CS3245

Live QA
https://pollev.com/jin

CS3245 — Information Retrieval

Last Time: Index Compression

= Collection and vocabulary statistics: Heaps’ and Zipf’s laws
* Dictionary compression for Boolean indexes
= Dictionary string, blocks, front coding

= Postings compression:
= Gap encoding and variable byte encoding

Data structure m

dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k =4 7.1
with blocking & front coding 5.9
postings, uncompressed (32-bit words) 400.0
postings, variable byte encoded 116.0

Information Retrieval 2

CS3245 — Information Retrieval Ch. 6

of Singapore

Today: Ranked Retrieval

= Scoring documents
= Term frequency

= Collection statistics
= Weighting schemes
= Vector space scoring

= Parametric and zone indexes (Section 6.1) will be
covered next week.

Information Retrieval 3

CS3245 — Information Retrieval Ch. 6

Problem with Boolean search: ZFINUS
Difficulty in query formulation

= Boolean queries

= Terms + Boolean operators

= Most (non-expert) users are likely to have difficulty in
writing Boolean queries.

* What are the correct terms to use?
* What do the operators mean and how to use them?

Information Retrieval 4

CS3245 — Information Retrieval Ch. 6

Problem with Boolean search: ZINUS

oooooooooooo

Feast or Famine with no differentiation

= Boolean logic is quite strict

* They can result in either too few (=0) or too many
(1000s) results.
= Q1: "Windows 10" AND login AND KB3081444 - O hits
= Q2: "Windows 10" OR login OR KB3081444 - 377M hits

= Also called "information overload"

= All the returned results are considered equally good
by the search engine...

Information Retrieval 5

CS3245 — Information Retrieval Ch. 6

Problem with Boolean search: FNUS
Feast or Famine with no differentiation

" Good for expert users with precise understanding of
their needs and the collection.

= Also good for applications: Applications can easily
consume 1000s of results.

* Not good for the majority of users.

" Most users don’t want to wade through 1000s of results.

Information Retrieval 6

NUS

ti a
of Singapore

Ranked retrieval

" Free text queries: The user’s query is just one or
more words in a human language.

= Ranked results: The results are ranked in the order of
estimated relevance.

= Two separate choices, but a common combination.

Information Retrieval 7

CS3245 — Information Retrieval Ch. 6

Ranked retrieval

= All the users need to do is:

= Write a free-text query and check the top & (= 10) results
= |f the results are good, the search is done.
= Otherwise, repeat this process with a reformulated query.

= Simple and cost-effective, however...

* The ranking algorithm must work (i.e., most relevant
documents should be ranked as the top results.)

Information Retrieval 8

CS3245 — Information Retrieval Ch. 6

S NUS

........

How to rank the documents in the collection with
respect to a query?

= Assign a score to each document

* Anumberin [0, 1] which measures how well the query and
the document match.

= Sort the documents based on the scores
= Documents with score =1
= Documents with score = 0.99

Information Retrieval 9

CS3245 — Information Retrieval Ch. 6

of Singapore

Take 1: Jaccard coefficient

* From Chapter 3 (spelling correction)

= Measures the overlap of two sets Aand B
Jaccard (A, B)=|An B|/|AUB|
Jaccard (A, A) =1
Jaccard (A, B)=0ifAnB=0

" Let A =the set of terms in the query, B = the set of
terms in a document

= Jaccard provides an estimate of how well the query and
the document match

Information Retrieval 10

CS3245 — Information Retrieval Ch. 6

of Singapore

What is the query-document match score that the
Jaccard coefficient computes for each of the two
documents below?

= Query: ides of march
" Doc 1: caesar died in march Jaccard (Q, Doc 1) =1/6
= Doc 2: the long march Jaccard (Q, Doc 2) =1/5

= Results:
= Doc 2
= Doc1

Information Retrieva 11

CS3245 — Information Retrieval Ch. 6

TINUS
Information not considered inJaccard”

= Term Frequency
= Query: Caesar
= Doc A (A story about Caesar): Caesar ... Caesar ... Caesar ...
= Doc B (A list of dictators): Caesar ... Hitler ...

= A > B since Caesar appears more often in A (i.e., of higher
term frequency).

Information Retrieval 12

CS3245 — Information Retrieval Sec. 6.2

Recap: Binary term-document N\ US
incidence matrix (from Week 2)

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Information Retrieval 13

Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		1		1		0		0		0		1

		Brutus		1		1		0		1		0		0

		Caesar		1		1		0		1		1		1

		Calpurnia		0		1		0		0		0		0

		Cleopatra		1		0		0		0		0		0

		mercy		1		0		1		1		1		1

		worser		1		0		1		1		1		0

CS3245 — Information Retrieval Sec. 6.2

1. Term frequency matrix

= Contains the frequency of a term in a document:

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

Information Retrieval 14

Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		157		73		0		0		0		0

		Brutus		4		157		0		1		0		0

		Caesar		232		227		0		2		1		1

		Calpurnia		0		10		0		0		0		0

		Cleopatra		57		0		0		0		0		0

		mercy		2		0		3		5		5		1

		worser		2		0		1		1		1		0

CS3245 — Information Retrieval

Term frequency tf

= The term frequency tf, ;, of term t in document d is
defined as the number of times that t occurs in d.

= We want to use tf when computing query-document
match scores. But how?

= Relevance does not increase proportionally with raw
term frequency

= A document with 10 occurrences of the term is more

relevant than a document with 1 occurrence. But not 10
times more relevant.

Information Retrieval 15

ERAINUS
Log-frequency weighting scheme —
* The log frequency weight of term tind is
1+ log,, tf, ,, it tf, , >0
Wia = ° ’ .
’ \ 0, otherwise
eg.0-0,1->1,2->1.3,10—> 2,1000 — 4, etc.
= Let say: Antony and Cleopatra
Q = Antony Cleopatra Calpurnia Antony 157
D = the play Anthony and Cleopatra E:sl: 2;2
Score (D, Q) = (1 + log,,157) + Calpurnia 0

(1+log,;57)+0

Information Retrieval 16

Cleopatra 57

CS3245 — Information Retrieval Ch. 6

TINUS
Information not considered inJaccard”

= Document Frequency
* Query: the emperor
= Document A: emperor

= Document B: the

= A > Bsince the is too common (i.e., of higher document
frequency) and hence less important than emperor

Information Retrieval 17

CS3245 — Information Retrieval Sec. 6.2.1

2. Document frequency

= Rare terms are more informative than frequent terms

" Given a query: the emperor, it is more important to match
"emperor" than to match "the".

= We want...

* Lower weights for more common words like the, increase,
and line, and

* Higher weights for rarer ones like emperor, and
arachnocentric.

= This can be captured by the inverse document
frequency (idf) weighting scheme.

Information Retrieval 18

CS3245 — Information Retrieval Sec. 6.2.1

of Singapore

idf weighting scheme

= df,is the document frequency of t: the number of
documents that contain t

= df, is an inverse measure of the informativeness of t
= df, < N where N is the collection size.

* We define the idf (inverse document frequency) of t

by
1dt, =log,, (NV/df))

= We use log (N/df,) instead of 1/df, to keep the value non-
negative and dampen the effect of idf.

Information Retrieval 19

CS3245 — Information Retrieval Sec. 6.2.1

Example: suppose N =1 million

calpurnia 1 6
animal 100 4
sunday 1,000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0

1dt, =log,, (NV/dt))

There is one idf value for each term t in a collection.

Information Retrieval 20

CS3245 — Information Retrieval Sec. 6.2.2

of Singapore

tf-idf weighting

" The tf-idf weight of a term is the product of its tf
weight and its idf weight.

w =(l+logtf, ;) xlog, (N /dt))

= Best known weighting scheme IR
= Note: the "-" in tf-idf is a hyphen, not a minus sign!

= Alternative names: tf.idf, tf x idf

* |ncreases with the number of occurrences within a
document

" Increases with the rarity of the term in the collection

Information Retrieval 21

CS3245 — Information Retrieval Sec. 6.2.2

ooooooooooo

Score(q,d) = Z tf.adf, ,

tegnd

Information Retrieva 22

Vector and vector space

= A 3-dimensional vector space
with avectorP=(1, 1, 1)

P2

23

CS3245 — Information Retrieval Sec. 6.3

N US
ke

Mational University
of Singapore

tf-idf matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 415 0.25 1.95

Each document is a vector
In a vector space.

Information Retrieval 24

Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		5.25		3.18		0		0		0		0.35

		Brutus		1.21		6.1		0		1		0		0

		Caesar		8.59		2.54		0		1.51		0.25		0

		Calpurnia		0		1.54		0		0		0		0

		Cleopatra		2.85		0		0		0		0		0

		mercy		1.51		0		1.9		0.12		5.25		0.88

		worser		1.37		0		0.11		4.15		0.25		1.95

CS3245 — Information Retrieval Sec. 6.3
S

f Singapore

Documents as vectors

= So we have a | V' |-dimensional vector space

= Terms are axes of the space
= Documents are points or vectors in this space

= High-dimensional: tens of thousands of dimensions;
each dictionary term is a dimension

= These are very sparse vectors - most entries are zero.

Information Retrieval 25

CS3245 — Information Retrieval Sec. 6.3
NS

ti a
of Singapore

Queries as vectors

= Keyidea 1: Do the same for queries: represent them
as vectors in the space; they are "mini-documents”

= Key idea 2: Rank documents according to their
proximity to the query in this space

Q: Antony mercy Antony and Cleopatra Julius Caesar

Antony 2.45 Antony 5.25 3.18
Brutus 0 Brutus 1.21 6.1

Caesar 0 Caesar 8.59 2.54

Calpurnia 0 Calpurnia 0 1.54
Cleopatra 0 Cleopatra 2.85 0
mercy 1.21 mercy 1.51 0
worser 0 worser 1.37 0

Information Retrieval 26

Shakepeare

				Q: Antony mercy

		Antony		2.45

		Brutus		0

		Caesar		0

		Calpurnia		0

		Cleopatra		0

		mercy		1.21

		worser		0

Blanks on slides, you may want to fill in B8 & N US

Formalizing vector space proximity

Mational Universit

00000 Ggapore

= First cut: distance between two points

= (=distance between the end points of the two vectors)

= Euclidean distance?

]

d(p,q) =d(q,p) = ‘I,_,r":ln:‘-?l P+ (g —p) + 4 (gn — pn)®

| n

- ‘\'III'IZ[:{]:' - Pi]z-

i=1

= Euclidean distance is a bad idea ...

Information Retrieval 27

CS3245 — Information Retrieval Sec. 6.3

Why distance is a bad idea

= The Euclidean distance between g and d_z) is large even
though the distribution of terms in the query g and the

distribution of terms in the document d_z) are very similar.

GOSSIP d>
14 d1
I {T

/e
S
0 1
= Key idea: Rank documents according to the angle

with query instead.

JEALOUS

Information Retrieval 28

CS3245 — Information Retrieval Sec. 6.3
S

f Singapore

From angles to cosines

* The following two notions are equivalent.

= Rank documents in decreasing order of the angle between
query and document

= Rank documents in increasing order of cosine(query,
document)

= Cosine is a monotonically decreasing function for the
interval [0°, 180°]

N e

= (=] A= =0 == = ==

Information Retrieval 29

I
of Singapore

g, is the tf-idf weight of term i in the query
d; is the tf-idf weight of term i in the document

cos(q, d) is the cosine similarity of g and d ... or, equivalently, the
cosine of the angle between g and d.

Information Retrieval 30

CS3245 — Information Retrieval Sec. 6.3

v
of Singapore

Length normalization

= The vectors in the computation of cosine similarity
are in fact length normalized by dividing each of its
components by its length:

- 2
§ =
I

= Such normalization makes the weights comparable
across different vectors despite their original lengths.

= Effect on the two documents d and d (d appended
to itself): they have identical vectors after length
normalization.

Information Retrieval 31

CS3245 — Information Retrieval

of Singapore

= For length-normalized vectors, cosine similarity is
simply the dot product (or scalar product):

Lo L V]
cos(qg,d)=qged= zfqu'df

for length normalized g and d

Information Retrieva 32

CS3245 — Information Retrieval

atio I
of Singapore

Cosine similarity illustrated

N
/
<l

~~
S

, Z’ > V(ds)
> RICH

Information Retrieva 33

CS3245 — Information Retrieval

Cosine similarity example

How similar are

vs the query: - froction

jealous 10 7 1
affection jealous

Term frequencies

Note: To simplify this example,
we do not do idf weighting and
consider only two terms.

Information Retrieval 34

Cosine similarity example

Log frequency weighting After length normalization

affection 3.06 2.76 1 affection 0.84 0.83 0.71
jealous 2.00 1.85 1 jealous 0.55 0.56 0.71

cos(Doc 1, Q) =~ 0.84x0.71 + 0.55x0.71 = 0.99
cos(Doc 2, Q) = 0.99

Information Retrieval 35

ZNUS
Computing cosine scores
COSINESCORE(Qq) This algorithm does not follow

1 float Scores[N] — 0 the formula exactly. What are
2 float Lengfh[N] the differences and why?
3 for each query termt
4 do calculate wt 4 and fetch postings list for t
5 for each pair(d,tf;4) in postings list
6 do Scores[d]4 = w¢.g X Wy g
7 Read the array Length
8 for each d
9 do Scores|d| = Scores|d|/Length[d]
10 return Top K components of Scoresl||

Information Retrieval 36

CS3245 — Information Retrieval

tf-idf weighting has many variants

Sec. 6.4

TINUS

National U
of Singapore

Term frequency

Document frequency

MNormalization

n (natural)

| (logarithm)

b (boolean)

L (log ave)

a (augmented)

tfl‘,d
1 + |Gg[tfrlﬂ'}

0.5xtf; 4
0.5+ —f—mxr

1 iftf; g =0
0 otherwise

1+log(tfe 4)

1+log(aveicd(tfs a))

n (no) 1

t (idf) lo if

)
‘-‘:l

p (prob idf) max{0, log X

n (none)

1

c (cosine))

v wf - w§ + o+ W.Ef
u (pivoted 1/u
unique)

b (byte size)

1/CharlLength”,

a < 1

Information Retrieval

37

Weighting may differ in TANUS
queries vs documents B

= Many search engines allow for different weightings
for queries vs. documents

= SMART Notation: denote combination used with the
notation ddd.qqq, using the acronyms from the table
on the previous slide

= A very standard weighting scheme is Inc.ltc

= Document: logarithmic tf (| as first character), no idf,
cosine normalization

A bad idea?

= Query: logarithmic tf (| in the leftmost column), idf (t in the
second column) and cosine normalization

Information Retrieval 38

CS3245 — Information Retrieval Sec. 6.4

tf-idf example: Inc.ltc

Document: car insurance auto insurance
Query: best car insurance

e | Docmen | owy Lo

tf-raw tf-wt wi n'lize tf-raw tf- n’'lize
Wt
auto 1 1 1 0.52 0O 0 5000 23 0 0 0
best 0 0 0 0 1 1 50000 1.3 1.3 0.34 0
car 1 1 1 0.52 1 1 10000 2.0 20 052 0.27
insurance 2 13 1.3 0.68 1 1 1000 3.0 3.0 0.78 0.53

Quick Question: what is N, the number of docs?

Doc length =12+ 02 +12+1.32 ~1.92
Score = 0+0+0.27+0.53 =0.8

Information Retrieval 39

CS3245 — Information Retrieval

Bag of words model

= Con: Vector representation doesn’t consider the
ordering of words in a document

Moonlight bests La La Land at the Oscars and
La La Land bests Moonlight at the Oscars have the same
vectors

" |n asense, this is a step back: The positional index
was able to distinguish these two documents.

= We will look at "recovering" positional information later in
this course.

Information Retrieval 40

Summary and algorithm: TANUS

Vector space ranking

1.
2.

Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf
vector

Compute the cosine similarity score for the query
vector and each document vector

Rank documents with respect to the query by score
Return the top K (e.g., K = 10) to the user

Information Retrieva 41

CS3245 — Information Retrieval Ch. 6

of Singapore

Resources for today’s lecture

= [IR6.2-6.4.3

Information Retrieva 42

	Slide Number 1
	Last Time: Index Compression
	Today: Ranked Retrieval
	Problem with Boolean search:�Difficulty in query formulation
	Problem with Boolean search:�Feast or Famine with no differentiation
	Problem with Boolean search:�Feast or Famine with no differentiation
	Ranked retrieval
	Ranked retrieval
	Scoring as the basis of ranked retrieval
	Take 1: Jaccard coefficient
	Jaccard coefficient: Scoring example
	Information not considered in Jaccard
	Recap: Binary term-document incidence matrix (from Week 2)
	1. Term frequency matrix
	Term frequency tf
	Log-frequency weighting scheme
	Information not considered in Jaccard
	2. Document frequency
	idf weighting scheme
	Example: suppose N = 1 million
	tf-idf weighting
	Final ranking of documents for a query
	Vector and vector space
	tf-idf matrix
	Documents as vectors
	Queries as vectors
	Formalizing vector space proximity
	Why distance is a bad idea
	From angles to cosines
	cosine (query, document)
	Length normalization
	Cosine for length-normalized vectors
	Cosine similarity illustrated
	Cosine similarity example
	Cosine similarity example
	Computing cosine scores
	
	Weighting may differ in �queries vs documents
	
	Bag of words model
	Summary and algorithm:�Vector space ranking
	Resources for today’s lecture

