
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 3: Postings lists and
Choosing terms

3

Live Q&A

https://pollev.com/jin

CS3245 – Information Retrieval

Last Time: Basic IR system structure

▪ Basic inverted indexes:
▪ In memory dictionary and on disk postings

▪ Key characteristic: Sorted order for postings

▪ Boolean query processing
▪ Intersection by linear time "merging"

▪ Simple optimizations by expected size

Information Retrieval 2

Ch. 1

CS3245 – Information Retrieval

Today

▪ Enhanced posting lists

▪ Faster merges: skip pointers

▪ Handling phrase queries: Biword index and
Positional index

▪ Choosing terms for the dictionary

▪ Document-level processing

▪ Word-level processing

Information Retrieval 3

CS3245 – Information Retrieval

FASTER MERGES:
SKIP POINTERS

Information Retrieval 4

CS3245 – Information Retrieval

Recall basic merge

▪ Walk through the two postings simultaneously, in
time linear in the total number of postings entries

Information Retrieval 5

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar

2 8

If the list lengths are m and n, the merge takes O(m+n)

operations.

Can we do better?

Sec. 2.3

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

Adding skip pointers to postings

▪ Used to skip postings that are not part of the results

▪ How to use them?

▪ Added during indexing time

▪ Where to place them?
Information Retrieval 6

1282 4 8 41 48 64

311 2 3 8 11 17 21

3111

41 128

Sec. 2.3

CS3245 – Information Retrieval

Query processing with skip pointers

Information Retrieval 7

1282 4 8 41 48 64

311 2 3 8 11 17 21

3111

41 128

Suppose we've stepped through the lists until we process 8 on
each list. We match it and advance.

We then have 41 and 11. 11 is smaller.

But the skip successor of 11 on the lower list is 31, so
we can skip ahead past the intervening postings.

Sec. 2.3

CS3245 – Information Retrieval

Query processing with skip pointers

Information Retrieval 8

Sec. 2.3

CS3245 – Information Retrieval

Where do we place skips?

▪ Tradeoff:

▪ More skips → shorter skip spans more likely to skip.
But lots of comparisons to skip pointers.

▪ Fewer skips → few pointer comparison, but then long skip
spans few successful skips.

Information Retrieval 9

Sec. 2.3

CS3245 – Information Retrieval

Placing skips

▪ Simple heuristic: for postings of length L, use L
evenly-spaced skip pointers.

▪ This ignores the distribution of query terms.

▪ This definitely used to help; but we need to be aware
of the cost!

▪ Pointer comparison

▪ Disk space and I/O time for storing and loading a bigger list

▪ Updating of pointers in a dynamic list

Information Retrieval 10

Sec. 2.3

CS3245 – Information Retrieval

HANDLING
PHRASE QUERIES

Information Retrieval 11

CS3245 – Information Retrieval

Phrase queries

▪ Want to be able to answer queries such as
"stanford university" – as a phrase

▪ Not the same as stanford AND university

▪ Popular and easy to understand

▪ E.g., "I went to Stanford University" is a match, but "I went
to university at Stanford" is not.

▪ Not suffice to store individual terms with the docIDs.

Information Retrieval 12

Sec. 2.4

CS3245 – Information Retrieval

A first attempt: Biword indexes

▪ Index every consecutive pair of terms in the text

▪ E.g., "I went to Stanford University"

▪ 4 biwords: I went, went to, to Stanford, Stanford
University

▪ Process the two-word phrase queries by looking up
the biwords directly.

▪ How about longer phrase queries?
Information Retrieval 13

Sec. 2.4.1

CS3245 – Information Retrieval

Longer phrase queries

▪ Longer phrases be processed as a Boolean query on
biwords:

"stanford university palo alto" →

stanford university AND university palo AND palo alto

▪ There could be false positives… (Why?)

Information Retrieval 14

Sec. 2.4.1

CS3245 – Information Retrieval

Extended biwords

▪ Index all extended biwords

▪ In the form NX*N, where N = Noun, X = Articles /
Prepositions (Part-of-speech-tagging required)

▪ E.g., catcher in the rye

N X X N

▪ 1 extended biword: catcher rye

▪ Process phrase queries by extracting and looking up the
extended biwords

▪ There could be false positives, too. (Why?)
Information Retrieval 15

Sec. 2.4.1

CS3245 – Information Retrieval

Issues for biword indexes

▪ False positives, as noted before

▪ Index blowup due to bigger dictionary

▪ Infeasible for more than biwords, big even for them

▪ Not the standard solution but can be part of a
compound strategy

Information Retrieval 16

Sec. 2.4.1

CS3245 – Information Retrieval

Solution 2: Positional indexes

▪ In the postings, store, for each term the position(s) in
which tokens of it appear:

<term, document frequency;

doc1: position1, position2 … ;

doc2: position1, position2 … ;

etc.>

Information Retrieval 17

Sec. 2.4.2

CS3245 – Information Retrieval

Positional index example

▪ For phrase queries, we use a merge algorithm
recursively at the document level

▪ Now need to deal with more than just equality /
intersection

Information Retrieval 18

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Quick check:

Which of docs 1,2,4,5

could contain "to be

or not to be"?

Sec. 2.4.2

CS3245 – Information Retrieval

Processing a phrase query

▪ Extract inverted index entries for each distinct term:
to, be, or, not.

▪ Merge their doc:position lists to enumerate all
positions with "to be or not to be".

▪ to:

▪ 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

▪ be:

▪ 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

▪ Same general method for proximity searches

Information Retrieval 19

Sec. 2.4.2

CS3245 – Information Retrieval

Proximity queries

▪ LIMIT! /3 STATUTE /3 FEDERAL /2 TORT

▪ Again, here, /k means "within k words of".

▪ Clearly, positional indexes can be used for such
queries; biword indexes cannot.

Information Retrieval 20

Sec. 2.4.2

CS3245 – Information Retrieval

Positional index size

▪ Need an entry for each occurrence, not just once per
document

▪ Index size depends on average document size

▪ Average web page has < 1000 terms

▪ SEC filings, books, even some epic poems … easily 100,000
terms

▪ Consider a term with frequency 0.1%

Information Retrieval 21

Why?

1001100,000

111000

Positional postingsDocument PostingsDocument size

Sec. 2.4.2

CS3245 – Information Retrieval

Positional index size

▪ A positional index expands the storage substantially

▪ 2-4x larger as a non-positional index

▪ ~35-50% of the volume of original text

▪ But we can compress position values/offsets, later in index
compression

▪ It is now standardly used because of the power and
usefulness of phrase and proximity queries …
whether used explicitly or implicitly in a ranking
retrieval system.

Information Retrieval 22

Sec. 2.4.2

For "English-like"

languages

CS3245 – Information Retrieval

Combining biword and
positional indices

▪ Merging is slow in positional indices!

▪ Possible enhancement: Index popular bi-word from
based on the query log
▪ E.g., "Michael Jackson", "Britney Spears"

▪ Retrieve the postings without merging (at the cost of some
additional storage)

Information Retrieval 23

Sec. 2.4.3

CS3245 – Information Retrieval

CHOOSING TERMS

Information Retrieval 24

CS3245 – Information Retrieval

Tokenizer
Token stream. Friends Romans Countrymen

Recap: Inverted index construction

Linguistic modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

1 16

1

Focus for

today

Documents to

be indexed.
Friends, Romans, countrymen.

Sec. 1.2

Information Retrieval 25

Doc 1

CS3245 – Information Retrieval

First step: Text extraction

▪ Formats

▪ TXT / HTML / WORD / PDF / JPG?

▪ Languages

▪ English / Chinese / Malay?

▪ Or even a mix…

▪ Character sets

▪ ASCII / UTF-8 / ISO-8859-1?

▪ Beyond the scope of this course, but most of the time
are done heuristically, or assumed to be non-issues
with help from vendor libraries

Information Retrieval 26

Sec. 2.1

Photo Credits: Wikipedia commons

CS3245 – Information Retrieval

Granularity of indexing

▪ What should the unit document be?
▪ A book

▪ A chapter?

▪ A sentence?

▪ A word?

▪ Too coarse grained: everything matches
and we still have to search within hits

▪ Too fine grained: nothing matches

Need to decide based on projected use of the IR engine
Information Retrieval 27

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

Tokenization

▪ Input: "Friends, Romans, Countrymen, lend me your ears;"

▪ Output: Tokens

▪ A token is an instance of a sequence of characters grouped
together as a useful semantic unit

▪ Each token is a candidate for an index entry (i.e., a term), after
further processing

▪ But what are valid tokens to emit?

Information Retrieval 28

Sec. 2.2.1

Friends Romans Countrymen

lend me your ears

CS3245 – Information Retrieval

(English) Tokenization: Issues in
Handling Apostrophe, Hyphens and Spaces

▪ Finland’s capital → Finland? Finlands? Finland’s?

▪ Aren’t → Aren and t? Are and n’t? Are and not?

▪ Hewlett-Packard→ Hewlett and Packard?
▪ state-of-the-art: break up hyphenated sequence.

▪ co-education

▪ lowercase, lower-case, lower case: all acceptable forms

▪ San Francisco: one token or two?
▪ How did you decide it is one token?

▪ What about Los Angeles-San Francisco?

Information Retrieval 29

Sec. 2.2.1

CS3245 – Information Retrieval

Tokenization: language issues

▪ Chinese and Japanese have no spaces between
words:

▪ 莎拉波娃现在居住在美国东南部的佛罗里达。
Shā lā bō wá xiànzài jūzhù zài měiguó dōngnán bù de fóluólǐdá

▪ Not always guaranteed a unique tokenization

▪ Japanese intermingles multiple writing systems

▪ Dates / amounts in multiple formats

▪ End-user often express queries entirely in Hiragana!
Information Retrieval 30

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji

Sec. 2.2.1

Fōchun gohyaku-sha wa jōhō fusoku no tame jikan ata gozyu man-doru (yaku rokusen

man-en)

CS3245 – Information Retrieval

Numbers, dates and
other dangerous things

▪ 3/20/13 Mar. 12, 2013 20/3/13

▪ 55 B.C.

▪ B-52

▪ My PGP key is 324a3df234cb23e

▪ (800) 234-2333

▪ Often have embedded spaces, punctuation

▪ Older IR systems may not index numbers
▪ But often very useful: think about things like looking up error

codes / product codes on the web

▪ IR systems often opt to index "meta-data" separately
▪ Creation date, format, etc.

Information Retrieval 31

Sec. 2.2.1

CS3245 – Information Retrieval

Stop word removal

▪ With a stop list, we exclude the most common
words from the dictionary.

▪ They have little semantic content: the, a, and, to, be

▪ Yet they take up a lot of space (why?)

▪ But the trend is away from doing this:

▪ Good compression techniques reduces the space needed
for storage

▪ Useful in for many queries
▪ Phrase queries: “Prince of Denmark", "To be or not to be"

▪ "Relational" queries: flights to London

Information Retrieval 32

Sec. 2.2.2

CS3245 – Information Retrieval

Normalizing tokens to terms

▪ We need to "normalize" words in indexed text as well
as query words into the same form

▪ We want to match U.S.A. and USA

▪ Result is terms: a term is a (normalized) word type,
which is an entry in our IR system dictionary

Information Retrieval 33

Sec. 2.2.3

CS3245 – Information Retrieval

Normalizing tokens to terms

▪ A simple approach: Dropping some punctuations

▪ deleting periods
▪ U.S.A., USA USA

▪ deleting hyphens
▪ anti-discriminatory, antidiscriminatory antidiscriminatory

▪ deleting accents
▪ Tuebingen, Tübingen, Tubingen Tubingen

▪ Important criterion

▪ How are your users like to write their queries for these
words?

Information Retrieval 34

Sec. 2.2.3

CS3245 – Information Retrieval

Case-folding

▪ Reduce all letters to lower case
▪ exception: upper case in mid-sentence?

▪ e.g., General Motors

▪ Fed vs. fed

▪ SAIL vs. sail

▪ Often best to lowercase everything, since
users’ queries most often written this way

▪ Google example:
▪ Query C.A.T.

▪ #1 result is for "cat" (well, Lolcats) not
Caterpillar Inc.

Information Retrieval 35

Sec. 2.2.3

CS3245 – Information Retrieval

Lemmatization

▪ Reduce inflectional/variant forms to base form

▪ E.g.,

▪ am, are, is → be

▪ car, cars, car’s, cars’→ car

▪ the boy’s cars are different colors→ the boy car be
different color

▪ Lemmatization implies doing "proper" reduction to
dictionary form

Information Retrieval 36

Sec. 2.2.4

CS3245 – Information Retrieval

Stemming

▪ Reduce terms to their "roots" before indexing

▪ "Stemming" suggest crude affix chopping

▪ language dependent

▪ e.g., automate(s), automatic, automation all reduced to
automat.

Information Retrieval 37

for example compressed

and compression are both

accepted as equivalent to

compress.

for exampl compress and

compress ar both accept

as equival to compress

Sec. 2.2.4

CS3245 – Information Retrieval

Porter’s algorithm

▪ Most common algorithm for stemming English

▪ Experiments suggest it’s at least as good as other
stemming options

▪ Conventions + 5 phases of reductions

▪ Phases applied sequentially

▪ Each phase consists of a set of commands

▪ Sample convention: Of the rules in a compound command,
select the one that applies to the longest suffix.

Information Retrieval 38

Sec. 2.2.4

CS3245 – Information Retrieval

Typical rules in Porter

▪ sses→ ss

▪ ies→ i

▪ ational→ ate

▪ tional→ tion

Late phase rules in Porter check the length of the
resulting word:

▪ (m>1) EMENT → ""
▪ replacement → replac

▪ cement → cement

Information Retrieval 39

Sec. 2.2.4

CS3245 – Information Retrieval

Other stemmers

▪ Other stemmers exist, e.g., Lovins stemmer
http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

▪ Single-pass, longest suffix removal (about 250 rules)

▪ Lemmatizer – Full morphological analysis to return
(dictionary) base form of word
▪ At most modest benefits for retrieval

▪ Do stemming and other normalizations help?
▪ English: very mixed results. Helps recall for some queries but
harms precision on others

▪ E.g., operating system ⇒ oper sys

▪ Definitely useful for Spanish, German, Finnish, …
▪ 30% performance gains for Finnish!

Information Retrieval 40

Sec. 2.2.4

http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

CS3245 – Information Retrieval

Other techniques

▪ Spelling / format variations?
▪ by hand-crafted rules

▪ color = colour

▪ 3/12/91 = Mar. 12, 1991

▪ Synonyms?
▪ by thesaurus

▪ car ≈ automobile

▪ Transliteration variations?
▪ by Soundex (to be covered next week)

▪ Beijing = Peking

Information Retrieval 41

CS3245 – Information Retrieval

Language-specificity

▪ Many of the above features embody transformations
that are

▪ Language-specific, and often

▪ Application-specific

▪ These are "plug-in" addenda to the indexing process

▪ Both open source and commercial plug-ins are
available for handling them

▪ Shows the intertwining of NLP with IR
PSA: take the NLP course to learn more!

Information Retrieval 42

Sec. 2.2.4

CS3245 – Information Retrieval

Summary

3. Steps in choosing terms
for the dictionary

▪ Text extraction

▪ Granularity of indexing

▪ Tokenization

▪ Stop word removal

▪ Normalization

▪ Lemmatization and
stemming

Zoomed in on three issues:

1. Faster merging of
posting lists: Skip
pointers

2. Handling of phrase and
proximity queries

▪ Biword Indices

▪ Positional Indices

Information Retrieval 43

CS3245 – Information Retrieval

Resources for today’s lecture
▪ IIR 2

▪ Skip Lists theory: Pugh (1990)
▪ Multilevel skip lists give same O(log n) efficiency as trees

▪ H.E. Williams, J. Zobel, and D. Bahle. 2004. "Fast Phrase
Querying with Combined Indexes", ACM Transactions on
Information Systems.
▪ http://www.seg.rmit.edu.au/research/research.php?author=4

▪ D. Bahle, H. Williams, and J. Zobel. 2002. Efficient phrase
querying with an auxiliary index. SIGIR, pp. 215-221.

▪ Porter’s stemmer:
http://www.tartarus.org/~martin/PorterStemmer/

▪ Stemming and Lemmatization in NLTK

Information Retrieval 44

http://www.seg.rmit.edu.au/research/research.php?author=4
http://www.tartarus.org/~martin/PorterStemmer/

	Slide 1
	Slide 2: Last Time: Basic IR system structure
	Slide 3: Today
	Slide 4: FASTER MERGES: SKIP POINTERS
	Slide 5: Recall basic merge
	Slide 6: Adding skip pointers to postings
	Slide 7: Query processing with skip pointers
	Slide 8: Query processing with skip pointers
	Slide 9: Where do we place skips?
	Slide 10: Placing skips
	Slide 11: HANDLING PHRASE QUERIES
	Slide 12: Phrase queries
	Slide 13: A first attempt: Biword indexes
	Slide 14: Longer phrase queries
	Slide 15: Extended biwords
	Slide 16: Issues for biword indexes
	Slide 17: Solution 2: Positional indexes
	Slide 18: Positional index example
	Slide 19: Processing a phrase query
	Slide 20: Proximity queries
	Slide 21: Positional index size
	Slide 22: Positional index size
	Slide 23: Combining biword and positional indices
	Slide 24: Choosing Terms
	Slide 25: Recap: Inverted index construction
	Slide 26: First step: Text extraction
	Slide 27: Granularity of indexing
	Slide 28: Tokenization
	Slide 29: (English) Tokenization: Issues in Handling Apostrophe, Hyphens and Spaces
	Slide 30: Tokenization: language issues
	Slide 31: Numbers, dates and other dangerous things
	Slide 32: Stop word removal
	Slide 33: Normalizing tokens to terms
	Slide 34: Normalizing tokens to terms
	Slide 35: Case-folding
	Slide 36: Lemmatization
	Slide 37: Stemming
	Slide 38: Porter’s algorithm
	Slide 39: Typical rules in Porter
	Slide 40: Other stemmers
	Slide 41: Other techniques
	Slide 42: Language-specificity
	Slide 43: Summary
	Slide 44: Resources for today’s lecture

