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Last Time: index construction

▪ Sort-based indexing

▪ Blocked Sort-Based Indexing
▪ Merge sort is effective for disk-based sorting (avoid seeks!)

▪ Single-Pass In-Memory Indexing
▪ No global dictionary - Generate separate dictionary for each block

▪ Don’t sort postings - Accumulate postings as they occur

▪ Distributed indexing using MapReduce

▪ Dynamic indexing: Multiple indices, logarithmic merge
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Why compression?

▪ Use less disk space

▪ Keep more data (e.g., the dictionary) in memory

▪ Increase the speed of data (e.g., the posting lists) 
transfer from disk to memory
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Today: Idx Cmprssn

▪ Empirical laws on collection statistics (with RCV1)

▪ Dictionary compression

▪ Postings file compression
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Reuters RCV1 statistics

symbol statistic value

N documents 800,000

L avg. # tokens per doc 200

M terms 400,000
(= vocabulary size = # of entries in the dictionary)

avg. # bytes per term 7.5

T                term-docID pairs 100,000,000
(= tokens)

Sec. 4.2
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Where do all 
those extra 
terms come 
from if English 
vocabulary is 
only ~30K?
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Heaps’ Law

M = kTb

▪ M is the size of the vocabulary, T is the number of 
tokens in the collection

▪ Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5

▪ An empirical finding ("empirical law")

▪ In a log-log plot of vocabulary size M vs. T, Heaps’ 
law predicts a line with slope about ½
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Heaps’ Law

For RCV1, the dashed line

log10M = 0.49 log10T + 1.64
is the best least squares fit.

Thus, M = 101.64T0.49 so k = 
101.64 ≈ 44 and b = 0.49.

Good empirical fit for 
Reuters RCV1 !

For first 1,000,020 tokens,

law predicts 38,323 terms;

actually, 38,365 terms
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Collection frequency

▪ Some terms are common and some others are rare…

▪ Collection frequency (cf)

▪ The number of occurrences of a term in the collection.

▪ NOT the same as document frequency (df)

▪ Example

▪ Collection D1: a a a b and D2: a b c

▪ cfa = 4, dfa = 2.

▪ Nevertheless, cf is positively correlated with df in 
general.
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Zipf’s law

cfi = K/i
▪ cfi is the cf of the i-th most frequency term

▪ K is a normalizing constant, cf1 = K / 1 = K

▪ Example:

▪ Collection D1: a a a b and D2: a b c

▪ Estimated collection frequency (with cf1 = K = 4):
▪ For a, the 1st most frequent term, cf1 = K / 1 = 4

▪ For b, the 2nd most frequent term, cf2 = K / 2 = 2

▪ For c, the 3rd most frequent term, cf3 = K / 3 = 1.33
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Zipf’s law

▪ If the most frequent term (the) occurs cf1 times 

▪ then the second most frequent term (of) occurs cf1/2 times

▪ the third most frequent term (and) occurs cf1/3 times … 

▪ Equivalent: log cfi = log K - log i

▪ Linear relationship between log cfi and log i

▪ Another power law relationship
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Zipf’s law
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Not a particularly 
good fit for RCV1…

But good enough 
as a rough model 
for calculations.

In general, there are 
a few very frequent 
terms and very many 
very rare terms.
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DICTIONARY 
COMPRESSION
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Why compress the dictionary?

▪ Search begins with the dictionary so we want to keep 
it in memory

▪ Memory footprint competition with other 
applications

▪ Embedded/mobile devices may have very little memory

▪ Even if the dictionary isn’t in memory, we want it to 
be small for a fast search startup time

Compressing the dictionary is important

Information Retrieval 13
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Dictionary storage - first cut

▪ Fixed-width entries indexed by a tree

▪ ~400,000 terms; 28 bytes/term = 11.2 MB.

14

Dictionary search

structure

20 bytes 4 bytes each

Sec. 5.2
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Fixed-width terms are wasteful

▪ Most of the bytes in the Term column are wasted 

▪ Average dictionary word in English: ~8 characters

▪ And we still can’t handle supercalifragilisticexpialidocious 
or hydrochlorofluorocarbons.

▪ How to save space?

Information Retrieval 15
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▪ Store dictionary as a (long) string of characters

▪ Add pointers to the start of every word

Compressing the term list: 

Dictionary-as-a-String

16

….systilesyzygeticsyzygialsyzygyszaibelyiteszczeci….

Total string length =

400K × 8B = 3.2MB

Pointers resolve 3.2M

positions: log23.2M =

22bits = 3bytes

Sec. 5.2
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Space for dictionary as a string

▪ Dictionary array of 400K terms of 11 bytes each

▪ 4 bytes per term for frequency

▪ 4 bytes per term for pointer to postings

▪ 3 bytes per term pointer

▪ Dictionary string of 400K terms of 8 bytes on average

▪ Total size = 4.4 MB (dictionary array) 

+ 3.2 MB (dictionary string) 

= 7.6 MB (3.6 MB less than the original 
size of 11.2MB)
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 Now avg. 11
 bytes/term,
 not 28.
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Blocking

▪ Store pointers to every kth term string.

▪ Example below: k=4.

▪ Need to store term lengths (1 extra byte)
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….7systile9syzygetic8syzygial6syzygy11szaibelyite …

Freq. Postings 
ptr. 

Term ptr. 

33   

29   

44   

126   

7   
 

 

Sec. 5.2

Save 9 bytes

 on 3 pointers.

Lose 4 bytes on

term lengths.
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Net Result

▪ Example for block size k = 4

▪ Where we used 3 bytes/pointer without blocking

▪ 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Information Retrieval 19

Shaved another ~0.5MB. This reduces the size of the 
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with a larger k?
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Dictionary search without blocking

Information Retrieval 20

▪ Assume that each dictionary 
term equally likely in query 
(not true in practice!)

▪ Average number of 
comparisons = (1*1 + 2*2 + 
3*4 + 4*1)/8 
= ~2.6

Sec. 5.2
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Dictionary search with blocking

▪ Binary search down to 4-term block;

▪ Then linear search through terms in block.

▪ Blocks of 4 (binary tree), average = 
(1*1 + 2*2 + 3*2 + 4*2 + 5*1)/8 = 3

Information Retrieval 21
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Front coding

▪ Sorted words commonly have long common prefix –
store differences only

▪ Used for last k-1 terms in a block of k

8automata8automate9automatic10automation

Information Retrieval 22

→8automat*a1e2ic3ion

Encodes automat Extra length
beyond automat.

Begins to resemble general string compression

Sec. 5.2
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RCV1 dictionary compression summary

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

Information Retrieval 23
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POSTINGS FILE 
COMPRESSION

Information Retrieval 24
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Postings file compression

▪ How to store postings (i.e., docIDs) compactly?

▪ Computer, 34592: 33,47,154,159,202 …

▪ For Reuters (800,000 documents)

▪ Range of docIDs [1, 800,000]

▪ log2 800000 ~= 20 bits ~= 3 bytes

▪ Let's try to make the numbers smaller!

Information Retrieval 25
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Gap Encoding

▪ We store the list of docs containing a term in 
increasing order of docID.

▪ Computer, 34592: 33,47,154,159,202 …

▪ Consequence: it suffices to store gaps.

▪ 33,14,107,5,43 …

Information Retrieval 26
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Gap Encoding

▪ As described by Zip’s law, a small number of terms 
have a high cf and a lot of more words have a much 
lower cf.

▪ A high cf usually implies a high df, assuming the terms 
are evenly distributed across the documents.

▪ The gaps between the postings for a high df should be 
small.

Information Retrieval 27
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Gap Encoding

Information Retrieval 28
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Encoding Postings List

the docIDs … 283042 283043 283044 283045 …

gaps … 1 1 1

computer docIDs … 2803047 283154 283159 283202 …

gaps … 107 5 43

arachno-

centric

docIDs 252000 500100

gaps … 248100
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Variable byte encoding

▪ Observation: it is wasteful and to use a fixed number 
of bits to store every number.

▪ Key challenge: encode every integer (gap) with about 
as little space as needed for that integer.

▪ This can be achieved by variable byte encoding,
which uses close to the fewest bytes needed to store 
a gap.

Information Retrieval 29
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Variable byte encoding

▪ Begin with one byte to store a gap G and dedicate 1 
bit in it to be a continuation bit c 
▪ 0 (not ending) and 1 (ending)

▪ If G ≤ 127, binary-encode it in the 7 available bits and 
set c = 1

▪ Else encode G’s lower-order 7 bits and then use 
additional bytes to encode the higher order bits 
using the same algorithm

▪ At the end set the continuation bit of the last byte to 
1 (c = 1) – and for the other bytes c = 0.

Information Retrieval 30
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Example

docIDs 824 829 215406

gaps 5 214577

VB code 00000110 

10111000 

10000101 00001101 

00001100 

10110001

Information Retrieval 31

Postings stored as the byte concatenation

00000110 10111000 10000101 00001101 00001100 10110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB uses a whole byte.

Sec. 5.3

824 = 1100111000 (binary) 5 = 101 (binary)
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Other variable unit codes

▪ Instead of bytes, we can also use a different "unit of 
alignment": 32 bits (words), 16 bits, 4 bits (nibbles).

▪ Variable byte alignment wastes space if you have 
many small gaps – nibbles do better in such cases.

▪ Variable byte codes:

▪ Used by many commercial/research systems

▪ Good blend of variable-length coding and sensitivity to 
computer memory alignment

Information Retrieval 32

Sec. 5.3



CS3245 – Information Retrieval

RCV1 compression

Data structure Size in MB

dictionary, fixed-width 11.2

dictionary, term pointers into string 7.6

with blocking, k = 4 7.1

with blocking & front coding 5.9

collection (text, xml markup etc) 3,600.0

collection (text) 960.0

Term-doc incidence matrix 40,000.0

postings, uncompressed (32 bits) 400.0

postings, uncompressed (20 bits) 250.0

postings, variable byte encoded 116.0

Information Retrieval 33
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Summary: Index compression

▪ We can now create an index for highly efficient 
Boolean retrieval that is very space efficient

▪ Use the sorted nature of the data to compress

▪ Variable sized storage

▪ Encode common prefixes only once

▪ Encode gaps to reduce size of numbers

▪ However, here we didn’t encode positional 
information

▪ But techniques for dealing with postings are similar

Information Retrieval 34
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Resources for today’s lecture

▪ IIR 5

▪ MG 3.3, 3.4.

▪ F. Scholer, H.E. Williams and J. Zobel. 2002. 
Compression of Inverted Indexes For Fast Query 
Evaluation. Proc. ACM-SIGIR 2002.

▪ Variable byte codes

▪ V. N. Anh and A. Moffat. 2005. Inverted Index 
Compression Using Word-Aligned Binary Codes. 
Information Retrieval 8: 151–166.  

▪ Word aligned codes
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