
Chapter 9

Module7

CS3283 - Hugh Anderson’s notes. Page number: 304

MCQ Test

✔ Closed book

✔ Closed computer

✔ 20 questions

✔ Leave if finished, but come back at 1:00 for lecture

CS3283 - Hugh Anderson’s notes. Page number: 305

MCQ Test

✘ Any questions?

CS3283 - Hugh Anderson’s notes. Page number: 306

Java

✔ No more lecture material, but

✔ I will respond to questions with material as needed

✔ Following few weeks will have Java/Swing centered
questions, and

✔ Assignment 3 (announced next week) will require
Java/Swing, so get some practice in...

CS3283 - Hugh Anderson’s notes. Page number: 307

Common Gateway Interface

✔ CGI is a standard for helping web servers run external
programs,

✔ and return dynamic web pages.

For example, a simple dynamic web page might return the
current date and time, calculated by running the ’date’ pro-
gram, and formatting the results as a web page.

CS3283 - Hugh Anderson’s notes. Page number: 308

CGI script

 #!/bin/sh

 cat <<EOM1
 Content−type: text/html

 <HTML><HEAD>
 <TITLE>Output of data in HTML from CGI script</TITLE>
 </HEAD><BODY>
 <H1>Date:</H1>
 EOM1
 date
 cat <<EOM2
 </BODY></HTML>
 EOM2

CODE LISTING mydate.cgi

CS3283 - Hugh Anderson’s notes. Page number: 309

CGI script

When this script is placed in the directory public cgi in your
home directory on one of the UNIX systems, then you may
refer to

http://www-cgi.comp.nus.edu.sg:8000/~yourid/mydate.cgi

CS3283 - Hugh Anderson’s notes. Page number: 310

CGI script

CS3283 - Hugh Anderson’s notes. Page number: 311

CGI script

CS3283 - Hugh Anderson’s notes. Page number: 312

CGI scripts

✔ No requirement for CGI program to be a shell script.

✔ Perl is very commonly used in this role.

✔ It should not take too long to process.

CS3283 - Hugh Anderson’s notes. Page number: 313

Environment variables

#!/usr/local/bin/perl

print "Content−type: text/html\n\n";
print <<EndOfHTML;
<html><head><title>Print Environment</title></head>
<body>
EndOfHTML

foreach $key (sort(keys %ENV)) {
 print "$key = $ENV{$key}
\n";
}

print "</body></html>";

CODE LISTING env.cgi

CS3283 - Hugh Anderson’s notes. Page number: 314

Environment variables

DOCUMENT ROOT = /usr/local/apache/htdocs
GATEWAY INTERFACE = CGI/1.1
HTTP USER AGENT = Mozilla/4.79 [en] (X11; U; Linux 2.2.16 i686)
...
QUERY STRING =
...
TZ = Singapore

CS3283 - Hugh Anderson’s notes. Page number: 315

CGI forms - GET

The form contents are found inside an environment variable
called QUERY STRING, as a series of name/value pairs.

This mechanism is known as the GET mechanism, and a
typical URL would look like this:

.../myform.cgi?name1=value1&name2=value2

CS3283 - Hugh Anderson’s notes. Page number: 316

POST

An alternative mechanism is the POST mechanism, in which
the STDIN of the CGI program is used to process the form
data.

CS3283 - Hugh Anderson’s notes. Page number: 317

CGI form

<html><head>Simple form</head>
<body>
<form action="env.cgi" method="GET">
 First Name: <input type="text" name="First" size=30><p>
 Last Name: <input type="text" name="Last" size=30><p>
 <select name="Home">
 <option>Singapore <option>Malaysia
 <option>Indonesia <option>New Zealand
 <option>The rest of the world!
 </select>
 <input type="submit">
</form>
</body></html>

CODE LISTING form.html

CS3283 - Hugh Anderson’s notes. Page number: 318

CGI form

CS3283 - Hugh Anderson’s notes. Page number: 319

CGI form

When the form is submitted, the QUERY STRING looks like
this:

QUERY STRING = First=Hugh&Last=Anderson&Home=New+Zealand

Within a CGI program, this series of name-value pairs may
be used to return a dynamic web page based on this form
data.

Perl is a particularly useful language to use in this context -
the QUERY STRING can be split quickly into its component
parts.

CS3283 - Hugh Anderson’s notes. Page number: 320

Security

✔ There are security issues with unrestricted CGI pro-
grams - since they run powerful programs (like perl and
csh) with arbitrary parameters, they may be a source of
(hacker) intrusion.

✔ It is for this reason that CGI usage is restricted here at
NUS.

CS3283 - Hugh Anderson’s notes. Page number: 321

PHP

✔ PHP is a server-side scripting language.

✔ It looks very like standard HTML scripts, but the server
automatically interprets the PHP.

✔ There are no enhancements needed for browsers.

CS3283 - Hugh Anderson’s notes. Page number: 322

PHP

✔ The two tags <?php and ?> start and end a PHP script,
and identify a PHP code segment.

✔ The PHP code itself is a reasonably powerful program-
ming language similar to Java, C and Perl, with functions,
variables and so on.

PHP stands for PHP - Hypertext Preprocessor, a recursive
acronym.

CS3283 - Hugh Anderson’s notes. Page number: 323

PHP

✔ Particularly useful to access databases.

✔ It is common to pair up PHP with MySQL, but PHP is not
limited to one database type.

✔ For example if you wish to use PHP to access a Mi-
crosoft SQL server, you can install the ODBC support
in the server machine, and access the server directly.

CS3283 - Hugh Anderson’s notes. Page number: 324

PHP code

<?php
...
mysql pconnect("host","user","password")

or die("Unable to connect to SQL server");
mysql select db("dbasename")

or die("Unable to select database");
$numguests = mysql query("SELECT COUNT(*) FROM guests")

or die("Select Failed!");
...

?>

CS3283 - Hugh Anderson’s notes. Page number: 325

PHP security

✔ PHP suffers less from the security issue than perl or csh
CGI scripts do.

CS3283 - Hugh Anderson’s notes. Page number: 326

Java

/* @(#)Lissajous.java
 * Original version was written in 0.4 95/04/09
 * by Hugh Anderson for HotJava browser.
 *
 * Updated by L. Gladney to Java 1.0 JDK on 4/13/97.
 *
 * Patrick Chan (chan@scndprsn.Eng.Sun.COM) has suggested that it
 * would be nice if every point had a different display, so mouse
 * X motion now controls the ratio of frequencies, and mouse Y motion
 * controls the amplitude. */

import java.applet.Applet;
import java.awt.*;

public class Lissajous extends Applet implements Runnable {
 Thread animate= null;
 double pi=3.14159265359;
 int fx=50;
 int fy=100;
 int diffx=0;
 int amp=50,phase=0; // amplitude, phase
 int delay = 50; // speed set by length
 // of sleep between refreshes
 public void init() {
 resize(200, 200); // resize to fixed width,height
 }

 public void paint(Graphics g) {
 int X,Y,YY=0,lastx=0,lasty=0,temp=0,rev=0;
 g.drawRect(0, 0, size().width − 1, size().height − 1); // outline
 if (fy < fx) { // frequency
 temp = fx;
 fx = fy;
 fy = temp;
 rev = 1;
 }
 for (int x = 0 ; x <= 360 ; x += 4) { // loop
 X = (int) (amp*Math.sin(x*2.0*pi/360.0)); // x pos
 YY = (x*fy/fx)+phase;
 Y = (int) (amp*Math.sin(YY*2.0*pi/360.0));
 if (x==0) { lastx=X; lasty=Y; }
 if (rev==1) { g.drawLine(lastx+100,lasty+100,X+100,Y+100); }
 else { g.drawLine(lasty+100,lastx+100,Y+100,X+100); }
 lastx=X;
 lasty=Y;
 }
 if (rev==1) {
 temp=fx;
 fx = fy;
 fy = temp;
 }
 phase = YY;
 /* Fix an error ... phase shouldn’t increase forever..... */
 if (phase < 0) { phase += 360; };
 if (phase >= 360) { phase −= 360; };
 g.drawString(fx + " :" + fy,10,20);
 }

CODE LISTING Lissajous1.java

CS3283 - Hugh Anderson’s notes. Page number: 327

Java

 public void run() {
 while (true) {
 repaint();

 try { Thread.currentThread().sleep(delay); // delay
 }
 catch (Exception e) { };

 }
 }

 public void start() {
 if (animate == null) {
 animate = new Thread(this);
 animate.start();
 }
 }
 public void stop() {
 if (animate != null) {
 animate.stop();
 animate = null;
 }
 }

 public boolean mouseDown(Event e, int x, int y) {
 Graphics gc;
 gc = getGraphics();

 diffx = fx−x;
 System.out.println(" Got a mouse event at " + x + " , " + y);

return true;
 }

 public boolean mouseDrag(Event e, int x, int y) {
 fx = x+diffx;
 if (fx <= 0) { fx = 1; };
 amp = y;

return true;
 }

 public String getAppletInfo() {
 return " Lissajous by Hugh Anderson/Larry Gladney ";
 }

 public String[][] getParameterInfo() {
 String [][] info = {
 {" delay "," int ", " delay, default=50"}
 };
 return info;
 }

}

CODE LISTING Lissajous2.java

CS3283 - Hugh Anderson’s notes. Page number: 328

Java

This code may be found at

http://olddept.physics.upenn.edu/courses/gladney/minicourse/lectures/lecture2.html

or locally at

http://www.comp.nus.edu.sg/~hugh/Lissajous/Lissajous.html

CS3283 - Hugh Anderson’s notes. Page number: 329

Java

CS3283 - Hugh Anderson’s notes. Page number: 330

Summary of topics

In this module, we introduced the following topics:

� Web-based application architectures
� CGI, PHP and Java

CS3283 - Hugh Anderson’s notes. Page number: 331

