
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 2: Boolean retrieval 2

Live Q&A

https://pollev.com/jin

CS3245 – Information Retrieval

Last Time: Ngram Language Models

▪ Unigram LM: Bag of words

▪ Ngram LM: use n-1 tokens of context to predict nth

token

▪ Larger n-gram models more accurate but each
increase in order requires exponentially more space

Your turn: How to assign a probability to a sequence of
words in ngram models where n >= 2?

We’ll return to this in probabilistic information retrieval.

Information Retrieval 2

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

Information Retrieval

▪ Information Retrieval (IR) is finding materials
(usually documents) of an unstructured nature
(usually text) that satisfies an information need from
within large collections (usually stored on
computers).

Information Retrieval 3

Let’s start with Boolean Retrieval with Shakespeare!

CS3245 – Information Retrieval

Boolean Retrieval with Shakespeare

▪ The collection: ~40 plays by Shakespeare

▪ http://shakespeare.mit.edu/index.html

Sec. 1.1

Information Retrieval 4

http://shakespeare.mit.edu/index.html

CS3245 – Information Retrieval

Boolean Retrieval with Shakespeare

▪ The information need (in verbal form): Which plays
of Shakespeare mention Brutus and Caesar but not
Calpurnia?

Sec. 1.1

Information Retrieval 5

CS3245 – Information Retrieval

▪ The information need (in verbal form): Which plays
of Shakespeare mention Brutus and Caesar but not
Calpurnia?

▪ 3 conditions to be satisfied at the same time

1. Mentions Brutus

2. Mentions Caesar

3. Does not mention Calpurnia

▪ The query: Brutus AND Caesar AND (NOT Calpurnia)

Boolean Retrieval with Shakespeare

Sec. 1.1

Information Retrieval 6

CS3245 – Information Retrieval

Boolean Retrieval with Shakespeare

▪ The query: Brutus AND Caesar AND (NOT Calpurnia)

▪ Naïve Approach:

▪ For each play, run CTRL+F for Brutus, Caesar, and Calpurnia,
separately

▪ If there is at least one match for Brutus, at least one for
Caesar, but none for Calpurnia, add this play to the result

▪ It’s one solution, but why isn’t it the only solution?

▪ Too Slow! (for large corpora)

Sec. 1.1

Information Retrieval 7

CS3245 – Information Retrieval

▪ The Index: term-document incidence matrix

Indexing

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

1 if the play contains

the word, 0 otherwise

Sec. 1.1

Information Retrieval 8

CS3245 – Information Retrieval

Brutus AND Caesar AND (NOT Calpurnia)

▪ Take the rows for Brutus, Caesar and Calpurnia
(complemented, why?) and bitwise AND them.

Documents with Brutus

Documents with Caesar

Documents without Calpurnia

Query processing

Sec. 1.1

Information Retrieval 9

110100
110111
101111
100100

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

▪ Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

When Antony found Julius Caesar dead,

He cried almost to roaring; and he wept

When at Philippi he found Brutus slain.

▪ Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i' the

Capitol; Brutus killed me.

Sec. 1.1

Information Retrieval 10

Results

CS3245 – Information Retrieval

The classic search model

Corpus

Task

Info Need

Query

Verbal

form

Results

Search Engine

Query

Refinement

Write an essay about the historical
figures in Shakespeare's plays

Info about the historical figures
mentioned in the plays

Which plays mention Brutus and
Caesar but not Calpurnia?

Information Retrieval 11

Brutus AND Caesar AND (NOT
Calpurnia)

CS3245 – Information Retrieval

Relevance is the key!

▪ Information Retrieval (IR) is finding material (usually
documents) … that satisfies an information need …

▪ Relevance: Whether the documents returned help to
satisfy the information need.

▪ Evaluation metrics (to be covered in Week 9)

▪ Precision : Fraction of retrieved docs that are relevant to
user’s information need

▪ Recall : Fraction of relevant docs in collection that are
retrieved

Sec. 1.1

Information Retrieval 12

CS3245 – Information Retrieval

Bigger collections

▪ Consider N = 1 million documents, each with about
1000 words.

▪ 1000 x 1 million = 1 billion words in total

▪ Avg 6 bytes/word including spaces/punctuation

▪ 6GB of data in the documents.

▪ Say there are M = 500K distinct terms among these.

Sec. 1.1

Information Retrieval 13

CS3245 – Information Retrieval

Tough to build the matrix

▪ 500K × 1M matrix has half a trillion 0s and 1s. B-I-G

▪ But it is extremely sparse.

▪ Each document is 1000 words long →

▪ At most 1K 1s among the 500K cells in each column (i.e.,
document).

▪ What’s a better representation?

▪ Only record the positions of the 1s for each row (i.e.,
term).

Sec. 1.1

Information Retrieval 14

CS3245 – Information Retrieval

Inverted index

▪ For each term t, we must store a list of all documents
that contain t.

▪ Each document is identified by a unique serial number
called docID.

Sec. 1.2

Information Retrieval 15

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

174

54 101

…

Dictionary

Posting

Postings

Sorted by docID
(more later on why).

…

Term Pointer

CS3245 – Information Retrieval

Inverted index construction

Sec. 1.2

Information Retrieval 16

Modified tokens

(terms)

Indexer

Inverted index

friend

roman

countryman

1 4

2

1 16

1

friend roman countryman

Tokenizer
Token stream. Friends Romans Countrymen

Linguistic modules

More on

this in W3

Documents to

be indexed.
Friends, Romans, countrymen.

Doc 1

CS3245 – Information Retrieval

Indexer steps:
Generate token sequence

▪ Sequence of (Term, Document ID) pairs.

I did enact Julius

Caesar I was killed

i' the Capitol;

Brutus killed me.

Doc 1

So let it be with

Caesar. The noble

Brutus hath told you

Caesar was ambitious

Doc 2

Sec. 1.2

Information Retrieval 17

CS3245 – Information Retrieval

Indexer steps: Sort

▪ Sort by terms
▪ And then docID

Core indexing step

Sec. 1.2

Information Retrieval 18

CS3245 – Information Retrieval

Indexer steps: Dictionary & Postings

▪ Multiple term entries
in a single document
are merged.

▪ Split into Dictionary
and Postings

▪ Document frequency
information is also
stored.

Why frequency?
Will discuss later.

Sec. 1.2

Information Retrieval 19

CS3245 – Information Retrieval

Pointers

Terms
and

counts

Later in W5 and W6:

• How do we index
efficiently?

• How much storage
do we need?

Sec. 1.2

Lists of
docIDs

Information Retrieval 20

What do we pay in storage?

CS3245 – Information Retrieval

How do we process queries?

▪ Boolean queries

▪ AND

▪ OR

▪ NOT

▪ Basic query optimization

Sec. 1.3

Information Retrieval 21

Later in W3 and W4 –

• How to further optimize
query processing ?

• What other kinds of
queries can we process?

CS3245 – Information Retrieval

Query processing: AND

▪ How to process this query?

Brutus AND Caesar

▪ Locate Brutus in the Dictionary;
▪ Retrieve its postings.

▪ Locate Caesar in the Dictionary;
▪ Retrieve its postings.

▪ "Merge" the two postings
▪ Keep only the common entries.

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

Information Retrieval 22

CS3245 – Information Retrieval

The merge

▪ Walk through the two postings simultaneously, in
time linear in the total number of postings entries

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar
2 8

If the list lengths are x and y, the merge takes O(x+y)

operations.

Crucial: postings must be sorted by docID.

Sec. 1.3

Information Retrieval 23

CS3245 – Information Retrieval

Intersecting two postings lists
(a "merge" algorithm)

Information Retrieval 24

CS3245 – Information Retrieval

Query processing: OR

▪ How to process this query?

Brutus OR Caesar

▪ Locate Brutus in the Dictionary;
▪ Retrieve its postings.

▪ Locate Caesar in the Dictionary;
▪ Retrieve its postings.

▪ "Merge" the two postings
▪ Keep all entries that appear in any of the two postings.

Sec. 1.3

Information Retrieval 25

CS3245 – Information Retrieval

Query processing: NOT

▪ How to process this query?

NOT Brutus

▪ Retrieve the full list of documents

▪ Locate Brutus in the Dictionary;
▪ Retrieve its postings.

▪ "Merge" the full list and the postings
▪ Keep all entries that appear the full list but not in the postings.

Sec. 1.3

Information Retrieval 26

CS3245 – Information Retrieval

Query optimization

▪ Consider a query that is an AND of n terms.

▪ What is the best order for query processing?

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64 128

13 16

Sec. 1.3

Information Retrieval 27

Brutus AND Caesar AND Calpurnia

CS3245 – Information Retrieval

Query optimization example

▪ Process in order of increasing frequency:

▪ start with smallest set, then keep cutting further

This is why we kept
document frequency in the dictionary!

Execute the query as (Calpurnia AND Brutus) AND Caesar.

Sec. 1.3

Information Retrieval 28

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64 128

13 16

CS3245 – Information Retrieval

More general optimization

e.g., (madding OR crowd) AND (ignoble OR strife)
AND (killed OR slain)

▪ Get document frequencies (dfs), for all terms.

▪ Estimate the size of each OR by the sum of its dfs
(conservative).

▪ Process in increasing order of OR sizes.

Sec. 1.3

Information Retrieval 29

CS3245 – Information Retrieval

Information Retrieval 30

Check your understanding

▪ Recommend a query
processing order for

 Term Freq

 eyes 213312

 kaleidoscope 87009

 marmalade 107913

 skies 271658

 tangerine 46653

 trees 316812

(tangerine OR trees) AND
(marmalade OR skies) AND
(kaleidoscope OR eyes)

CS3245 – Information Retrieval

Mixing AND/OR with NOT

▪ How about these queries?

Brutus AND NOT Caesar

Brutus OR NOT Caesar

Question: Can we still process the query in O(x+y)?

What can we achieve?

Sec. 1.3

Information Retrieval 31

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

CS3245 – Information Retrieval

Boolean Retrieval

▪ The Boolean retrieval model is able to process
queries which are based on Boolean expressions:

▪ Views each document as a set of words

▪ Is precise: document matches condition or not.

▪ Perhaps the simplest model to build an IR system on

▪ Primary commercial retrieval tool for 3 decades.

▪ Many search systems you still use are Boolean:

▪ E.g., Library Catalog in NUS
https://linc.nus.edu.sg/search/Y

Sec. 1.3

Information Retrieval 32

https://linc.nus.edu.sg/search/Y

CS3245 – Information Retrieval

Example: WestLaw http://www.westlaw.com/

▪ Largest commercial (paying subscribers) legal search
service (started 1975; ranking added 1992)

▪ Tens of terabytes of data; 700,000 users

▪ Long, precise queries; proximity operators;
incrementally developed; not like web search

▪ What is the statute of limitations in cases involving the federal
tort claims act?
LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM
▪ /3 = within 3 words, /S = in same sentence

Sec. 1.4

Information Retrieval 33

http://www.westlaw.com/

CS3245 – Information Retrieval

Example: WestLaw http://www.westlaw.com/

▪ Many professional searchers still like Boolean search

▪ You know exactly what you are getting

▪ But that doesn’t mean it actually works better…

Sec. 1.4

Information Retrieval 34

http://www.westlaw.com/

CS3245 – Information Retrieval

Summary – but wait there’s more

Covered the whole of information retrieval from
1000 feet up
▪ Indexing to store information efficiently for both space and

query time.

▪ Run time builds relevant document list. Must be f a s t.

Resources for today’s lecture
▪ Introduction to Information Retrieval, chapter 1

Information Retrieval 35

	Slide 1
	Slide 2: Last Time: Ngram Language Models
	Slide 3: Information Retrieval
	Slide 4: Boolean Retrieval with Shakespeare
	Slide 5: Boolean Retrieval with Shakespeare
	Slide 6: Boolean Retrieval with Shakespeare
	Slide 7: Boolean Retrieval with Shakespeare
	Slide 8: Indexing
	Slide 9: Query processing
	Slide 10: Results
	Slide 11: The classic search model
	Slide 12: Relevance is the key!
	Slide 13: Bigger collections
	Slide 14: Tough to build the matrix
	Slide 15: Inverted index
	Slide 16: Inverted index construction
	Slide 17: Indexer steps: Generate token sequence
	Slide 18: Indexer steps: Sort
	Slide 19: Indexer steps: Dictionary & Postings
	Slide 20: What do we pay in storage?
	Slide 21: How do we process queries?
	Slide 22: Query processing: AND
	Slide 23: The merge
	Slide 24: Intersecting two postings lists (a "merge" algorithm)
	Slide 25: Query processing: OR
	Slide 26: Query processing: NOT
	Slide 27: Query optimization
	Slide 28: Query optimization example
	Slide 29: More general optimization
	Slide 30: Check your understanding
	Slide 31: Mixing AND/OR with NOT
	Slide 32: Boolean Retrieval
	Slide 33: Example: WestLaw http://www.westlaw.com/
	Slide 34: Example: WestLaw http://www.westlaw.com/
	Slide 35: Summary – but wait there’s more

