
Chapter 8

Java continued

CS3283 - Hugh Anderson’s notes. Page number: 263

ALERT

✔ MCQ test next week

✔ This time

✔ This place

✔ Closed book

CS3283 - Hugh Anderson’s notes. Page number: 264

ALERT

✔ Assignment #2 is for groups of 3

✔ Like extended version of tkpaint, but has

✔ menus
✔ persistence
✔ compound objects

CS3283 - Hugh Anderson’s notes. Page number: 265

Last week

� Tool sets for Java/Swing

� The relationship between JFC, Java and Swing.

� Simple first programs

CS3283 - Hugh Anderson’s notes. Page number: 266

This week

� Heirarchy

� Layout managers

� Simple first programs

CS3283 - Hugh Anderson’s notes. Page number: 267

Containment heirarchy

Top level provides panes for descendants to paint them-
selves

Control-Shift-F1 to view

t2[frame0,954,518,126x43,layout=java.awt...
javax.swing.JRootPane[,4,24,118x15,la...

javax.swing.JPanel[null.glassPane,...
javax.swing.JLayeredPane[null.laye...

javax.swing.JPanel[null.content...
javax.swing.JLabel[,0,0,118x...

CS3283 - Hugh Anderson’s notes. Page number: 268

Containment heirarchy

CS3283 - Hugh Anderson’s notes. Page number: 269

Containment heirarchy

The glass pane: Intercepts input events for the root pane.

The layered pane: Serves to position its contents, which
consist of the content pane and the optional menu bar.

The content pane: The container of the root pane’s visible
components, excluding the menu bar.

The menu bar: The home for the root pane’s container’s
menus.

CS3283 - Hugh Anderson’s notes. Page number: 270

Containment heirarchy

Level Container
Top-level JFrame

JApplet
JDialog

Mid-level JPanel
JScrollBar

JTabbedPane
Component-level JButton

JLabel
...

CS3283 - Hugh Anderson’s notes. Page number: 271

Containment heirarchy

Every GUI component must be part of a containment hier-
archy

�

.

Each top-level container has

� a content pane, and an

� optional menu bar

�

To view the containment hierarchy for any frame or dialog, click its border to select
it, and then press Control-Shift-F1. A list of the containment hierarchy will be written
to the standard output stream.

CS3283 - Hugh Anderson’s notes. Page number: 272

Containment heirarchy

Java/Swing components are added to either the content
pane or the menu bar.

Every component must be placed somewhere in this con-
tainment heirarchy, or it will not be visible.

CS3283 - Hugh Anderson’s notes. Page number: 273

Layout management

✔ Every container has a default layout manager

✔ It may be over-ridden

✔ A range of layout managers supplied

✔ These are AWT components, not Swing

CS3283 - Hugh Anderson’s notes. Page number: 274

BorderLayout

BorderLayout is the default layout manager for every content
pane, and assists in placing components in the north, south,
east, west, and center of the content pane.

contentPane.add(new JButton("B1"), BorderLayout.NORTH);

CS3283 - Hugh Anderson’s notes. Page number: 275

BoxLayout

BoxLayout puts components in a single row or column. Here
is code to create a centered column of components:

pane.setLayout(new BoxLayout(pane, BoxLayout.Y AXIS));
pane.add(label);
pane.add(Box.createRigidArea(new Dimension(0,5)));
pane.add(...);

CS3283 - Hugh Anderson’s notes. Page number: 276

CardLayout

CardLayout is for when a pane has different components at
different times. You may think of it as a stack of same-sized
cards.

cards = new JPanel();
cards.setLayout(new CardLayout());
cards.add(p1, BUTTONPANEL);
cards.add(p2, TEXTPANEL);

CS3283 - Hugh Anderson’s notes. Page number: 277

CardLayout

You can choose the top card to show:

CardLayout cl = (CardLayout)(cards.getLayout());
cl.show(cards, (String)evt.getItem());

CS3283 - Hugh Anderson’s notes. Page number: 278

Creating menus

The menu classes are descendants of JComponent, and may
be used in any higher-level container class (JApplet and so
on).

CS3283 - Hugh Anderson’s notes. Page number: 279

Creating menus

public class menutest extends javax.swing.JFrame {
 public menutest() {
 initComponents();
 }
 private void initComponents() {
 jMenuBar1 = new javax.swing.JMenuBar();
 jMenu1 = new javax.swing.JMenu();
 jMenuItem1 = new javax.swing.JMenuItem();
 jMenuItem2 = new javax.swing.JMenuItem();
 jMenuItem3 = new javax.swing.JMenuItem();
 jMenu2 = new javax.swing.JMenu();
 jMenuItem4 = new javax.swing.JMenuItem();
 jMenu1.setText("File");
 jMenuItem1.setText("Open");
 jMenu1.add(jMenuItem1);
 jMenuItem2.setText("Close");
 jMenu1.add(jMenuItem2);
 jMenuItem3.setText("Quit");
 jMenuItem3.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jMenuItem3ActionPerformed(evt);
 }
 });
 jMenu1.add(jMenuItem3);
 jMenuBar1.add(jMenu1);
 jMenu2.setText("Edit");
 jMenuItem4.setText("Cut");
 jMenu2.add(jMenuItem4);
 jMenuBar1.add(jMenu2);
 addWindowListener(new java.awt.event.WindowAdapter() {
 public void windowClosing(java.awt.event.WindowEvent evt) {
 exitForm(evt);
 }
 });
 setJMenuBar(jMenuBar1);
 pack();
 }

 private void jMenuItem3ActionPerformed(java.awt.event.ActionEvent evt) {
 System.exit(0);
 }
 private void exitForm(java.awt.event.WindowEvent evt) {
 System.exit(0);
 }
 public static void main(String args[]) {
 new menutest().show();
 }
 private javax.swing.JMenuBar jMenuBar1;
 private javax.swing.JMenu jMenu1;
 private javax.swing.JMenuItem jMenuItem1;
 private javax.swing.JMenuItem jMenuItem2;
 private javax.swing.JMenuItem jMenuItem3;
 private javax.swing.JMenu jMenu2;
 private javax.swing.JMenuItem jMenuItem4;
}

CODE LISTING menutest.java

CS3283 - Hugh Anderson’s notes. Page number: 280

Menus

The end result is:

CS3283 - Hugh Anderson’s notes. Page number: 281

Threads in Swing

✔ Java supports multi-threading

✔ We may have critical sections

✔ To create threads use SwingWorker or Timer.

CS3283 - Hugh Anderson’s notes. Page number: 282

Threads

Most Swing components are not thread safe - this means
that if two threads call methods on the same Swing compo-
nent, the results are not guaranteed.

The single-thread rule:

Swing components accessed by only one thread at a time.

CS3283 - Hugh Anderson’s notes. Page number: 283

Threads

A particular thread, the event-dispatching thread, is the one
that normally accesses Swing components.

To get access to this thread from another thread we can use
invokeLater() or invokeAndWait().

CS3283 - Hugh Anderson’s notes. Page number: 284

Threads

Many applications do not require threading, but if you do
have threads, then you may have problems debugging your
programs. However, you might consider using threads if:

� Your application has to do some long task, or wait for an
external event, without freezing the display.

� Your application has to do someting at fixed time inter-
vals.

CS3283 - Hugh Anderson’s notes. Page number: 285

Implementing threads

The following two classes are used to implement threads:

1. SwingWorker

�

: To create a thread

2. Timer: Creates a timed thread

�

If you find that your distribution does not include SwingWorker.class, download
and compile it.

CS3283 - Hugh Anderson’s notes. Page number: 286

SwingWorker

To use SwingWorker, create a subclass of it, and in the sub-
class, implement your own construct() method.

When you instantiate the SwingWorker subclass, the runtime
environment creates a thread but does not start it.

The thread starts when you invoke start() on the object.

CS3283 - Hugh Anderson’s notes. Page number: 287

Example

Here’s an example of using SwingWorker from the tutorial -
an image is to be loaded over a network (given a URL).

This may of course take quite a while, so we don’t block our
main thread - (if we did this, the GUI may freeze).

CS3283 - Hugh Anderson’s notes. Page number: 288

SwingWorker example

private void loadImage(final String imagePath,
 final int index) {
 final SwingWorker worker = new SwingWorker() {
 ImageIcon icon = null;
 public Object construct() {
 icon = new ImageIcon(getURL(imagePath));
 return icon;
 }
 public void finished() {
 Photo pic = (Photo)pictures.elementAt(index);
 pic.setIcon(icon);
 if (index == current)
 updatePhotograph(index, pic);
 }
 };
 worker.start();
}

CODE LISTING ImageLoader.java

CS3283 - Hugh Anderson’s notes. Page number: 289

Timer

The Timer class is used to repeatedly perform an operation.

When you create a Timer, you specify its frequency, and you
specify which object is the listener for its events.

Once you start the timer, the action listener’s actionPer-
formed() method will be called for each event.

CS3283 - Hugh Anderson’s notes. Page number: 290

Event dispatching thread

The event-dispatching thread is the main event-handling
thread. It is normal for all GUI code to be called from this
main thread, even if some of the code may take a long
time to run. However - we have already mentioned that we
should not delay the event-dispatching thread.

Swing provides a solution to this - the InvokeLater() method
may be used to safely run code in the event-dispatching
thread.

CS3283 - Hugh Anderson’s notes. Page number: 291

InvokeLater

The method requests that some code be executed in the
event-dispatching thread, but returns immediately, without
waiting for the code to execute.

Runnable doWorkRunnable = new Runnable() {
public void run() { doWork(); }

};
SwingUtilities.invokeLater(doWorkRunnable);

CS3283 - Hugh Anderson’s notes. Page number: 292

Handling events

Actions associated with Java/Swing components raise
events - moving the mouse or clicking a JButton all cause
events to be raised. The application program writes a lis-
tener method to process an event, and registers it as an
event listener on the event source. There are different kinds
of events, and we use different kinds of listener to act on
them.

CS3283 - Hugh Anderson’s notes. Page number: 293

Listener types

Action Listener type

Button click ActionListener

A window closes WindowListener

Mouse click MouseListener

Mouse moves MouseMotionListener

Component becomes visible ComponentListener

Keyboard focus FocusListener

List selection changes ListSelectionListener

CS3283 - Hugh Anderson’s notes. Page number: 294

Listeners

The listener methods are passed an event object which
gives information about the event and identifies the event
source.

CS3283 - Hugh Anderson’s notes. Page number: 295

Event handlers

When you write an event handler, you must do the following:

� Specify a class

� Register an instance of the class as a listener

� Implement the methods

CS3283 - Hugh Anderson’s notes. Page number: 296

Specify class

Specify a class that either implements a listener interface or
extends a class that implements a listener interface.

public class MyClass implements ActionListener { ...

CS3283 - Hugh Anderson’s notes. Page number: 297

Register it

Register an instance of the class as a listener upon the com-
ponents.

Component.addActionListener(instanceOfMyClass);

CS3283 - Hugh Anderson’s notes. Page number: 298

Implement method

Implements the methods in the listener interface.

public void actionPerformed(ActionEvent e) {
...//code that reacts to the action...

}

CS3283 - Hugh Anderson’s notes. Page number: 299

Event handling

Make sure that your event handler code executes quickly, or
your program may seem to be slow.

In the sample code given so far, we have used window lis-
teners to react if someone closes a window, but not to cap-
ture other sorts of events.

CS3283 - Hugh Anderson’s notes. Page number: 300

Handling events

 public class CheckBoxDemo extends JPanel
 {
 JCheckBox chinButton;
 JCheckBox glassesButton;
 StringBuffer choices;
 JLabel pic;
 public CheckBoxDemo ()
 {
 chinButton = new JCheckBox (" Chin");
 glassesButton = new JCheckBox (" Glasses");
 CheckBoxListener myListener = new CheckBoxListener ();
 chinButton.addItemListener (myListener);
 glassesButton.addItemListener (myListener);
 choices = new StringBuffer (" −−ht");
 pic =
 new JLabel (new
 ImageIcon (" geek−" + choices.toString () + " .gif"));
 pic.setToolTipText (choices.toString ());
 JPanel checkPanel = new JPanel ();
 checkPanel.setLayout (new GridLayout (0, 1));
 checkPanel.add (chinButton);
 checkPanel.add (glassesButton);
 setLayout (new BorderLayout ());
 add (checkPanel, BorderLayout.WEST);
 add (pic, BorderLayout.CENTER);
 setBorder (BorderFactory.createEmptyBorder (20, 20, 20, 20));
 }
 class CheckBoxListener implements ItemListener
 {
 public void itemStateChanged (ItemEvent e)
 {
 int index = 0;
 char c = ’−’;
 Object source = e.getItemSelectable ();
 if (source == chinButton)
 {
 index = 0;
 c = ’c’;
 } else if (source == glassesButton)
 {
 index = 1;
 c = ’g’;
 }
 if (e.getStateChange () == ItemEvent.DESELECTED)
 c = ’−’;
 choices.setCharAt (index, c);
 pic.setIcon (new
 ImageIcon (" geek−" + choices.toString () + " .gif"));
 pic.setToolTipText (choices.toString ());
 }
 }
 public static void main (String s[])
 {
 JFrame frame = new JFrame (" CheckBoxDemo");
 frame.addWindowListener (new WindowAdapter () {
 public void windowClosing (WindowEvent e)
 {
 System.exit (0);}
 }
);

CODE LISTING CheckBoxDemo.java
 frame.setContentPane (new CheckBoxDemo ());
 frame.pack ();
 frame.setVisible (true);
 }
 }

CODE LISTING CheckBoxDemo.java

CS3283 - Hugh Anderson’s notes. Page number: 301

Example code

When you change either checkbox, an itemListener responds
to the event and changes the graphic.

CS3283 - Hugh Anderson’s notes. Page number: 302

Summary of topics

In this module, we introduced the following topics:

� The containment heirarchy

� Layout managers

� Menus

� Threading

� Event handling

CS3283 - Hugh Anderson’s notes. Page number: 303

