CS3245

Live Q&A
https://pollev.com/jin



CS3245 — Information Retrieval Ch. 6

of Singapore

Last Time: tf-idf weighting

* The tf-idf weight of a term is the product of its tf
weight and its idf weight.

w =(1+logtt, ;) xlog(N/dt))

= Best known weighting scheme in information
retrieval

" One of the easy but important things you should
remember for IR

* |ncreases with the number of occurrence within a
document

" |ncreases with the rarity of the term in the collection

Information Retrieval 2



CS3245 — Information Retrieval Ch. 6

aaaaaaaa
of Singapore

Last Time: Vector Space Model

= Keyidea 1: represent both d and g as vectors

= Key idea 2: Rank documents according to their
proximity (similarity) to the query in this space

é’.gg _ f:qudf
ald \/ fi'q;?\/

cos(q, d) is the cosine similarity of g and d ... or,
equivalently, the cosine of the angle between g and d.

cos(é’,gf) =

Information Retrieva 3



CS3245 — Information Retrieval Sec. 6.3.3

aaaaaaa
of Singapore

Computing cosine scores, redux

COSINESCORE(Qq) 4,
1 float Scores[N] =0 ’ \/ g qf\/ o

float Leng th[N ] Consider only the terms
for each query term t  appearing in both g and d.

do calculate w4 and fetch postings list for t
for each pair(d.tf; ) in postings list

do Scores|d|4+ = w; g X Wy 4 Dot product
Read the array Length Normalize by the (pre-computed)
for each d document length only.

do Scores|d| = Scores[d]|/Length[d] | Normalization
return components of Scoresl|]

Information Retrieval 4

O O W0 N 00 B Who

—t



CS3245 — Information Retrieval Ch. 7

Today

Goal
= Speeding up and shortcutting ranking

" Incorporating additional ranking information
into VSM

Information Retrieval 5



CS3245 — Information Retrieval Sec. 7.1

Efficient cosine ranking

= Key observations
= Users only checks the top results.

* There are probably too many (relevant) documents in the
first place.

" Given a collection of N documents and a query

* Find K (<< N) docs that are (likely to be) the "nearest" to
the query based on cosine similarity.

= Efficient ranking
= Simplify the processing
= Possibly less accurate / exact

Information Retrieval 6



CS3245 — Information Retrieval Sec. 7.1

Faster cosine: unweighted query

* To simplify the computation of a single cosine, we
can...

= Assume each query term has weight 1
" i.e., w,,=1(no tf, nor idf factor; just Boolean presence)

= Before: Scores[d] +=w, 4x W, .
No expensive multiplication,
only addition

= After: Scores[d] +=w 4 -

= But the bigger bottleneck is to process all N
documents in the collection...

Information Retrieval 7



CS3245 — Information Retrieval Sec. 7.1

Let's shrink the collection...

= Full collection = N documents

* Documents that do not contain any query terms have
zero cosine values
= Q: emperor
= Docl: queen, Doc2: the emperor, ...
= Score (Q, Docl)=0

= Such documents can be safely ignored...Let's call the
remaining collection of documents J.

Information Retrieval 8



CS3245 — Information Retrieval

Optimizing the selection process

= What we need: Select K best out of J
= Typically, K<< J
= Query: emperor

= J (i.e., docs containing emperor) = 1M, but K could be just
100

" Sort and output top K= 0O(J log J + K)

= Can we do better?

Information Retrieval 9



CS3245 — Information Retrieval Sec. 7.1

of Singapore

Use heaps for selecting top K

= Heap = Binary tree in which
each node's value > the values of its children

= Takes O(J) operations to construct, then each of K
"winners" read off in O(logJ) steps = O(J+K*log)J)

= ForJ=1M, K=100, this is
about 5% of the cost
of sorting and outputting
(with log base 2)

Information Retrieval 10



CS3245 — Information Retrieval Sec. 7.1.1

Blanks on slides, you may want to fill in B8 & N US

@ oLl
Bottlenecks

" Primary computational bottleneck in scoring: cosine
computation

= Can we avoid doing this computation for all docs in J?

= Yes, we need to do some pruning.

= We may get it wrong sometimes but it is ok if we are
not missing too many.

= |tis unlikely that the user really want all relevant
documents.

Information Retrieval 11



CS3245 — Information Retrieval Sec. 7.1.1

Generic approach

= Find a set A of contenders, with K< [A] << [J| << N

= A does not necessarily contain the top K, but has many
docs from among the top K

= Return the top Kdocsin A

= Think of A as pruning
non-contenders

= The same approach can
also be used for other
(non-cosine) scoring
functions.

Information Retrieval 12



CS3245 — Information Retrieval Sec. 7.1.2

Blanks on slides, you may want to fill in B8 & N US

« L. . . . @ el
Heuristic 1: Index elimination

= Basic algorithm: FastCosineScore of Fig 7.1 considers
docs containing at least one query term (i.e., set J)

4 for each query termt
5 do calculate w; ;, and fetch postings list for f
6 for each pair(d, tf; 4) in postings list

= J will be large and the computation will be slow if

= We can in fact ignore part of the index (i.e., postings
lists) based on the query.

Information Retrieval 13



CS3245 — Information Retrieval Sec. 7.1.2

1a. High-idf query terms only

= E.g., given a query such as catcher in the rye only
accumulate scores from catcher and rye

" |t is usually not important to match in and the
anyway since they have low idfs.

= Benefit:

= Postings of low idf terms have many docs = these (many)
docs get eliminated from set A of contenders

= Similar in spirit to stop word removal

Information Retrieval 14



CS3245 — Information Retrieval Sec. 7.1.2

Ma
aaaaaaaaaaaa

1b. Docs containing many query terms

= Any doc with at least one query term is a candidate
from the top K output list, but ...

* For multi-term queries, only compute scores for docs
containing several of the query terms

= Say, at least 3 out of 4 query terms

= Easy to implement in postings traversal

Information Retrieval 15



CS3245 — Information Retrieval Sec. 7.1.2

............

Antony| "—> [ 3[4 ] 8]16] 32] 64128

Brutus —> 214 ] 8] 16] 32| 64[128
Caesar —> [T T 2] 31 518713 21 34
Calpurnia|"— [13]16]32

Scores only computed for docs 8, 16 and 32.

Information Retrieva 16



CS3245 — Information Retrieval Sec. 7.1.3

of Singapore

Heuristic 2: Champion lists

* Precompute for each dictionary term t, the r docs of
highest weight in t's postings
= Call this the champion list for t

(a.k.a. fancy list or top docs for t)

Antony | n—> |3 (0.5)]1 4 (0.2)|8(0.7) 116 (0.6)

q
% docIB (Wf, )
Champion 8 (0.7)[16 (0.6)

List (r = 2)

Information Retrieva 17



CS3245 — Information Retrieval Sec. 7.1.3

Heuristic 2: Champion lists

= At query time, only compute scores for docs in the
champion list of some query term

= Pick the K top-scoring docs from amongst these

= Note that r has to be chosen at the indexing stage
" Thus, it's possible that r < K

Information Retrieval 18



CS3245 — Information Retrieval

High and low lists

Sec.7.1.4

of Singapore

= For each term, we maintain two postings lists called
high and low

* Think of high as the champion

Antony

m—> [3(0.5)]4(0.2)8 (0.7) [16 (0.6)
@% dOClB (Wft,d)
8 (0.7)116 (0.6)
High List
N B4 0D

Low List

Information Retrieva

19



CS3245 — Information Retrieval Sec.7.1.4

High and low lists

* When traversing postings on a query, only traverse
high lists first

" |f we get more than K docs, select the top K and stop
" Else proceed to get docs from the low lists

= A means for segmenting index into two tiers

Information Retrieval 20



CS3245 — Information Retrieval Sec. 7.2.1

of Singapore

Tiered indexes

= Generalizing high-low lists into tiers
" Break postings up into a hierarchy of lists

Most important

Least important

= |nverted index thus broken up into tiers of decreasing
Importance

= At query time, use only top tier unless insufficient to
get K docs

If so, drop to lower tiers

Information Retrieval 21



CS3245 — Information Retrieval Sec. 7.2.1

N US
%5

Mational University
of Singapore

Example tiered index

auto »  Doc?2
Tier 1 best
car »  Doc1 »  Doc3
insurance —> Doc2 > Doc3 To think about:
Ut What information
would be useful to
Tier 2 best " Doct " Doc3 .
use to determine
car )
tiers?
insurance
auto »  Doc1
Tier 3 best
car »  Doc2
insurance

Information Retrieval 22



CS3245 — Information Retrieval Sec. 7.1.5

al v
of Singapore

Heuristic 3: Impact-ordered postings

= We only want to compute scores for docs for which
wf, 4is high enough

= We sort each postings list by wf, docID (wf,
y t,d
/

Before

sorting Antony | i—> [ 3 (0.5)]14 (0.2) 8 (0.7) 16 (0.6)
After A i—> [ 8 (0.7) 116 (0.6) 3 (0.5) | 4 (0.2)
sorting ntony - : : :

Information Retrieva




CS3245 — Information Retrieval Sec. 7.1.5

of Singapore

3a. Early termination

Antony | "™—> [ 8 (0.7) [16 (0.6)] 3 (0.5) [ 4 (0.2)

= When traversing t's postings (sorted by wf, ;), stop
early after either
= 3 fixed number of r docs The score contribution

(wf, 4 * wf, ) is likely to
" wf, 4drops below some threshold e too low beyond these.

= Take the union of the resulting sets of docs
" One set from the postings of each query term

= Compute only the scores for docs in this union

Information Retrieval 24



CS3245 — Information Retrieval Sec. 7.1.5

of Singapore

3b. idf-ordered query terms

= Consider the postings of query terms in order of
decreasing idf
= Query: story Caesar Antony
= Order of processing: Antony Caesar story

= Skip low-idf query terms completely (e.g., ignore
story) < Similar to 1a

= Move on to the next query term once the score
contribution (wf, ; * wf, ) is low (e.g., <= 0.5)
Antony | '—> | 8 (0.7) 116 (0.6)| 3 (0.5) | 4 (0.2)

E.g., if the query term weight of Anthony is 0.9,
skip to Caesar after checking the 3rd document.

Information Retrieval 25




CS3245 — Information Retrieval Sec. 7.1.6

Heuristic 4: NUS
Cluster pruning — preprocessing |

= Pick /N docs at random, call these leaders
= For other docs, pre-compute nearest leader

= Docs attached to a leader are its followers

= Likely: each leader has VN followers.

Why choose leaders at random?

= Fast
= |Leaders reflect data distribution

Information Retrieval 26



CS3245 — Information Retrieval

ZNUS
Cluster pruning visualization |
1. Offline: Choose VN leaders
® ® ®
® o o
° o © ®
P |
® o 0‘
O ° ® ® ®

Information Retrieva 27



CS3245 — Information Retrieval

I
of Singapore

Cluster pruning visualization

2. Associate documents to leaders to form clusters

Information Retrieval 28



CS3245 — Information Retrieval Sec. 7.1.6

EBAINUS

Mational Universit

ooooo gapore

Cluster pruning — query processing

" Process a query as follows:
" Given a query Q, find its nearest leader L.
= Seek K nearest docs from among L's followers (and L itself).

Information Retrieval 29



CS3245 — Information Retrieval

I
of Singapore

Cluster pruning visualization

3. Online: Associate query to a leader (cluster)

Information Retrieva 30




CS3245 — Information Retrieval Sec. 7.1.6

of Singapore

Clustering pruning variants

= Have each follower attached to b, nearest leaders

= From query, find b, nearest leaders and their
followers

= b, affects preprocessing step at indexing time
= b, affects query processing step at run time

To think about: How do these parameters affect the
retrieval results?

Information Retrieval 31



CS3245 — Information Retrieval Sec. 7.1.4

Incorporating Additional TINUS
Information: Static quality scores

= We want top-ranking documents to be both relevant
and authoritative

= Relevance is being modeled by cosine scores

" Quality is typically a query-independent property of a
document

= Examples of quality signals
= Wikipedia among websites
= Articles in certain newspapers
= A paper with many citations < .
= Many views, retweets, favs, bookmark saves < Quantitative
/
= PageRank score <

Information Retrieval 32




CS3245 — Information Retrieval Sec.7.1.4

Net score

= Assign to each document a quality score g(d) in [0,1]
= E.g., PageRank

= Combine cosine relevance and quality
net-score(q,d) = g(d) + cos(q, d)

= Can use some other linear combination than an equal
weighting

= Now we seek the top K docs by net-score

Information Retrieval 33



CS3245 — Information Retrieval Sec. 7.2.2

Incorporating Additional EINUS
Information: Query term proximity =~

" Free text queries: just a set of terms typed into the
query box — common on the web

= Users prefer docs where the query terms occur close
to each other

= Let w be the smallest window in a document
containing all query terms, e.g.,

= Given the query open day:
* For the document open the next day, the size of w is 4.
* For the document national day open house, the size of w is 2.

Information Retrieval 34



CS3245 — Information Retrieval Sec. 7.2.3

Query term proximity

= Collect candidates by running one or more queries to
the indexes, and then rank.

= e.g., NUS open day
Run it as a phrase query (e.g., using a positional index)

2. If < Kdocs contain the phrase NUS open day, run the two
phrase queries "NUS open" and "open day"

3. If we still have < K docs, run the vector space query NUS
open day

4. Rank matching docs by vector space scoring combining all
information (possibly including proximity score w)

Information Retrieval 35



Incorporating Additional Nus
. . . @ eyl
Information: Parametric and zone indexes

Documents often have multiple parts, with different
semantics:

= Author, Title, Date of publication, etc.

These constitute the metadata about a document.

We sometimes wish to search by these metadata.

= E.g., find docs authored by T.S. Raffles in the year 1818,
with Dutch East India Company in the title

Information Retrieval 36



Fields

" Year = 1818 is an example of a field
= Also, author = T.S. Raffles, etc
= with a finite set of possible values

= Field or parametric index
= Postings for each field value
= Sometimes build range (B-tree) trees (e.g., for dates)

= Field query typically treated as conjunction
* find docs authored by T.S. Raffles in the year 1818... =
* doc must be authored by T.S. Raffles AND in the year 1818.

Information Retrieval 37



CS3245 — Information Retrieval Sec. 6.1

one

= A zoneis aregion of the doc that can contain an
arbitrary amount of text e.g.,
= Title
= Abstract
= References ...

= Build inverted indexes on zones as well to permit
guerying
= E.g., find docs ... with Dutch East India Company in the title

Information Retrieval 38



Two methods for zone indexing

Alternative 1:
william.abstract —~ 11 —* 121 —+ 1441 —> 1729

william.title —~ 2 — 4 —> ol —> 16

william.author |—+ 2 — 3 —— 5 —> &

L]

Encode zones in dictionary vs. postings.
Alternative 2: NV

william » 2.author,2.title ~ 3.author =2 4 title » 5.author

Information Retrieval 39



CS3245 — Information Retrieval

Sec. 7.2.4

EBANUS
. . @ ofSingapore
Putting it all together
[ Parsing user query
::!.' Linguistics @ Results
Documents @ Free text query parser page

Document

Indexers

cache

Spell correction

Scoring and ranking |

Metadata in | Inexact : .
Tiered inverted
zone and top K1 ositional index | <87
field indexes | retrieval P
Indexes

Information Retrieval

I

Scoring
parameters

MLR

Won’t be covering these
blue modules in this course

40



CS3245 — Information Retrieval

I
00000000000

Summary

= Making the Vector Space Model more effective and
efficient to compute

" |ncorporating additional information

Resources for today
= [IR7,6.1

Information Retrieval 41



	Slide 1
	Slide 2: Last Time: tf-idf weighting
	Slide 3: Last Time: Vector Space Model
	Slide 4: Computing cosine scores, redux
	Slide 5: Today
	Slide 6: Efficient cosine ranking
	Slide 7: Faster cosine: unweighted query
	Slide 8: Let's shrink the collection…
	Slide 9: Optimizing the selection process
	Slide 10: Use heaps for selecting top K
	Slide 11: Bottlenecks
	Slide 12: Generic approach
	Slide 13: Heuristic 1: Index elimination
	Slide 14: 1a. High-idf query terms only
	Slide 15: 1b. Docs containing many query terms
	Slide 16: Example: Requiring 3 of 4 query terms
	Slide 17: Heuristic 2: Champion lists
	Slide 18: Heuristic 2: Champion lists
	Slide 19: High and low lists
	Slide 20: High and low lists
	Slide 21: Tiered indexes
	Slide 22: Example tiered index
	Slide 23: Heuristic 3: Impact-ordered postings
	Slide 24: 3a. Early termination
	Slide 25: 3b. idf-ordered query terms
	Slide 26: Heuristic 4: Cluster pruning – preprocessing
	Slide 27: Cluster pruning visualization
	Slide 28: Cluster pruning visualization
	Slide 29:  Cluster pruning – query processing
	Slide 30: Cluster pruning visualization
	Slide 31: Clustering pruning variants
	Slide 32: Incorporating Additional  Information: Static quality scores
	Slide 33: Net score
	Slide 34: Incorporating Additional  Information: Query term proximity
	Slide 35: Query term proximity
	Slide 36: Incorporating Additional  Information: Parametric and zone indexes
	Slide 37: Fields
	Slide 38: Zone
	Slide 39: Two methods for zone indexing
	Slide 40: Putting it all together
	Slide 41: Summary

