
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 7: Scoring, Term Weighting and the
Vector Space Model

7
Live Q&A
https://pollev.com/jin

CS3245 – Information Retrieval

Last Time: Index Compression
§ Collection and vocabulary statistics: Heaps’ and Zipf’s laws
§ Dictionary compression for Boolean indexes

§ Dictionary string, blocks, front coding

§ Postings compression:
§ Gap encoding and variable byte encoding

Information Retrieval 2

Data structure Size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k = 4 7.1
with blocking & front coding 5.9
postings, uncompressed (32-bit words) 400.0
postings, variable byte encoded 116.0

CS3245 – Information Retrieval

Today: Ranked Retrieval
§ Scoring documents
§ Term frequency
§ Collection statistics
§ Weighting schemes
§ Vector space scoring

§ Parametric and zone indexes (Section 6.1) will be
covered next week.

Information Retrieval 3

Ch. 6

CS3245 – Information Retrieval

Problem with Boolean search:
Difficulty in query formulation
§ Boolean queries

§ Terms + Boolean operators

§ Most (non-expert) users are likely to have difficulty in
writing Boolean queries.
§ What are the correct terms to use?
§ What do the operators mean and how to use them?

Information Retrieval 4

Ch. 6

CS3245 – Information Retrieval

Problem with Boolean search:
Feast or Famine with no differentiation
§ Boolean logic is quite strict

§ They can result in either too few (=0) or too many
(1000s) results.
§ Q1: "Windows 10" AND login AND KB3081444 → 0 hits
§ Q2: "Windows 10" OR login OR KB3081444 → 377M hits

§ Also called "information overload"

§ All the returned results are considered equally good
by the search engine…

Information Retrieval 5

Ch. 6

CS3245 – Information Retrieval

Problem with Boolean search:
Feast or Famine with no differentiation
§ Good for expert users with precise understanding of

their needs and the collection.
§ Also good for applications: Applications can easily

consume 1000s of results.

§ Not good for the majority of users.
§ Most users don’t want to wade through 1000s of results.

Information Retrieval 6

Ch. 6

CS3245 – Information Retrieval

Ranked retrieval
§ Free text queries: The user’s query is just one or

more words in a human language.

§ Ranked results: The results are ranked in the order of
estimated relevance.

§ Two separate choices, but a common combination.

Information Retrieval 7

CS3245 – Information Retrieval

Ranked retrieval
§ All the users need to do is:

§ Write a free-text query and check the top k (≈ 10) results
§ If the results are good, the search is done.
§ Otherwise, repeat this process with a reformulated query.

§ Simple and cost-effective, however…
§ The ranking algorithm must work (i.e., most relevant

documents should be ranked as the top results.)

Information Retrieval 8

Ch. 6

CS3245 – Information Retrieval

Scoring as the basis of ranked retrieval
How to rank the documents in the collection with
respect to a query?

§ Assign a score to each document
§ A number in [0, 1] which measures how well the query and

the document match.

§ Sort the documents based on the scores
§ Documents with score = 1
§ Documents with score = 0.99
§ …

Information Retrieval 9

Ch. 6

CS3245 – Information Retrieval

Take 1: Jaccard coefficient
§ From Chapter 3 (spelling correction)

§ Measures the overlap of two sets A and B
Jaccard (A, B) = |A ∩ B| / |A ∪ B|
Jaccard (A, A) = 1
Jaccard (A, B) = 0 if A ∩ B = 0

§ Let A = the set of terms in the query, B = the set of
terms in a document
§ Jaccard provides an estimate of how well the query and

the document match

Information Retrieval 10

Ch. 6

CS3245 – Information Retrieval

Jaccard coefficient: Scoring example
What is the query-document match score that the
Jaccard coefficient computes for each of the two
documents below?

§ Query: ides of march
§ Doc 1: caesar died in march
§ Doc 2: the long march

§ Results:
§ Doc 2
§ Doc 1

Information Retrieval 11

Ch. 6

Jaccard (Q, Doc 1) = 1/6
Jaccard (Q, Doc 2) = 1/5

CS3245 – Information Retrieval

Information not considered in Jaccard
§ Term Frequency

§ Query: Caesar
§ Doc A (A story about Caesar): Caesar … Caesar … Caesar …
§ Doc B (A list of dictators): Caesar … Hitler …
§ A > B since Caesar appears more often in A (i.e., of higher

term frequency).

Information Retrieval 12

Ch. 6

CS3245 – Information Retrieval

Recap: Binary term-document
incidence matrix (from Week 2)

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Information Retrieval 13

Sec. 6.2

CS3245 – Information Retrieval

1. Term frequency matrix
§ Contains the frequency of a term in a document:

Information Retrieval 14

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2

CS3245 – Information Retrieval

Term frequency tf
§ The term frequency tft,d of term t in document d is

defined as the number of times that t occurs in d.
§ We want to use tf when computing query-document

match scores. But how?

§ Relevance does not increase proportionally with raw
term frequency
§ A document with 10 occurrences of the term is more

relevant than a document with 1 occurrence. But not 10
times more relevant.

Information Retrieval 15

CS3245 – Information Retrieval

Log-frequency weighting scheme
§ The log frequency weight of term t in d is

e.g. 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

§ Let say:
Q = Antony Cleopatra Calpurnia
D = the play Anthony and Cleopatra
Score (D, Q) = (1 + log10157) +

(1 + log1057) + 0
Information Retrieval 16

î
í
ì >+

=
otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

Sec. 6.2

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

CS3245 – Information Retrieval

Information not considered in Jaccard
§ Document Frequency

§ Query: the emperor
§ Document A: emperor
§ Document B: the
§ A > B since the is too common (i.e., of higher document

frequency) and hence less important than emperor

Information Retrieval 17

Ch. 6

CS3245 – Information Retrieval

2. Document frequency
§ Rare terms are more informative than frequent terms

§ Given a query: the emperor, it is more important to match
"emperor" than to match "the".

§ We want…
§ Lower weights for more common words like the, increase,

and line, and
§ Higher weights for rarer ones like emperor, and

arachnocentric.

§ This can be captured by the inverse document
frequency (idf) weighting scheme.

Information Retrieval 18

Sec. 6.2.1

CS3245 – Information Retrieval

idf weighting scheme
§ dft is the document frequency of t: the number of

documents that contain t
§ dft is an inverse measure of the informativeness of t
§ dft £ N where N is the collection size.

§ We define the idf (inverse document frequency) of t
by

§ We use log (N/dft) instead of 1/dft to keep the value non-
negative and dampen the effect of idf.

Information Retrieval 19

)/df(log idf 10 tt N=

Sec. 6.2.1

CS3245 – Information Retrieval

Example: suppose N = 1 million
term dft idft
calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

Information Retrieval 20

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df(log idf 10 tt N=

CS3245 – Information Retrieval

tf-idf weighting

§ The tf-idf weight of a term is the product of its tf
weight and its idf weight.

§ Best known weighting scheme IR
§ Note: the "-" in tf-idf is a hyphen, not a minus sign!
§ Alternative names: tf.idf, tf x idf

§ Increases with the number of occurrences within a
document

§ Increases with the rarity of the term in the collection
Information Retrieval 21

)df/(log)tflog1(w 10,, tdt N
dt

´+=

Sec. 6.2.2

CS3245 – Information Retrieval

Final ranking of documents for a query

Information Retrieval 22
€

Score(q,d) = tf.idft,dt∈q∩d∑

Sec. 6.2.2

CS3245 – Information Retrieval

Vector and vector space

Information Retrieval 23

Sec. 6.3

§ A 3-dimensional vector space
with a vector P = (1, 1, 1)

CS3245 – Information Retrieval

tf-idf matrix

Information Retrieval 24

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is a vector
in a vector space.

Sec. 6.3

CS3245 – Information Retrieval

Documents as vectors
§ So we have a |V	|-dimensional vector space

§ Terms are axes of the space
§ Documents are points or vectors in this space

§ High-dimensional: tens of thousands of dimensions;
each dictionary term is a dimension

§ These are very sparse vectors - most entries are zero.

Information Retrieval 25

Sec. 6.3

CS3245 – Information Retrieval

Queries as vectors
§ Key idea 1: Do the same for queries: represent them

as vectors in the space; they are "mini-documents"

§ Key idea 2: Rank documents according to their
proximity to the query in this space

Information Retrieval 26

Sec. 6.3

Q: Antony mercy

Antony 2.45
Brutus 0
Caesar 0

Calpurnia 0
Cleopatra 0

mercy 1.21

worser 0

CS3245 – Information Retrieval

Formalizing vector space proximity
§ First cut: distance between two points

§ (= distance between the end points of the two vectors)

§ Euclidean distance?

§ Euclidean distance is a bad idea …
because Euclidean distance is large for vectors of
different lengths.

Information Retrieval 27

Sec. 6.3

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

Information Retrieval 28

Sec. 6.3

Why distance is a bad idea
§ The Euclidean distance between �⃗� and 𝑑2 is large even

though the distribution of terms in the query �⃗� and the
distribution of terms in the document 𝑑2 are very similar.

§ Key idea: Rank documents according to the angle
with query instead.

CS3245 – Information Retrieval

From angles to cosines
§ The following two notions are equivalent.

§ Rank documents in decreasing order of the angle between
query and document

§ Rank documents in increasing order of cosine(query,
document)

§ Cosine is a monotonically decreasing function for the
interval [0o, 180o]

Information Retrieval 29

Sec. 6.3

CS3245 – Information Retrieval

cosine (query, document)

Information Retrieval 30

Sec. 6.3

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(�⃗�, 𝑑) is the cosine similarity of �⃗� and 𝑑 … or, equivalently, the
cosine of the angle between �⃗� and 𝑑.

CS3245 – Information Retrieval

§ The vectors in the computation of cosine similarity
are in fact length normalized by dividing each of its
components by its length:

§ Such normalization makes the weights comparable
across different vectors despite their original lengths.

§ Effect on the two documents 𝑑 and 𝑑′ (d appended
to itself) from the earlier slide: they have identical
vectors after length normalization.

Length normalization

Information Retrieval 31

Sec. 6.3

CS3245 – Information Retrieval

Cosine for length-normalized vectors

Information Retrieval 32

§ For length-normalized vectors, cosine similarity is
simply the dot product (or scalar product):

for length normalized �⃗� and 𝑑

CS3245 – Information Retrieval

Cosine similarity illustrated

Information Retrieval 33

CS3245 – Information Retrieval

Cosine similarity among 3 vectors

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How similar are
the novels
SaS: Sense and
Sensibility
PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

Information Retrieval 34

Term frequencies

Sec. 6.3

Note: To simplify this example,
we do not do idf weighting.

CS3245 – Information Retrieval

3 document example (cont’d)

Log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

After length normalization

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

Information Retrieval 35

cos(SaS,PaP) ≈ 0.789×0.832 + 0.515×0.555 + 0.335×0.0 +

0.0×0.0 ≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Sec. 6.3

Note: We can easily extend this to
query-document similarity since

query is just another vector!

CS3245 – Information Retrieval

Computing cosine scores

Information Retrieval 36

Sec. 6.3

This algorithm does not follow
the formula exactly. What are

the differences and why?

CS3245 – Information Retrieval

Information Retrieval 37

Sec. 6.4

CS3245 – Information Retrieval

Weighting may differ in
queries vs documents

Information Retrieval 38

A bad idea?

Sec. 6.4

§ Many search engines allow for different weightings
for queries vs. documents

§ SMART Notation: denote combination used with the
notation ddd.qqq, using the acronyms from the table
on the previous slide

§ A very standard weighting scheme is lnc.ltc
§ Document: logarithmic tf (l as first character), no idf,

cosine normalization

§ Query: logarithmic tf (l in the leftmost column), idf (t in the
second column) and cosine normalization

CS3245 – Information Retrieval

Information Retrieval 39

Document: car insurance auto insurance
Query: best car insurance

Score = 0+0+0.27+0.53 = 0.8

Doc length =

€

12 + 02 +12 +1.32 ≈1.92

Sec. 6.4

Term Document Query Prod
tf-raw tf-wt wt n’lize tf-raw tf-

wt
df idf wt n’lize

auto 1 1 1 0.52 0 0 5000 2.3 0 0 0
best 0 0 0 0 1 1 50000 1.3 1.3 0.34 0
car 1 1 1 0.52 1 1 10000 2.0 2.0 0.52 0.27
insurance 2 1.3 1.3 0.68 1 1 1000 3.0 3.0 0.78 0.53

Quick Question: what is N, the number of docs?

CS3245 – Information Retrieval

Bag of words model
§ Con: Vector representation doesn’t consider the

ordering of words in a document

Moonlight bests La La Land at the Oscars and
La La Land bests Moonlight at the Oscars have the same
vectors

§ In a sense, this is a step back: The positional index
was able to distinguish these two documents.
§ We will look at "recovering" positional information later in

this course.

Information Retrieval 40

CS3245 – Information Retrieval

Summary and algorithm:
Vector space ranking

Information Retrieval 41

1. Represent the query as a weighted tf-idf vector
2. Represent each document as a weighted tf-idf

vector
3. Compute the cosine similarity score for the query

vector and each document vector
4. Rank documents with respect to the query by score
5. Return the top K (e.g., K = 10) to the user

CS3245 – Information Retrieval

Resources for today’s lecture
§ IIR 6.2 – 6.4.3

Information Retrieval 42

Ch. 6

