
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 6: Index Compression 6

Live Q&A

https://pollev.com/jin

CS3245 – Information Retrieval

Last Time: index construction

▪ Sort-based indexing

▪ Blocked Sort-Based Indexing
▪ Merge sort is effective for disk-based sorting (avoid seeks!)

▪ Single-Pass In-Memory Indexing
▪ No global dictionary - Generate separate dictionary for each block

▪ Don’t sort postings - Accumulate postings as they occur

▪ Distributed indexing using MapReduce

▪ Dynamic indexing: Multiple indices, logarithmic merge

Information Retrieval 2

CS3245 – Information Retrieval

Why compression?

▪ Use less disk space

▪ Keep more data (e.g., the dictionary) in memory

▪ Increase the speed of data (e.g., the posting lists)
transfer from disk to memory

Information Retrieval 3

Ch. 5

CS3245 – Information Retrieval

Today: Idx Cmprssn

▪ Empirical laws on collection statistics (with RCV1)

▪ Dictionary compression

▪ Postings file compression

Information Retrieval 4

Ch. 5

CS3245 – Information Retrieval

Reuters RCV1 statistics

symbol statistic value

N documents 800,000

L avg. # tokens per doc 200

M terms 400,000
(= vocabulary size = # of entries in the dictionary)

avg. # bytes per term 7.5

T term-docID pairs 100,000,000
(= tokens)

Sec. 4.2

5Information Retrieval

Where do all
those extra
terms come
from if English
vocabulary is
only ~30K?

CS3245 – Information Retrieval

Heaps’ Law

M = kTb

▪ M is the size of the vocabulary, T is the number of
tokens in the collection

▪ Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5

▪ An empirical finding ("empirical law")

▪ In a log-log plot of vocabulary size M vs. T, Heaps’
law predicts a line with slope about ½

Information Retrieval 6

Sec. 5.1

CS3245 – Information Retrieval

Heaps’ Law

For RCV1, the dashed line

log10M = 0.49 log10T + 1.64
is the best least squares fit.

Thus, M = 101.64T0.49 so k =
101.64 ≈ 44 and b = 0.49.

Good empirical fit for
Reuters RCV1 !

For first 1,000,020 tokens,

law predicts 38,323 terms;

actually, 38,365 terms

Information Retrieval 7

Sec. 5.1

CS3245 – Information Retrieval

Collection frequency

▪ Some terms are common and some others are rare…

▪ Collection frequency (cf)

▪ The number of occurrences of a term in the collection.

▪ NOT the same as document frequency (df)

▪ Example

▪ Collection D1: a a a b and D2: a b c

▪ cfa = 4, dfa = 2.

▪ Nevertheless, cf is positively correlated with df in
general.

Information Retrieval 8

Sec. 5.1

CS3245 – Information Retrieval

Zipf’s law

cfi = K/i
▪ cfi is the cf of the i-th most frequency term

▪ K is a normalizing constant, cf1 = K / 1 = K

▪ Example:

▪ Collection D1: a a a b and D2: a b c

▪ Estimated collection frequency (with cf1 = K = 4):
▪ For a, the 1st most frequent term, cf1 = K / 1 = 4

▪ For b, the 2nd most frequent term, cf2 = K / 2 = 2

▪ For c, the 3rd most frequent term, cf3 = K / 3 = 1.33

Information Retrieval 9

Sec. 5.1

CS3245 – Information Retrieval

Zipf’s law

▪ If the most frequent term (the) occurs cf1 times

▪ then the second most frequent term (of) occurs cf1/2 times

▪ the third most frequent term (and) occurs cf1/3 times …

▪ Equivalent: log cfi = log K - log i

▪ Linear relationship between log cfi and log i

▪ Another power law relationship

Information Retrieval 10

Sec. 5.1

CS3245 – Information Retrieval

Zipf’s law

Information Retrieval 11

Sec. 5.1

Not a particularly
good fit for RCV1…

But good enough
as a rough model
for calculations.

In general, there are
a few very frequent
terms and very many
very rare terms.

CS3245 – Information Retrieval

DICTIONARY
COMPRESSION

Information Retrieval 12

Sec. 5.2

CS3245 – Information Retrieval

Why compress the dictionary?

▪ Search begins with the dictionary so we want to keep
it in memory

▪ Memory footprint competition with other
applications

▪ Embedded/mobile devices may have very little memory

▪ Even if the dictionary isn’t in memory, we want it to
be small for a fast search startup time

Compressing the dictionary is important

Information Retrieval 13

Sec. 5.2

CS3245 – Information Retrieval

Dictionary storage - first cut

▪ Fixed-width entries indexed by a tree

▪ ~400,000 terms; 28 bytes/term = 11.2 MB.

14

Dictionary search

structure

20 bytes 4 bytes each

Sec. 5.2

Information Retrieval

CS3245 – Information Retrieval

Fixed-width terms are wasteful

▪ Most of the bytes in the Term column are wasted

▪ Average dictionary word in English: ~8 characters

▪ And we still can’t handle supercalifragilisticexpialidocious
or hydrochlorofluorocarbons.

▪ How to save space?

Information Retrieval 15

Sec. 5.2

CS3245 – Information Retrieval

▪ Store dictionary as a (long) string of characters

▪ Add pointers to the start of every word

Compressing the term list:

Dictionary-as-a-String

16

….systilesyzygeticsyzygialsyzygyszaibelyiteszczeci….

Total string length =

400K × 8B = 3.2MB

Pointers resolve 3.2M

positions: log23.2M =

22bits = 3bytes

Sec. 5.2

Information Retrieval

CS3245 – Information Retrieval

Space for dictionary as a string

▪ Dictionary array of 400K terms of 11 bytes each

▪ 4 bytes per term for frequency

▪ 4 bytes per term for pointer to postings

▪ 3 bytes per term pointer

▪ Dictionary string of 400K terms of 8 bytes on average

▪ Total size = 4.4 MB (dictionary array)

+ 3.2 MB (dictionary string)

= 7.6 MB (3.6 MB less than the original
size of 11.2MB)

Information Retrieval 17

 Now avg. 11
 bytes/term,
 not 28.

Sec. 5.2

CS3245 – Information Retrieval

Blocking

▪ Store pointers to every kth term string.

▪ Example below: k=4.

▪ Need to store term lengths (1 extra byte)

Information Retrieval 18

….7systile9syzygetic8syzygial6syzygy11szaibelyite …

Freq. Postings
ptr.

Term ptr.

33

29

44

126

7

Sec. 5.2

Save 9 bytes

 on 3 pointers.

Lose 4 bytes on

term lengths.

CS3245 – Information Retrieval

Net Result

▪ Example for block size k = 4

▪ Where we used 3 bytes/pointer without blocking

▪ 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Information Retrieval 19

Shaved another ~0.5MB. This reduces the size of the
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with a larger k?

Sec. 5.2

CS3245 – Information Retrieval

Dictionary search without blocking

Information Retrieval 20

▪ Assume that each dictionary
term equally likely in query
(not true in practice!)

▪ Average number of
comparisons = (1*1 + 2*2 +
3*4 + 4*1)/8
= ~2.6

Sec. 5.2

1
@

L
e
v
e
l

1

2
@

L
e
v
e
l

2

4
@

L
e
v
e
l

3

1
@

L
e
v
e
l

4

CS3245 – Information Retrieval

Dictionary search with blocking

▪ Binary search down to 4-term block;

▪ Then linear search through terms in block.

▪ Blocks of 4 (binary tree), average =
(1*1 + 2*2 + 3*2 + 4*2 + 5*1)/8 = 3

Information Retrieval 21

Sec. 5.2

CS3245 – Information Retrieval

Front coding

▪ Sorted words commonly have long common prefix –
store differences only

▪ Used for last k-1 terms in a block of k

8automata8automate9automatic10automation

Information Retrieval 22

→8automat*a1e2ic3ion

Encodes automat Extra length
beyond automat.

Begins to resemble general string compression

Sec. 5.2

CS3245 – Information Retrieval

RCV1 dictionary compression summary

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

Information Retrieval 23

Sec. 5.2

CS3245 – Information Retrieval

POSTINGS FILE
COMPRESSION

Information Retrieval 24

Sec. 5.3

CS3245 – Information Retrieval

Postings file compression

▪ How to store postings (i.e., docIDs) compactly?

▪ Computer, 34592: 33,47,154,159,202 …

▪ For Reuters (800,000 documents)

▪ Range of docIDs [1, 800,000]

▪ log2 800000 ~= 20 bits ~= 3 bytes

▪ Let's try to make the numbers smaller!

Information Retrieval 25

Sec. 5.3

CS3245 – Information Retrieval

Gap Encoding

▪ We store the list of docs containing a term in
increasing order of docID.

▪ Computer, 34592: 33,47,154,159,202 …

▪ Consequence: it suffices to store gaps.

▪ 33,14,107,5,43 …

Information Retrieval 26

Sec. 5.3

CS3245 – Information Retrieval

Gap Encoding

▪ As described by Zip’s law, a small number of terms
have a high cf and a lot of more words have a much
lower cf.

▪ A high cf usually implies a high df, assuming the terms
are evenly distributed across the documents.

▪ The gaps between the postings for a high df should be
small.

Information Retrieval 27

Sec. 5.3

CS3245 – Information Retrieval

Gap Encoding

Information Retrieval 28

Sec. 5.3

Encoding Postings List

the docIDs … 283042 283043 283044 283045 …

gaps … 1 1 1

computer docIDs … 2803047 283154 283159 283202 …

gaps … 107 5 43

arachno-

centric

docIDs 252000 500100

gaps … 248100

CS3245 – Information Retrieval

Variable byte encoding

▪ Observation: it is wasteful and to use a fixed number
of bits to store every number.

▪ Key challenge: encode every integer (gap) with about
as little space as needed for that integer.

▪ This can be achieved by variable byte encoding,
which uses close to the fewest bytes needed to store
a gap.

Information Retrieval 29

Sec. 5.3

CS3245 – Information Retrieval

Variable byte encoding

▪ Begin with one byte to store a gap G and dedicate 1
bit in it to be a continuation bit c
▪ 0 (not ending) and 1 (ending)

▪ If G ≤ 127, binary-encode it in the 7 available bits and
set c = 1

▪ Else encode G’s lower-order 7 bits and then use
additional bytes to encode the higher order bits
using the same algorithm

▪ At the end set the continuation bit of the last byte to
1 (c = 1) – and for the other bytes c = 0.

Information Retrieval 30

Sec. 5.3

CS3245 – Information Retrieval

Example

docIDs 824 829 215406

gaps 5 214577

VB code 00000110

10111000

10000101 00001101

00001100

10110001

Information Retrieval 31

Postings stored as the byte concatenation

00000110 10111000 10000101 00001101 00001100 10110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB uses a whole byte.

Sec. 5.3

824 = 1100111000 (binary) 5 = 101 (binary)

CS3245 – Information Retrieval

Other variable unit codes

▪ Instead of bytes, we can also use a different "unit of
alignment": 32 bits (words), 16 bits, 4 bits (nibbles).

▪ Variable byte alignment wastes space if you have
many small gaps – nibbles do better in such cases.

▪ Variable byte codes:

▪ Used by many commercial/research systems

▪ Good blend of variable-length coding and sensitivity to
computer memory alignment

Information Retrieval 32

Sec. 5.3

CS3245 – Information Retrieval

RCV1 compression

Data structure Size in MB

dictionary, fixed-width 11.2

dictionary, term pointers into string 7.6

with blocking, k = 4 7.1

with blocking & front coding 5.9

collection (text, xml markup etc) 3,600.0

collection (text) 960.0

Term-doc incidence matrix 40,000.0

postings, uncompressed (32 bits) 400.0

postings, uncompressed (20 bits) 250.0

postings, variable byte encoded 116.0

Information Retrieval 33

Sec. 5.3

CS3245 – Information Retrieval

Summary: Index compression

▪ We can now create an index for highly efficient
Boolean retrieval that is very space efficient

▪ Use the sorted nature of the data to compress

▪ Variable sized storage

▪ Encode common prefixes only once

▪ Encode gaps to reduce size of numbers

▪ However, here we didn’t encode positional
information

▪ But techniques for dealing with postings are similar

Information Retrieval 34

Sec. 5.3

CS3245 – Information Retrieval

Resources for today’s lecture

▪ IIR 5

▪ MG 3.3, 3.4.

▪ F. Scholer, H.E. Williams and J. Zobel. 2002.
Compression of Inverted Indexes For Fast Query
Evaluation. Proc. ACM-SIGIR 2002.

▪ Variable byte codes

▪ V. N. Anh and A. Moffat. 2005. Inverted Index
Compression Using Word-Aligned Binary Codes.
Information Retrieval 8: 151–166.

▪ Word aligned codes

Information Retrieval 35

Ch. 5

	Slide 1
	Slide 2: Last Time: index construction
	Slide 3: Why compression?
	Slide 4: Today: Idx Cmprssn
	Slide 5: Reuters RCV1 statistics
	Slide 6: Heaps’ Law
	Slide 7: Heaps’ Law
	Slide 8: Collection frequency
	Slide 9: Zipf’s law
	Slide 10: Zipf’s law
	Slide 11: Zipf’s law
	Slide 12: DICTIONARY COMPRESSION
	Slide 13: Why compress the dictionary?
	Slide 14: Dictionary storage - first cut
	Slide 15: Fixed-width terms are wasteful
	Slide 16: Compressing the term list: Dictionary-as-a-String
	Slide 17: Space for dictionary as a string
	Slide 18: Blocking
	Slide 19: Net Result
	Slide 20: Dictionary search without blocking
	Slide 21: Dictionary search with blocking
	Slide 22: Front coding
	Slide 23: RCV1 dictionary compression summary
	Slide 24: POSTINGS FILE COMPRESSION
	Slide 25: Postings file compression
	Slide 26: Gap Encoding
	Slide 27: Gap Encoding
	Slide 28: Gap Encoding
	Slide 29: Variable byte encoding
	Slide 30: Variable byte encoding
	Slide 31: Example
	Slide 32: Other variable unit codes
	Slide 33: RCV1 compression
	Slide 34: Summary: Index compression
	Slide 35: Resources for today’s lecture

