
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 8: A complete search system –
Scoring and results assembly

8

Live Q&A

https://pollev.com/jin

CS3245 – Information Retrieval

Last Time: tf-idf weighting

Information Retrieval 2

Ch. 6

▪ The tf-idf weight of a term is the product of its tf
weight and its idf weight.

▪ Best known weighting scheme in information
retrieval

▪ One of the easy but important things you should
remember for IR

▪ Increases with the number of occurrence within a
document

▪ Increases with the rarity of the term in the collection

CS3245 – Information Retrieval

▪ Key idea 1: represent both d and q as vectors

▪ Key idea 2: Rank documents according to their
proximity (similarity) to the query in this space

cos(q, d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Last Time: Vector Space Model

Information Retrieval 3

Ch. 6

CS3245 – Information Retrieval

Computing cosine scores, redux

Information Retrieval 4

Sec. 6.3.3

Consider only the terms
appearing in both q and d.

Normalize by the (pre-computed)
document length only.

Dot product

Normalization

CS3245 – Information Retrieval

Today

Goal
▪ Speeding up and shortcutting ranking

▪ Incorporating additional ranking information
into VSM

Information Retrieval 5

Ch. 7

CS3245 – Information Retrieval

Efficient cosine ranking

Information Retrieval 6

Sec. 7.1

▪ Key observations

▪ Users only checks the top results.

▪ There are probably too many (relevant) documents in the
first place.

▪ Given a collection of N documents and a query

▪ Find K (<< N) docs that are (likely to be) the "nearest" to
the query based on cosine similarity.

▪ Efficient ranking

▪ Simplify the processing

▪ Possibly less accurate / exact

CS3245 – Information Retrieval

Faster cosine: unweighted query

Information Retrieval 7

Sec. 7.1

▪ To simplify the computation of a single cosine, we
can…

▪ Assume each query term has weight 1

▪ i.e., wt,q = 1 (no tf, nor idf factor; just Boolean presence)

▪ Before: Scores[d] += wt,d x wt,q

▪ After: Scores[d] += wt,d

▪ But the bigger bottleneck is to process all N
documents in the collection…

No expensive multiplication,
only addition

CS3245 – Information Retrieval

Information Retrieval 8

Sec. 7.1

▪ Full collection = N documents

▪ Documents that do not contain any query terms have
zero cosine values

▪ Q: emperor

▪ Doc1: queen, Doc2: the emperor, …

▪ Score (Q, Doc1) = 0

▪ Such documents can be safely ignored…Let's call the
remaining collection of documents J.

Let's shrink the collection…

CS3245 – Information Retrieval

Information Retrieval 9

Sec. 7.1

▪ What we need: Select K best out of J

▪ Typically, K << J

▪ Query: emperor

▪ J (i.e., docs containing emperor) = 1M, but K could be just
100

▪ Sort and output top K = O(J log J + K)

▪ Can we do better?

Optimizing the selection process

CS3245 – Information Retrieval

Use heaps for selecting top K

Information Retrieval 10

1

.9 .3

.8.3

.1

.1

Sec. 7.1

▪ Heap = Binary tree in which

each node's value > the values of its children

▪ Takes O(J) operations to construct, then each of K
"winners" read off in O(logJ) steps = O(J+K*logJ)

▪ For J = 1M, K = 100, this is
about 5% of the cost
of sorting and outputting
(with log base 2)

CS3245 – Information Retrieval

▪ Primary computational bottleneck in scoring: cosine
computation

▪ Can we avoid doing this computation for all docs in J?

▪ Yes, we need to do some pruning.

▪ We may get it wrong sometimes but it is ok if we are
not missing too many.

▪ It is unlikely that the user really want all relevant
documents.

Bottlenecks

Information Retrieval 11

Sec. 7.1.1

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

Generic approach

Information Retrieval 12

Sec. 7.1.1

N

J

K

A

▪ Find a set A of contenders, with K < |A| << |J| << N

▪ A does not necessarily contain the top K, but has many
docs from among the top K

▪ Return the top K docs in A

▪ Think of A as pruning
non-contenders

▪ The same approach can
also be used for other
(non-cosine) scoring
functions.

CS3245 – Information Retrieval

▪ Basic algorithm: FastCosineScore of Fig 7.1 considers
docs containing at least one query term (i.e., set J)

▪ J will be large and the computation will be slow if
some query terms are common or there are many
query terms…

▪ We can in fact ignore part of the index (i.e., postings
lists) based on the query.

Heuristic 1: Index elimination

Information Retrieval 13

Sec. 7.1.2

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

▪ E.g., given a query such as catcher in the rye only
accumulate scores from catcher and rye

▪ It is usually not important to match in and the
anyway since they have low idfs.

▪ Benefit:

▪ Postings of low idf terms have many docs → these (many)
docs get eliminated from set A of contenders

▪ Similar in spirit to stop word removal

1a. High-idf query terms only

Information Retrieval 14

Sec. 7.1.2

CS3245 – Information Retrieval

▪ Any doc with at least one query term is a candidate
from the top K output list, but …

▪ For multi-term queries, only compute scores for docs
containing several of the query terms

▪ Say, at least 3 out of 4 query terms

▪ Easy to implement in postings traversal

1b. Docs containing many query terms

Information Retrieval 15

Sec. 7.1.2

CS3245 – Information Retrieval

Example: Requiring 3 of 4 query terms

Information Retrieval 16

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2

CS3245 – Information Retrieval

Heuristic 2: Champion lists

Information Retrieval 17

Sec. 7.1.3

▪ Precompute for each dictionary term t, the r docs of
highest weight in t's postings

▪ Call this the champion list for t

(a.k.a. fancy list or top docs for t)

Antony 3 (0.5) 4 (0.2) 8 (0.7) 16 (0.6)

docID (wf
t,d

)

Champion
List (r = 2)

8 (0.7) 16 (0.6)

CS3245 – Information Retrieval

Heuristic 2: Champion lists

Information Retrieval 18

Sec. 7.1.3

▪ At query time, only compute scores for docs in the
champion list of some query term

▪ Pick the K top-scoring docs from amongst these

▪ Note that r has to be chosen at the indexing stage

▪ Thus, it's possible that r < K

CS3245 – Information Retrieval

High and low lists

Information Retrieval 19

Sec. 7.1.4

▪ For each term, we maintain two postings lists called
high and low

▪ Think of high as the champion

Antony 3 (0.5) 4 (0.2) 8 (0.7) 16 (0.6)

docID (wf
t,d

)

High List
8 (0.7) 16 (0.6)

Low List

3 (0.5) 4 (0.2)

CS3245 – Information Retrieval

High and low lists

Information Retrieval 20

Sec. 7.1.4

▪ When traversing postings on a query, only traverse
high lists first

▪ If we get more than K docs, select the top K and stop

▪ Else proceed to get docs from the low lists

▪ A means for segmenting index into two tiers

CS3245 – Information Retrieval

▪ Generalizing high-low lists into tiers

▪ Break postings up into a hierarchy of lists

Most important
…

Least important

▪ Inverted index thus broken up into tiers of decreasing
importance

▪ At query time, use only top tier unless insufficient to
get K docs

If so, drop to lower tiers

Tiered indexes

Information Retrieval 21

Sec. 7.2.1

CS3245 – Information Retrieval

Example tiered index

Information Retrieval 22

Sec. 7.2.1

To think about:
What information
would be useful to
use to determine
tiers?

CS3245 – Information Retrieval

Heuristic 3: Impact-ordered postings

Information Retrieval 23

Sec. 7.1.5

▪ We only want to compute scores for docs for which
wft,d is high enough

▪ We sort each postings list by wft,d

Antony 3 (0.5) 4 (0.2) 8 (0.7) 16 (0.6)

Antony 8 (0.7) 16 (0.6) 3 (0.5) 4 (0.2)

Before
sorting

After
sorting

docID (wf
t,d

)

CS3245 – Information Retrieval

3a. Early termination

Information Retrieval 24

Sec. 7.1.5

▪ When traversing t's postings (sorted by wft,d), stop
early after either

▪ a fixed number of r docs

▪ wft,d drops below some threshold

▪ Take the union of the resulting sets of docs

▪ One set from the postings of each query term

▪ Compute only the scores for docs in this union

Antony 8 (0.7) 16 (0.6) 3 (0.5) 4 (0.2)

The score contribution
(wft,d * wft,q) is likely to
be too low beyond these.

CS3245 – Information Retrieval

Information Retrieval 25

Sec. 7.1.5

▪ Consider the postings of query terms in order of
decreasing idf

▪ Query: story Caesar Antony

▪ Order of processing: Antony Caesar story

▪ Skip low-idf query terms completely (e.g., ignore
story)  Similar to 1a

▪ Move on to the next query term once the score
contribution (wft,d * wft,q) is low (e.g., <= 0.5)

3b. idf-ordered query terms

Antony 8 (0.7) 16 (0.6) 3 (0.5) 4 (0.2)

E.g., if the query term weight of Anthony is 0.9,
skip to Caesar after checking the 3rd document.

CS3245 – Information Retrieval

Heuristic 4:
Cluster pruning – preprocessing

Information Retrieval 26

Sec. 7.1.6

▪ Pick 𝑁 docs at random, call these leaders

▪ For other docs, pre-compute nearest leader

▪ Docs attached to a leader are its followers

▪ Likely: each leader has 𝑁 followers.

Why choose leaders at random?

▪ Fast

▪ Leaders reflect data distribution

CS3245 – Information Retrieval

Cluster pruning visualization

Information Retrieval 27

1. Offline: Choose 𝑁 leaders

CS3245 – Information Retrieval

Cluster pruning visualization

Information Retrieval 28

2. Associate documents to leaders to form clusters

CS3245 – Information Retrieval

Cluster pruning – query processing

Information Retrieval 29

Sec. 7.1.6

▪ Process a query as follows:

▪ Given a query Q, find its nearest leader L.

▪ Seek K nearest docs from among L's followers (and L itself).

CS3245 – Information Retrieval

Cluster pruning visualization

Information Retrieval 30

Q

3. Online: Associate query to a leader (cluster)

CS3245 – Information Retrieval

Clustering pruning variants

Information Retrieval 31

Sec. 7.1.6

To think about: How do these parameters affect the
retrieval results?

▪ Have each follower attached to b1 nearest leaders

▪ From query, find b2 nearest leaders and their
followers

▪ b1 affects preprocessing step at indexing time

▪ b2 affects query processing step at run time

CS3245 – Information Retrieval

▪ We want top-ranking documents to be both relevant
and authoritative
▪ Relevance is being modeled by cosine scores

▪ Quality is typically a query-independent property of a
document

▪ Examples of quality signals
▪ Wikipedia among websites

▪ Articles in certain newspapers

▪ A paper with many citations

▪ Many views, retweets, favs, bookmark saves

▪ PageRank score

Quantitative

Incorporating Additional
Information: Static quality scores

Information Retrieval 32

Sec. 7.1.4

CS3245 – Information Retrieval

Net score

Information Retrieval 33

Sec. 7.1.4

▪ Assign to each document a quality score g(d) in [0,1]

▪ E.g., PageRank

▪ Combine cosine relevance and quality

net-score(q,d) = g(d) + cos(q, d)

▪ Can use some other linear combination than an equal
weighting

▪ Now we seek the top K docs by net-score

CS3245 – Information Retrieval

Incorporating Additional
Information: Query term proximity

Information Retrieval 34

Sec. 7.2.2

▪ Free text queries: just a set of terms typed into the
query box – common on the web

▪ Users prefer docs where the query terms occur close
to each other

▪ Let w be the smallest window in a document
containing all query terms, e.g.,

▪ Given the query open day:
▪ For the document open the next day, the size of w is 4.

▪ For the document national day open house, the size of w is 2.

CS3245 – Information Retrieval

Query term proximity

Information Retrieval 35

Sec. 7.2.3

▪ Collect candidates by running one or more queries to
the indexes, and then rank.

▪ e.g., NUS open day

1. Run it as a phrase query (e.g., using a positional index)

2. If < K docs contain the phrase NUS open day, run the two
phrase queries "NUS open" and "open day"

3. If we still have < K docs, run the vector space query NUS
open day

4. Rank matching docs by vector space scoring combining all
information (possibly including proximity score w)

CS3245 – Information Retrieval

Incorporating Additional
Information: Parametric and zone indexes

Documents often have multiple parts, with different
semantics:

▪ Author, Title, Date of publication, etc.

These constitute the metadata about a document.

We sometimes wish to search by these metadata.

▪ E.g., find docs authored by T.S. Raffles in the year 1818,
with Dutch East India Company in the title

Information Retrieval 36

Sec. 6.1

CS3245 – Information Retrieval

Fields

▪ Year = 1818 is an example of a field

▪ Also, author = T.S. Raffles, etc

▪ with a finite set of possible values

▪ Field or parametric index

▪ Postings for each field value

▪ Sometimes build range (B-tree) trees (e.g., for dates)

▪ Field query typically treated as conjunction

▪ find docs authored by T.S. Raffles in the year 1818… =

▪ doc must be authored by T.S. Raffles AND in the year 1818.

Information Retrieval 37

Sec. 6.1

CS3245 – Information Retrieval

Zone

▪ A zone is a region of the doc that can contain an
arbitrary amount of text e.g.,

▪ Title

▪ Abstract

▪ References …

▪ Build inverted indexes on zones as well to permit
querying

▪ E.g., find docs … with Dutch East India Company in the title

Information Retrieval 38

Sec. 6.1

CS3245 – Information Retrieval

Two methods for zone indexing

Information Retrieval 39

Encode zones in dictionary vs. postings.

Sec. 6.1

Alternative 1:

Alternative 2:

CS3245 – Information Retrieval

Putting it all together

Information Retrieval 40

Sec. 7.2.4

Won’t be covering these

blue modules in this course

CS3245 – Information Retrieval

Summary

▪ Making the Vector Space Model more effective and
efficient to compute

▪ Incorporating additional information

Resources for today

▪ IIR 7, 6.1

Information Retrieval 41

	Slide 1
	Slide 2: Last Time: tf-idf weighting
	Slide 3: Last Time: Vector Space Model
	Slide 4: Computing cosine scores, redux
	Slide 5: Today
	Slide 6: Efficient cosine ranking
	Slide 7: Faster cosine: unweighted query
	Slide 8: Let's shrink the collection…
	Slide 9: Optimizing the selection process
	Slide 10: Use heaps for selecting top K
	Slide 11: Bottlenecks
	Slide 12: Generic approach
	Slide 13: Heuristic 1: Index elimination
	Slide 14: 1a. High-idf query terms only
	Slide 15: 1b. Docs containing many query terms
	Slide 16: Example: Requiring 3 of 4 query terms
	Slide 17: Heuristic 2: Champion lists
	Slide 18: Heuristic 2: Champion lists
	Slide 19: High and low lists
	Slide 20: High and low lists
	Slide 21: Tiered indexes
	Slide 22: Example tiered index
	Slide 23: Heuristic 3: Impact-ordered postings
	Slide 24: 3a. Early termination
	Slide 25: 3b. idf-ordered query terms
	Slide 26: Heuristic 4: Cluster pruning – preprocessing
	Slide 27: Cluster pruning visualization
	Slide 28: Cluster pruning visualization
	Slide 29: Cluster pruning – query processing
	Slide 30: Cluster pruning visualization
	Slide 31: Clustering pruning variants
	Slide 32: Incorporating Additional Information: Static quality scores
	Slide 33: Net score
	Slide 34: Incorporating Additional Information: Query term proximity
	Slide 35: Query term proximity
	Slide 36: Incorporating Additional Information: Parametric and zone indexes
	Slide 37: Fields
	Slide 38: Zone
	Slide 39: Two methods for zone indexing
	Slide 40: Putting it all together
	Slide 41: Summary

