ﬁ Chapter 8 E

Java continued

CS3283 - Hugh Anderson’s notes. Page number: 263

Q ALERT E

[MCQ test next week
[This time
[This place

[0 Closed book

CS3283 - Hugh Anderson’s notes. Page number: 264

ﬁ ALERT E

[Assignment #2 is for groups of 3

[1 Like extended version of tkpaint, but has

[J menus
[persistence
[J compound objects

CS3283 - Hugh Anderson’s notes. Page number: 265

Q Last week E

e Tool sets for Java/Swing
e The relationship between JFC, Java and Swing.

e Simple first programs

CS3283 - Hugh Anderson’s notes. Page number: 266

ﬁ This week E

e Heirarchy
e Layout managers

e Simple first programs

CS3283 - Hugh Anderson’s notes. Page number: 267

Q Containment heirarchy E

Top level provides panes for descendants to paint them-
selves

Control-Shift-F1 to view

t 2[frame0, 954, 518, 126x43, | ayout =j ava. awt . . .
j avax. swi ng. JRoot Pane[, 4, 24, 118x15, | a. ..
j avax. swi ng. JPanel [nul | . gl assPane, . ..
j avax. swi ng. JLayer edPane[nul | . | aye. ..
javax. swi ng. JPanel [nul |l .content. ..
j avax. swi ng. JLabel [, 0,0, 118x. ..

CS3283 - Hugh Anderson’s notes. Page number: 268

ﬁ Containment heirarchy E

| ELaﬁ;ered Pane
Menu Bar
Foot Pane m—Glass Pane
e
Content Pan
CS3283 - Hugh Anderson’s notes. Page number: 269

Q Containment heirarchy E

The glass pane: Intercepts input events for the root pane.

The layered pane: Serves to position its contents, which
consist of the content pane and the optional menu bar.

The content pane: The container of the root pane’s visible
components, excluding the menu batr.

The menu bar: The home for the root pane’s container’s
menus.

CS3283 - Hugh Anderson’s notes. Page number: 270

ﬁ Containment heirarchy E

Level Container
Top-level JFrame
JApplet
JDialog
Mid-level JPanel
JScrollBar
JTabbedPane
Component-level JButton
JLabel
CS3283 - Hugh Anderson’s notes. Page number: 271

Q Containment heirarchy E

Every GUI component must be part of a containment hier-
archy?*.

Each top-level container has

e a content pane, and an

e optional menu bar

4To view the containment hierarchy for any frame or dialog, click its border to select
it, and then press Control-Shift-F1. A list of the containment hierarchy will be written
to the standard output stream.

CS3283 - Hugh Anderson’s notes. Page number: 272

ﬁ Containment heirarchy E

Java/Swing components are added to either the content
pane or the menu bar.

Every component must be placed somewhere in this con-
tainment heirarchy, or it will not be visible.

CS3283 - Hugh Anderson’s notes. Page number: 273

Q Layout management E

[1 Every container has a default layout manager
[It may be over-ridden
[A range of layout managers supplied

[0 These are AWT components, not Swing

CS3283 - Hugh Anderson’s notes. Page number: 274

ﬁ BorderLayout E

BorderLayout is the default layout manager for every content
pane, and assists in placing components in the north, south,
east, west, and center of the content pane.

| contentPane.add(new JButton("B1"), BorderLayout.NORTH); |

CS3283 - Hugh Anderson’s notes. Page number: 275

Q BoxLayout E

BoxLayout puts components in a single row or column. Here
is code to create a centered column of components:

pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
pane.add(label);

pane.add(Box.createRigidArea(new Dimension(0,5)));
pane.add(...);

CS3283 - Hugh Anderson’s notes. Page number: 276

ﬁ CardLayout E

CardLayout is for when a pane has different components at
different times. You may think of it as a stack of same-sized
cards.

cards = new JPanel();
cards.setLayout(new CardLayout());
cards.add(pl, BUTTONPANEL);
cards.add(p2, TEXTPANEL);

CS3283 - Hugh Anderson’s notes. Page number: 277

ﬁ CardLayout E

You can choose the top card to show:

CardLayout cl = (CardLayout)(cards.getLayout());
cl.show(cards, (String)evt.getltem());

CS3283 - Hugh Anderson’s notes. Page number: 278

Creating menus

The menu classes are descendants of JComponent, and may
be used in any higher-level container class (JApplet and so

on).

CS3283 - Hugh Anderson’s notes.

Page number: 279

Creating menus

CODE LISTING menutest.java

s menutest
menut est (

public cl as ext ends j avax.sw ng. JFr ame {
publ

i ni t Conponent s():

privat e i i ni t Components() {
new j avax. swi ng. JVenuBar () ;
new | avax. swi ng. IMenu() ;
new j avax. swi ng. JNVenul t en() :
new j avax. swi ng. JVenul t en() }
new j avax. swi ng. IMenul t en() }
new j avax. swi ng. IMenu() ;

M new j avax. swi ng. IMenul t en() ;
. set Text (" File") :

i Menul t
et Te
ddAct i ew j ava. awt . event . Acti onLi st ene
voi d d(j ava. awmt . event . Act i onEvent ev
nai te nmed(evt)
add(j Menul t enB) :
(i Menul)
" Edit!) ;
Text ("Cut’) ;
NMenu2. add(j Menul t)
dd(j Menu2) ;
addW ndowlLi st ener (new j a wt . event . W ndowAdapt er () {
public void w ndowd osi ng(j ava. awm . event . W ndowEvent evt)
N exi t Form(evt) ;
3o
set IMenuBar (j MenuBar 1) ;
pack() ;
T
private void jMenultenBActi onPer for ned(j ava. awt . event . Act i onEvent
System exit (0);
b
private voi exi t For n(j ava. awt . event . W ndowEvent evt) {
System exi t (0):
3
public static void main(String args[1) {
new menutest().show);
e javax.sw ng. JMenuBar j MenuBar 1;
e javax.sw ng. JMenu j Menul;
e j avax.sw ng. JMenultem j Menul t eni;
e j avax.sw ng. JMenul t em | Menul t eng}
e j avax.sw ng. JMenul t em j Menul t ens!
e javax.sw ng. JMVe i Menuz;
e j avax.sw ng. JMenul tem j Menul t ena;

r¢y
) {

{

evt)

{

CS3283 - Hugh Anderson’s notes.

Page number: 280

The end result is:

oM O X
Te| Ed it
Open
Clase

Quit

CS3283 - Hugh Anderson’s notes. Page number: 281

Q Threads in Swing E

[Java supports multi-threading
[1 We may have critical sections

[1 To create threads use SwingWorker or Timer.

CS3283 - Hugh Anderson’s notes. Page number: 282

ﬁ Threads E

Most Swing components are not thread safe - this means
that if two threads call methods on the same Swing compo-
nent, the results are not guaranteed.

The single-thread rule:
Swing components accessed by only one thread at a time.

CS3283 - Hugh Anderson’s notes. Page number: 283

Q Threads E

A particular thread, the event-dispatching thread, is the one
that normally accesses Swing components.

To get access to this thread from another thread we can use
invokelLater() Or invokeAndWait().

CS3283 - Hugh Anderson’s notes. Page number: 284

ﬁ Threads E

Many applications do not require threading, but if you do
have threads, then you may have problems debugging your
programs. However, you might consider using threads if:

e Your application has to do some long task, or wait for an
external event, without freezing the display.

e Your application has to do someting at fixed time inter-
vals.

CS3283 - Hugh Anderson’s notes. Page number: 285

ﬁ Implementing threads E

The following two classes are used to implement threads:

1. SwingWorker®: To create a thread

2. Timer: Creates a timed thread

%If you fi nd that your distribution does not include SwingWorker.class, download
and compile it.

CS3283 - Hugh Anderson’s notes. Page number: 286

ﬁ SwingWorker E

To use SwingWorker, create a subclass of it, and in the sub-
class, implement your own construct() method.

When you instantiate the swingWorker subclass, the runtime
environment creates a thread but does not start it.

The thread starts when you invoke start() on the object.

CS3283 - Hugh Anderson’s notes. Page number: 287

Q Example E

Here’'s an example of using SwingWorker from the tutorial -
an image is to be loaded over a network (given a URL).

This may of course take quite a while, so we don’t block our
main thread - (if we did this, the GUI may freeze).

CS3283 - Hugh Anderson’s notes. Page number: 288

ﬁ SwingWorker example E

CODE LISTING ImagelLoader.java

private void | oadl mage(final String inmagePath,
final int index) {
final Swi ngWorker worker = new Sw ngWrker () {
I magel con icon = null;
public Qbject construct() {
icon = new | magel con(get URL(i magePath));
return icon;

}
public void finished() {
Phot o pic = (Photo)pictures. el enent At (i ndex);
pi c.setlcon(icon);
1 f (index == current)
updat ePhot ogr aph(i ndex, pic);

vxorke'r.start();

CS3283 - Hugh Anderson’s notes. Page number: 289

4 Timer R

The Timer class is used to repeatedly perform an operation.

When you create a Timer, you specify its frequency, and you
specify which object is the listener for its events.

Once you start the timer, the action listener’s actionPer-
formed() method will be called for each event.

CS3283 - Hugh Anderson’s notes. Page number: 290

ﬁ Event dispatching thread E

The event-dispatching thread is the main event-handling
thread. It is normal for all GUI code to be called from this
main thread, even if some of the code may take a long
time to run. However - we have already mentioned that we
should not delay the event-dispatching thread.

Swing provides a solution to this - the InvokeLater() method
may be used to safely run code in the event-dispatching
thread.

CS3283 - Hugh Anderson’s notes. Page number: 291

Q InvokeLater E

The method requests that some code be executed in the
event-dispatching thread, but returns immediately, without
waiting for the code to execute.

Runnable doWorkRunnable = new Runnable() {
public void run() { doWork(); }
}.

SwingUtilities.invokeLater(doWorkRunnable);

CS3283 - Hugh Anderson’s notes. Page number: 292

ﬁ Handling events E

Actions associated with Java/Swing components raise
events - moving the mouse or clicking a JButton all cause
events to be raised. The application program writes a lis-
tener method to process an event, and registers it as an
event listener on the event source. There are different kinds
of events, and we use different kinds of listener to act on

them.

CS3283 - Hugh Anderson’s notes.

Page number: 293

ﬁ Listener types E

Action

Listener type

Button click

ActionListener

A window closes

WindowListener

Mouse click

MouseListener

Mouse moves

MouseMotionListener

Component becomes visible

ComponentListener

Keyboard focus

FocusListener

List selection changes

ListSelectionListener

CS3283 - Hugh Anderson’s notes.

Page number: 294

ﬁ Listeners E

The listener methods are passed an event object which
gives information about the event and identifies the event
source.

CS3283 - Hugh Anderson’s notes. Page number: 295

Q Event handlers E

When you write an event handler, you must do the following:

e Specify a class
e Register an instance of the class as a listener

e Implement the methods

CS3283 - Hugh Anderson’s notes. Page number: 296

ﬁ Specify class E

Specify a class that either implements a listener interface or
extends a class that implements a listener interface.

| public class MyClass implements ActionListener { ... |

CS3283 - Hugh Anderson’s notes. Page number: 297

Q Register it E

Register an instance of the class as a listener upon the com-
ponents.

| Component.addActionListener(instanceOfMyClass); |

CS3283 - Hugh Anderson’s notes. Page number: 298

ﬁ Implement method E

Implements the methods in the listener interface.

public void actionPerformed(ActionEvent e) {
...llcode that reacts to the action...

}

CS3283 - Hugh Anderson’s notes. Page number: 299

Q Event handling E

Make sure that your event handler code executes quickly, or
your program may seem to be slow.

In the sample code given so far, we have used window lis-
teners to react if someone closes a window, but not to cap-
ture other sorts of events.

CS3283 - Hugh Anderson’s notes. Page number: 300

Handling events

[cobEe usTine CheckBoxDemo.java
DU G UL Gm o e s R e ot R W SRS TS O R LA 110 L)
{ frame. pack ()
ICheckBoxf alames e : Vi ble (true):
JChedkBox glassesButton:
Fiingbuffer choices:
Stabel pic
h ubl i ¢ CheckBoxDemo O
chinButton = ncmChcckB < (" <hin,
glassesButton = JCheckBox « ssey;
Zhed xLlslener myListener = new &heiRboxListener O
chinButton.additemListener (mylListener):
glassessuion. ASdhemistesar (mylisterien:
ew StringBuffe heo;
newJLabel C new
magelcon ¢ geek— + choices.toString O + -gif);
iC.SetToOITIDT ot (Shoices.toString O):
Eanel - newrPanel O
anel.setlL C W GridLayout (0. 1)):
aad ESnELton):
d (glassesBuiion):
cut W BorderLayout O):
JNeckPanel, BorderlayoutwWe ST
add (pic, BorderLayout. CENTER
, Seteordér(BorderFactory. createEmptyBorder (20, 20, 20, 20));
< cl ass CheckBoxListener i nmpl enment s ItemlListener
publ i ¢ voi d itemStateChanged (ltemEvent e)
€
i nt index = o
char ©
Object source = e getitemSelectable O;
. T (source == chinButton)
by el se if (source == glassesButton)
1
¥
i f (e.getStateChange O == ltemEvent. DESELECTED)
<
holces SetCharAt (index, ©);
pic seticon new
agelc geek- + choices.toString O + gifd):
pic.setTOOITISTExt Enoices tostring O:
;7
< pPubl i c static void main (String s[D
JFrame frame new JFrame (" CheckBoxDem
frame addwindowListener [neler\dowAdap(er O {
. public veoi d windowClosing (WindowEvent &)
System.exit (0):}
¥
>

CS3283 - Hugh Anderson’s notes. Page number: 301

Example code

When you change either checkbox, an itemListener responds
to the event and changes the graphic.

8] ceckaoxoemMPNERAIGY cockooxDemoMEEIY

] Chin

[]Glasses

CS3283 - Hugh Anderson’s notes. Page number: 302

ﬁ Summary of topics E

In this module, we introduced the following topics:

e The containment heirarchy
e Layout managers

e Menus

Threading

Event handling

CS3283 - Hugh Anderson’s notes. Page number: 303

