
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 4: Dictionaries and Tolerant Retrieval4

Live Q&A

https://pollev.com/jin

CS3245 – Information Retrieval

Last Time: Postings lists
and Choosing terms
▪ Faster merging of posting lists

▪ Skip pointers

▪ Handling of phrase and proximity queries
▪ Biword indexes for phrase queries
▪ Positional indexes for phrase/proximity queries

▪ Steps in choosing terms for the dictionary
▪ Text extraction
▪ Granularity of indexing
▪ Tokenization
▪ Stop word removal
▪ Normalization
▪ Lemmatization and stemming

Information Retrieval 2

Ch. 2

CS3245 – Information Retrieval

Today: Tolerant retrieval

▪ "Tolerant" retrieval

▪ Dictionary

▪ Wild-card queries (e.g., cat*)

▪ Spelling correction (e.g., Standford University)

Information Retrieval 3

Ch. 3

CS3245 – Information Retrieval

Dictionary

▪ The dictionary data structure stores the term
vocabulary, document frequency, pointers to each
postings list … in what data structure?

Information Retrieval 4

Sec. 3.1

7

12

4

CS3245 – Information Retrieval

A naïve dictionary

▪ Storing the entries sequentially in an array:

▪ Costly to maintain sortedness for fast access

▪ Lack of support for tolerant retrieval

Information Retrieval 5

Sec. 3.1

dict[0]

dict[1]

dict[…]

…

CS3245 – Information Retrieval

Main choice 1: Hash Table

Information Retrieval 6

Sec. 3.1

CS3245 – Information Retrieval

Main choice 1: Hash Table

▪ Pros:

▪ Faster: O(1) for lookup

▪ Handles changes well (unless a re-hash is required)

▪ Cons:

▪ No easy way to find minor variants:
▪ judgment/judgement

▪ No prefix search (e.g., terms starting with "hyp")

Information Retrieval 7

Sec. 3.1

Not very tolerant!

CS3245 – Information Retrieval

Root

a-m n-z

a-hu hy-m n-sh si-z

Main choice 2: Tree

Information Retrieval 8

Sec. 3.1

CS3245 – Information Retrieval

Main choice 2: Tree

▪ Pros:

▪ Handles changes well (via re-balancing)

▪ Solves the prefix problem (e.g., terms starting with "hyp")

▪ Easier to find minor variants:
▪ judgment/judgement

▪ Cons:

▪ Slower (than Hash Table): O(log M) on a balanced tree

Information Retrieval 9

Sec. 3.1

More tolerant!

CS3245 – Information Retrieval

WILDCARD QUERIES

Information Retrieval 10

CS3245 – Information Retrieval

Wildcard queries: *

▪ * matches with any sequence of letters

▪ Sample use cases

▪ File search based on extension (e.g., *.jpg)

▪ Variation in spelling (e.g., col*ur)

▪ Single vs plural form (e.g., cat*)

▪ …

Information Retrieval 11

Sec. 3.2

CS3245 – Information Retrieval

Wildcard queries: *

▪ mon*: find docs with words beginning with "mon".

▪ Maintain a binary tree for terms

▪ Retrieve all words in range: mon ≤ w < moo

Information Retrieval 12

Sec. 3.2

mon…

…

money

monsoon

month

…

CS3245 – Information Retrieval

Wildcard queries: *

▪ *mon: find docs with words ending in "mon"

▪ Maintain an additional tree for terms reversed

▪ Retrieve all words in range: nom ≤ w < non.

Information Retrieval 13

Sec. 3.2

nom…

…

nomel

nomlas

nommoc

…

CS3245 – Information Retrieval

▪ How about pro*cient?

▪ Retrieve possible words for pro* and *cient from the
trees and intersect

Handling general wildcard queries

Information Retrieval 14

Intersect!pro… tneic…

…

proceed

proficient

profile

…

…

tneiciffe

tneiciffus

tneiciforp

…

CS3245 – Information Retrieval

Handling general wildcard queries

▪ General wildcard queries: X*Y

▪ Look up X* in a normal tree AND *Y in a reverse tree,
and then intersect the two term sets

▪ Expensive

▪ The solution: transform wildcard queries into prefix
queries (i.e., * occurs at the end)

▪ This gives rise to the Permuterm Index.
Information Retrieval 15

Sec. 3.2

CS3245 – Information Retrieval

Permuterm index

▪ For the term hello, add an end marker $ and index all
rotations:

▪ hello$, ello$h, llohe, lohel, o$hell and $hello

▪ For a wildcard query, add an end marker $ and look
up using the rotation with * at the end

▪ X* lookup on $X* *X lookup on X$*

▪ X*Y lookup on Y$X* *X* lookup on X*

Information Retrieval 16

Sec. 3.2.1

Query = hel*o
X=hel, Y=o

Lookup o$hel*

Not so quick Q:
What about X*Y*Z?

CS3245 – Information Retrieval

Permuterm index

▪ Lexicon size blows up, proportional to average word
length

▪ E.g., A 5-letter word, hello, has 6 rotations

Information Retrieval 17

Sec. 3.2.1

Is there any other solution?

CS3245 – Information Retrieval

Bigram (k-gram) index

▪ Enumerate all k-grams (sequence of k chars)
occurring in any term

▪ e.g., from text "April is the cruelest month" we get
the 2-grams (bigrams)

▪ As before "$" is a special word boundary symbol

▪ Maintain a second inverted index from bigrams to
dictionary terms that match each bigram.

Information Retrieval 18

a,ap,pr,ri,il,l,i,is,s,t,th,he,e,$c,cr,ru,

ue,el,le,es,st,t$,$m,mo,on,nt,h$

Sec. 3.2.2

CS3245 – Information Retrieval

Bigram index example

▪ The k-gram index finds terms based on a query
consisting of k-grams (here k=2).

▪ Query mon* can now be run as an "AND" Query

▪ $m AND mo AND on

▪ Possible matches: month, moon, …
Information Retrieval 19

mo

on

among

$m mace

among

amortize

madden

axon

Sec. 3.2.2

CS3245 – Information Retrieval

Bigram query processing

▪ Oops! We also included moon, a false positive!

▪ It also contains all 3 bigrams $m, mo, on

▪ Must post-filter these terms against query.

▪ Surviving enumerated terms are then looked up in the
term-document inverted index.

▪ Fast, space efficient (compared to permuterm).

▪ Only the original form of a term is stored.

▪ TermID can be used for optimization

Information Retrieval 20

Sec. 3.2.2

CS3245 – Information Retrieval

Processing wildcard queries

▪ After getting the possible terms, we still need to
execute a Boolean query for each possible term.

▪ Wildcards can result in expensive query execution
(very large disjunctions…)
▪ pyth* AND prog*

▪ If you encourage laziness, people will respond!

Which web search engines allow wildcard queries?
Information Retrieval 21

Search

Type your search terms, use ‘*’ if you need to.

E.g., Alex* will match Alexander.

Sec. 3.2.2

CS3245 – Information Retrieval

SPELLING
CORRECTION

Information Retrieval 22

CS3245 – Information Retrieval

Query misspellings

▪ Need to correct user queries to retrieve "right"
answers

▪ E.g., the query Ellon Mask

▪ We can

▪ Return several suggested alternative queries with the
correct spelling
▪ "Did you mean … ?"

▪ Retrieve documents indexed by the correct spelling

Information Retrieval 23

Sec. 3.3

CS3245 – Information Retrieval

Spellling corektion

▪ Isolated word

▪ Check each word on its own for misspelling

▪ Will not catch typos resulting in correctly spelled words
e.g., from → form

▪ Context-sensitive

▪ Look at surrounding words
e.g., I flew form Narita.

Information Retrieval 24

Sec. 3.3

CS3245 – Information Retrieval

Fundamental premise

▪ There is a lexicon of correct spellings.

▪ Two basic choices for this

▪ A standard lexicon, e.g.,
▪ Merriam-Webster’s English Dictionary

▪ A domain-specific lexicon – often hand-maintained

▪ The lexicon of the indexed corpus
▪ E.g., all words on the web

▪ All names, acronyms, etc. (including misspellings)

Information Retrieval 25

Sec. 3.3.2

CS3245 – Information Retrieval

Isolated word correction

▪ Given a lexicon and a character sequence Q, return
the words in the lexicon closest to Q

▪ dof→ dog, dock, cat….?

▪ How do we define "closest"?

▪ We’ll study two alternatives

1. Edit distance (Levenshtein distance)

2. ngram overlap

Information Retrieval 26

Sec. 3.3.2

CS3245 – Information Retrieval

1. Edit distance

▪ Given two strings S1 and S2, the edit distance
D (S1, S2) is the minimum number of operations to
convert one to the other

▪ Operations are typically character-level

▪ Insert, Delete, Replace

▪ E.g., D (dof , dog) = 1

▪ D (cat, act) = 2.

▪ D (cat, dog) = 3.

▪ Generally found by dynamic programming

Information Retrieval 27

Sec. 3.3.3

CS3245 – Information Retrieval

Information Retrieval

Dynamic Programming

Not dynamic and not programming

▪ Build up solutions of "simpler" instances from small
to large

▪ Compute solutions of "simpler" instances

▪ Use these solutions to solve larger problems

▪ E.g., Fibonacci numbers

▪ Useful when problem can be solved using solution of
two or more instances that are only slightly simpler
than original instances

28

Fib(1) Fib(2) Fib(3) Fib(4) Fib(5)

1 1 1+1=2 1+2=3 2+3=5

CS3245 – Information Retrieval

Computing Edit Distance

▪ Let’s try to compute the edit distance
between S1 = PAT and S2 = APT using this
array E, where

▪ E (i, j) = the distance between
S1 (up to the i-th character) and
S2 (up to the j-th character)

▪ "_" denotes an empty string

▪ E (0, 0) = D (_, _)

▪ E (1, 2) = D (P, AP)

▪ E (3, 3) = D (PAT, APT)

Information Retrieval 29

_ P A T

_

A

P

T

S
1

S
2

0 1 2 3

0

1

2

3

i

j

CS3245 – Information Retrieval

Information Retrieval

Computing Edit Distance

▪ E.g., base cases

▪ D (_, _) = D (0, 0) = 0

▪ D (P, _) = D (1, 0) = 1

▪ D (_, A) = D (0, 1) = 1

30

_ P A T

_ 0 1

A 1

P

T

S
1

S
2

0 1 2 3

0

1

2

3

i

j

CS3245 – Information Retrieval

Information Retrieval

Computing Edit Distance

▪ E.g., recursive cases

▪ D (PAT, APT) = ??

▪ What are the smaller problems?

▪ If we know D (PAT, AP), the final distance is D (PAT, AP) + 1
since we need one insertion to add T to the end of AP.

▪ If we know D (PA, APT), the final distance is D (PA, APT) + 1
since we need one insertion to add T to the end of PA.

▪ If we know D (PA, AP), the final distance is D (PA, AP) since
inserting T to both PA and AP does not change the
distance.

▪ What is the minimal distance?
31

CS3245 – Information Retrieval

Computing Edit Distance

Information Retrieval 32

E(i, j) = min{ E(i, j-1) + 1, where m = 1 if Pi Tj,

 E(i-1, j) + 1, 0 otherwise

 E(i-1, j-1) + m}

D(PAT, APT) @ E (3, 3) = min {

 D(PAT, AP) @ E(3, 2) + 1,

 D(PA, APT) @ E(2, 3) + 1,

 D(PA, AP) @ E(2, 2) + 0

} = 2

_ P A T

_ 0 1 2 3

A 1 1 1 2

P 2 1 2 2

T 3 2 2 2

S
1

S
2

0 1 2 3

0

1

2

3

i

j

CS3245 – Information Retrieval

Edit distance to all dictionary terms?

▪ Given a (misspelled) query – do we compute its edit
distance to every dictionary term?

▪ Expensive and slow

▪ Alternative: Consider everything up to distance 1 or 2.

▪ How do we cut the set of candidate dictionary
terms?

▪ One possibility is to use ngram overlap for this

▪ This can also be used by itself for spelling correction

Information Retrieval 33

Sec. 3.3.4

CS3245 – Information Retrieval

2. Ngram overlap

▪ Enumerate all the ngrams in the query string as well
as in the lexicon

▪ Query term: lord → Bigrams: {lo, or, rd}

▪ Lexicon term: lore→ Bigrams {lo, or, re}

▪ Lexicon term: border→ Bigrams {bo, or, rd, de, er}

▪ Count the overlaps between a pair of terms

▪ 2 between lord and lore

▪ 2 between lord and border

▪ Threshold to decide if you have a match

▪ E.g., if count >= 2, declare a match
Information Retrieval 34

Sec. 3.3.4

This favors longer
terms by nature, why?

CS3245 – Information Retrieval

A normalized option –
Jaccard coefficient
▪ Let X and Y be two sets; then the J.C. is

▪ Equals 1 when X and Y have the same
elements and 0 when they are disjoint

▪ Does not favor longer terms.

▪ E.g., JC(lord, lore) = 2/4
JC(lord, border) = 2/6

▪ Threshold to decide if you have a match

▪ E.g., if Jaccard >= 0.5, declare a match

Information Retrieval 35

YXYX  /

Sec. 3.3.4

A generally
useful overlap
measure, even
outside of IR

"coefficient de

communauté"

CS3245 – Information Retrieval

Matching bigrams

▪ Index the dictionary terms using bigram.

▪ Identify words with at least 2 overlaps (and Jaccard
>= 0.5) by merging.

Information Retrieval 36

lo

or

rd

alone lore sloth

lore morbid

border card

border

ardent

Standard postings "merge" enumerates
terms with multiple overlaps

Sec. 3.3.4

CS3245 – Information Retrieval

Context-sensitive correction

▪ Query: flew form Narita

▪ Need context to correct "form" to "from"

▪ Retrieve dictionary terms close (e.g., in edit distance)
to each query term

▪ Enumerate all possible resulting phrases with one
word "corrected" at a time
▪ flew from Narita

▪ fled form Narita

▪ flew form Arita
Information Retrieval 37

Sec. 3.3.5

Which one to pick?

CS3245 – Information Retrieval

Context-sensitive correction

▪ Decide which ones to present using heuristics

▪ Hit-based spelling correction

▪ The correction with most hits

▪ E.g., flew from Narita (100,000 hits)  pick this!

fled form Narita (200 hits)

flew form Arita (500 hits)

Information Retrieval 38

Sec. 3.3.5

CS3245 – Information Retrieval

General issues in spelling correction

▪ Confirm with the user vs. search automatically (e.g.,
with the most possible correction)

▪ Disempowerment or effort saved?

▪ High computational cost

▪ Avoid running routinely on every query?

▪ Run only on queries that matched few docs

Information Retrieval 39

Sec. 3.3.5

CS3245 – Information Retrieval

Now what queries can we process?

▪ We have

▪ Positional inverted index with skip pointers

▪ Wildcard index

▪ Spelling correction

▪ Queries such as

SPELL(moriset) /3 toron*to

Information Retrieval 40

CS3245 – Information Retrieval

Summary

▪ Learning to be tolerant

▪ Dictionary
▪ Hashtable

▪ Tree

▪ Wildcards
▪ Permuterm

▪ Ngrams, redux

▪ Spelling correction
▪ Edit Distance

▪ Ngrams, re-redux

Information Retrieval 41

CS3245 – Information Retrieval

Resources

▪ IIR 3, MG 4.2

▪ Efficient spelling retrieval:

▪ K. Kukich. Techniques for automatically correcting words in text. ACM
Computing Surveys 24(4), Dec 1992.

▪ J. Zobel and P. Dart. Finding approximate matches in large
lexicons. Software - practice and experience 25(3), March 1995.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3856&rep=rep1&type=p
df

▪ Mikael Tillenius: Efficient Generation and Ranking of Spelling Error
Corrections. Master’s thesis at Sweden’s Royal Institute of Technology.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1392

▪ Nice, easy reading on spelling correction:

▪ Peter Norvig: How to write a spelling corrector

http://norvig.com/spell-correct.html

Information Retrieval 42

Sec. 3.5

It’s in
python!

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3856&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3856&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1392
http://norvig.com/spell-correct.html

	Slide 1
	Slide 2: Last Time: Postings lists and Choosing terms
	Slide 3: Today: Tolerant retrieval
	Slide 4: Dictionary
	Slide 5: A naïve dictionary
	Slide 6: Main choice 1: Hash Table
	Slide 7: Main choice 1: Hash Table
	Slide 8: Main choice 2: Tree
	Slide 9: Main choice 2: Tree
	Slide 10: Wildcard queries
	Slide 11: Wildcard queries: *
	Slide 12: Wildcard queries: *
	Slide 13: Wildcard queries: *
	Slide 14: Handling general wildcard queries
	Slide 15: Handling general wildcard queries
	Slide 16: Permuterm index
	Slide 17: Permuterm index
	Slide 18: Bigram (k-gram) index
	Slide 19: Bigram index example
	Slide 20: Bigram query processing
	Slide 21: Processing wildcard queries
	Slide 22: Spelling correction
	Slide 23: Query misspellings
	Slide 24: Spellling corektion
	Slide 25: Fundamental premise
	Slide 26: Isolated word correction
	Slide 27: 1. Edit distance
	Slide 28: Dynamic Programming
	Slide 29: Computing Edit Distance
	Slide 30: Computing Edit Distance
	Slide 31: Computing Edit Distance
	Slide 32: Computing Edit Distance
	Slide 33: Edit distance to all dictionary terms?
	Slide 34: 2. Ngram overlap
	Slide 35: A normalized option – Jaccard coefficient
	Slide 36: Matching bigrams
	Slide 37: Context-sensitive correction
	Slide 38: Context-sensitive correction
	Slide 39: General issues in spelling correction
	Slide 40: Now what queries can we process?
	Slide 41: Summary
	Slide 42: Resources

