an inverse measure of the informativeness of *t*
  - $df_t \leq N$  where N is the collection size.
- We define the idf (inverse document frequency) of t

$$\operatorname{idf}_{t} = \log_{10} \left( \frac{N}{df_{t}} \right)$$

We use log (N/df<sub>t</sub>) instead of 1/df<sub>t</sub> to keep the value nonnegative and dampen the effect of idf.



#### Example: suppose *N* = 1 million

| term      | df <sub>t</sub> | idf <sub>t</sub> |
|-----------|-----------------|------------------|
| calpurnia | 1               | 6                |
| animal    | 100             | 4                |
| sunday    | 1,000           | 3                |
| fly       | 10,000          | 2                |
| under     | 100,000         | 1                |
| the       | 1,000,000       | 0                |

$$\operatorname{idf}_{t} = \log_{10} \left( N/\mathrm{df}_{t} \right)$$

There is one idf value for each term *t* in a collection.



# tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{W}_{t,d} = (1 + \log tf_{t,d}) \times \log_{10}(N/df_t)$$

- Best known weighting scheme IR
  - Note: the "-" in tf-idf is a hyphen, not a minus sign!
  - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

# Final ranking of documents for a query

# $Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$



#### Vector and vector space

 A 3-dimensional vector space with a vector P = (1, 1, 1)





### tf-idf matrix

|           | Antony and Cleopatra | Julius Caesar | The Tempest | Hamlet | Othello | Macbeth |
|-----------|----------------------|---------------|-------------|--------|---------|---------|
| Antony    | 5.25                 | 3.18          | 0           | 0      | 0       | 0.35    |
| Brutus    | 1.21                 | 6.1           | 0           | 1      | 0       | 0       |
| Caesar    | 8.59                 | 2.54          | 0           | 1.51   | 0.25    | 0       |
| Calpurnia | 0                    | 1.54          | 0           | 0      | 0       | 0       |
| Cleopatra | 2.85                 | 0             | 0           | 0      | 0       | 0       |
| mercy     | 1.51                 | 0             | 1.9         | 0.12   | 5.25    | 0.88    |
| worser    | 1.37                 | 0             | 0.11        | 4.15   | 0.25    | 1.95    |

# Each document is a vector in a vector space.

#### Documents as vectors



- So we have a | V | -dimensional vector space
  - Terms are axes of the space
  - Documents are points or vectors in this space
- High-dimensional: tens of thousands of dimensions; each dictionary term is a dimension
- These are very **sparse** vectors most entries are zero.

#### Queries as vectors



- Key idea 1: Do the same for queries: represent them as vectors in the space; they are "mini-documents"
- Key idea 2: Rank documents according to their proximity to the query in this space



d2



Formalizing vector space proximity

- First cut: distance between two points
  - ( = distance between the end points of the two vectors)
- Euclidean distance?

$$egin{aligned} d(\mathbf{p},\mathbf{q}) &= d(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2} \ &= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}. \end{aligned}$$

Euclidean distance is a bad idea ...



## Why distance is a bad idea

• The Euclidean distance between  $\vec{q}$  and  $\vec{d_2}$  is large even though the distribution of terms in the query  $\vec{q}$  and the distribution of terms in the document  $\vec{d_2}$  are very similar.



Key idea: Rank documents according to the angle with query instead.

## From angles to cosines



- The following two notions are equivalent.
  - Rank documents in <u>decreasing</u> order of the angle between query and document
  - Rank documents in <u>increasing</u> order of cosine(query, document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]





### cosine (query, document)

$$\vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i = |\vec{q}| |\vec{d}| \cos(\vec{q}, \vec{d})$$
$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \bullet \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

 $q_i$  is the tf-idf weight of term *i* in the query  $d_i$  is the tf-idf weight of term *i* in the document

 $cos(\vec{q}, \vec{d})$  is the cosine similarity of  $\vec{q}$  and  $\vec{d}$  ... or, equivalently, the cosine of the angle between  $\vec{q}$  and  $\vec{d}$ .

# Length normalization



 The vectors in the computation of cosine similarity are in fact *length normalized* by dividing each of its components by its length:

$$\left| \vec{x} \right| = \sqrt{\sum_{i} x_{i}^{2}}$$

- Such normalization makes the weights comparable across different vectors despite their original lengths.
- Effect on the two documents d and d' (d appended to itself) from the earlier slide: they have identical vectors after length normalization.



# Cosine for length-normalized vectors

For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q},\vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for length normalized  $\vec{q}$  and  $\vec{d}$ 



### Cosine similarity illustrated





#### Cosine similarity among 3 vectors

#### How similar are

the novels SaS: Sense and Sensibility PaP: Pride and *Prejudice*, and WH: Wuthering Heights?

| term      | SaS | PaP | WH |
|-----------|-----|-----|----|
| affection | 115 | 58  | 20 |
| jealous   | 10  | 7   | 11 |
| gossip    | 2   | 0   | 6  |
| wuthering | 0   | 0   | 38 |

#### Term frequencies

Note: To simplify this example, we do not do idf weighting.



# 3 document example (cont'd)

#### Log frequency weighting

#### After length normalization

| term      | SaS  | PaP  | WH   | term      | SaS   | PaP   | WH    |
|-----------|------|------|------|-----------|-------|-------|-------|
| affection | 3.06 | 2.76 | 2.30 | affection | 0.789 | 0.832 | 0.524 |
| jealous   | 2.00 | 1.85 | 2.04 | jealous   | 0.515 | 0.555 | 0.465 |
| gossip    | 1.30 | 0    | 1.78 | gossip    | 0.335 | 0     | 0.405 |
| wuthering | 0    | 0    | 2.58 | wuthering | 0     | 0     | 0.588 |

 $cos(SaS,PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94$ 

 $cos(SaS,WH) \approx 0.79$  $cos(PaP,WH) \approx 0.69$  Note: We can easily extend this to query-document similarity since query is just another vector!

# Computing cosine scores



 $\operatorname{COSINESCORE}(q)$ 

- 1 float Scores[N] = 0
- 2 float Length[N]

This algorithm does not follow the formula exactly. What are the differences and why?

- 3 for each query term t
- 4 **do** calculate  $w_{t,q}$  and fetch postings list for t
- 5 **for each**  $pair(d, tf_{t,d})$  in postings list
- 6 **do** Scores[d] + =  $w_{t,d} \times w_{t,q}$
- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 return Top K components of Scores[]



# tf-idf weighting has many variants

| Term frequency |                                                                                                             | Docum        | ent frequency                                             | Normalization         |                                            |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------|-----------------------|--------------------------------------------|--|--|
| n (natural)    | $tf_{t,d}$                                                                                                  | n (no)       | 1                                                         | n (none)              | 1                                          |  |  |
| l (logarithm)  | $1 + \log(tf_{t,d})$                                                                                        | t (idf)      | $\log \frac{N}{\mathrm{df}_t}$                            | c (cosine)            | $\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$ |  |  |
| a (augmented)  | $0.5 + \frac{0.5 \times \mathrm{tf}_{t,d}}{\max_t(\mathrm{tf}_{t,d})}$                                      | p (prob idf) | $\max\{0, \log \frac{N - \mathrm{df}_t}{\mathrm{df}_t}\}$ | u (pivoted<br>unique) | 1/u                                        |  |  |
| b (boolean)    | $egin{cases} 1 & 	ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & 	ext{otherwise} \end{cases}$                   |              |                                                           | b (byte size)         | $1/\mathit{CharLength}^lpha$ , $lpha < 1$  |  |  |
| L (log ave)    | $\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$ |              |                                                           |                       |                                            |  |  |

# Weighting may differ in queries vs documents



- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: denote combination used with the notation *ddd.qqq*, using the acronyms from the table on the previous slide
- A very standard weighting scheme is Inc.ltc
  - Document: logarithmic *tf* (I as first character), no idf, cosine normalization
    A bad idea?
  - Query: logarithmic *tf* (I in the leftmost column), idf (t in the second column) and cosine normalization



# *tf-idf* example: lnc.ltc

#### Document: *car insurance auto insurance* Query: *best car insurance*

| Term      | Document |       |     |        | Query  |           |       |     |     | Prod   |      |
|-----------|----------|-------|-----|--------|--------|-----------|-------|-----|-----|--------|------|
|           | tf-raw   | tf-wt | wt  | n'lize | tf-raw | tf-<br>wt | df    | idf | wt  | n'lize |      |
| auto      | 1        | 1     | 1   | 0.52   | 0      | 0         | 5000  | 2.3 | 0   | 0      | 0    |
| best      | 0        | 0     | 0   | 0      | 1      | 1         | 50000 | 1.3 | 1.3 | 0.34   | 0    |
| car       | 1        | 1     | 1   | 0.52   | 1      | 1         | 10000 | 2.0 | 2.0 | 0.52   | 0.27 |
| insurance | 2        | 1.3   | 1.3 | 0.68   | 1      | 1         | 1000  | 3.0 | 3.0 | 0.78   | 0.53 |

Quick Question: what is *N*, the number of docs?

Doc length = $\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$ 

Score = 0+0+0.27+0.53 = 0.8

## Bag of words model



 Con: Vector representation doesn't consider the ordering of words in a document

Moonlight bests La La Land at the Oscars and La La Land bests Moonlight at the Oscars have the same vectors

- In a sense, this is a step back: The positional index was able to distinguish these two documents.
  - We will look at "recovering" positional information later in this course.

# Summary and algorithm: Vector space ranking



- 1. Represent the query as a weighted *tf-idf* vector
- Represent each document as a weighted *tf-idf* vector
- 3. Compute the cosine similarity score for the query vector and each document vector
- 4. Rank documents with respect to the query by score
- 5. Return the top K (e.g., K = 10) to the user



# Resources for today's lecture

■ IIR 6.2 – 6.4.3