
COMPUTER VISION SIGNAL PROCESSING ON GRAPHICS PROCESSING UNITS

James Fung and Steve Mann

ECE Department
University of Toronto

10 King’s College Road
{fungja,mann}@eecg.toronto.edu

ABSTRACT

In some sense, computer graphics and computer vision are in-
verses of one another. Special purpose computer vision hardware
is rarely found in typical mass-produced personal computers, but
graphics processing units (GPUs) found on most personal comput-
ers, often exceed (in number of transistors as well as in compute
power) the capabilities of the Central Processing Unit (CPU). This
paper shows speedups attained by using computer graphics hard-
ware for implementation of computer vision algorithms by effi-
ciently mapping mathematical operations of computer vision onto
modern computer graphics architecture. As an example computer
vision algorithm, we implement a real–time projective camera mo-
tion tracking routine on modern, GeForce FX class GPUs. Algo-
rithms are implemented using OpenGL and the nVIDIA Cg frag-
ment shaders. Trade–offs between computer vision requirements
and GPU resources are discussed. Algorithm implementation is
examined closely, and hardware bottlenecks are addressed to ex-
amine the performance of GPU architecture for computer vision.
It is shown that significant speedups can be achieved, while leav-
ing the CPU free for other signal processing tasks. Applications of
our work include wearable, computer mediated reality systems that
use both computer vision and computer graphics, and require re-
altime processing with low–latency and high throughput provided
by modern GPUs.

1. INTRODUCTION

Computer vision algorithms can often be computationally inten-
sive, and many applications require them to be run in real–time,
at video framerates. This requirement can easily tax a computer’s
Central Processing Unit (CPU).

Modern graphics cards now incorporate a processor chip, com-
monly referred to as the Graphics Processing Unit, or GPU [1].
Typically, the GPU is a Single Instruction, Multiple Data (SIMD)
processor which is now capable of performing arbitrary, programmable
operations on data sent to it. This paper investigates how to effi-
ciently map computer vision algorithms onto graphics cards so that
they can run completely upon the GPU, leaving the CPU free for
other tasks.

Under consideration is the NVIDIA NV35 chip which is the
GPU found on the GeForce FX 5900 Ultra boards which we used
in testing. Present day GPUs often have more transistors than any

Thanks to NSERC, SSHRC, Canada Council for the Arts, On-
tario Arts Council, Toronto Arts Council, and Ontario Graduate Scholar-
ships/Lewfam Foundation Scholarships in Science and Technology agency
for support. Thanks to nVIDIA, ATI, and Viewcast for equipment dona-
tions.

Fig. 1. A computer vision machine constructed in July 2002 with 6
capture cards designed for a simultaneous 6 channel capture application,
which required fast processing to display projected versions of the images,
using computer graphics hardware, prompting the investigation of applying
computer graphics hardware to computer vision.

other part of a computer system, and are thus rapidly becoming
the best place in a computer to implement high speed computa-
tion. The NV35 GPU, for example, has a transistor count of about
135 million, compared to the Xeon CPU that has only 108 mil-
lion transistors, of which about two thirds of the CPU’s transistors
implement cache memory and not arithmetic. GPUs, such as the
GeForce FX 5900, on the other hand, are primarily made up of a
number of pixel pipelines implementing floating point arithmetic.
Modern GPUs now provide standard IEEE Floating Point preci-
sion. This capability can thus be exploited by computer vision
algorithms as well as for use in computer graphics.

2. RELATIONSHIP BETWEEN GRAPHICS AND VISION

It has often been said that computer vision and computer graphics
are closely related, being inverses of the same problem. Com-
puter graphics can be considered image synthesis in that it takes
a mathematical description of a scene and produces a 2D array of
numbers, which is an image. Computer vision can be considered
a form of image analysis, taking a 2D image and converting it into
a mathmatical description. The mapping of the image processing
and computer vision algorithms into computer graphics hardware
explicitly and practically exposes the relationship between these
operations. For instance, it has been shown that the process of im-
age registration using a algebraic projective geometry is isomor-
phic to the process of projecting a texture mapped polygon under

V - 930-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



perspective projection in computer graphics [2].
In the same fashion, modern graphics requires a number of

operations to be performed on an incoming fragment generated
from a mathematical representation of a desired scene. These are
operations such as geometric transformations, lighting, reflection,
texture mapping and so on which are done in order to generate a
final output pixel value. Similarly, for computer vision, a low–
level algorithm will perform a number of operations on an input
pixel value. After the processing is done, a final output is produced
which characterizes the input image as a mathematical construct of
some significance. Despite the inverse nature, these processes are
both characterized by a high degree of local processing which must
occur per pixel (or in a small region, achieved perhaps by filtering).

3. BACKGROUND
Some approaches to fast hardware solutions for computer vision
have included focal plane processors [3], dedicated architectures [4],
and FPGA solutions [5]. Computer graphics architectures have
also been applied towards general purpose computing and matrix
operations[6, 7] and image processing [8], as well as simulation.
[6, 7] present frameworks for implementing matrix operations on
graphics hardware, however, they did not have available at the time
modern graphics architectures, and could only achieve limited ac-
curacy. Computer graphics hardware has also been used to acceler-
ate the calculations of morphological filters as used for in volume
analysis for volume rendering applications [9].

However, full computer vision algorithms have not yet been
implemented - rather only particular operations have been con-
ducted on the graphics card.

4. ALGORITHM DESCRIPTION
VideoOrbits is an image registration algorithm which calculates
a coordinate transformation between pairs of images of a static
scene, taken with a camera that is free to pan, tilt, rotate about
its optical axis, and zoom. The technique solves the problem for
two cases: 1. images taken from the same location of an arbitrary
3-D scene, or 2. images taken from arbitrary locations of a flat
scene [10].

This algorithm has proved useful in creating wearable, tether-
less, computer mediated reality [11]. In a mediated reality, a user
sees their environment through some kind of video eye–glasses
like device which shows to the user a computer altered version of
what they would otherwise see. By registering successive images
seen by the user, computer generated information can be added
into the environment and appear affixed to the environment, or
computer information can be removed, or blocked from the user’s
view (e.g. removal of unwanted advertising). Thus the tracking
must run in real–time, and at video framerates. A low latency, and
high throughput solution is required.

VideoOrbits solves for a projection of an image to register it
with another image as:

[
x′

y′

]
=

[
a11 a12

a21 a22

] [
x

y

]
+

[
b1

b2

]

[
c1 c2

] [
x

y

]
+ 1

(1)

The algorithm is a repetitive, multiscale algorithm. The major-
ity of the computational intensity is found in the calculation of an
8x8 square matrix and an 8 entry column matrix, whose entries are
the sums of products of image derivatives and coordinates over the
entire image. This 8x8 matrix is upper diagonal, which means that

there are only 36 unique values. Thus, 44 unique sums of products
must be calculated.

The operations of downsampling, low pass filtering, and form-
ing a least-squares like approximation to determine a solution are
also common operations found in a variety of computer vision al-
gorithms. Thus, the techniques and analysis here can be applied to
different problems.

5. TECHNIQUES FOR APPLYING GRAPHICS
PROCESSING UNITS FOR IMAGE ANALYSIS

Modern graphics processors now support fragment shader pro-
grams. After the geometry of computer graphics primitives (trian-
gles, and texture coordinates etc.) is calculated, and their position
determined after transformation by the camera viewing matrix, the
result is a fragment which is to be rendered onto the screen. Each
fragment now has a known position on the screen (i.e. it has been
rasterized). These fragments are then each processed by a frag-
ment processor. The fragment processor is now implemented as a
general purpose processor with an instruction set capable of car-
rying out typical mathematical functions. The fragment processor
thus runs a fragment program on the incoming fragment. In graph-
ics, this is the evolution of procedural shading [12, 13]. The same
fragment program is run for each fragment to be displayed.

Fragment programs are a natural place to carry out image pro-
cessing and computer vision algorithms because they operate di-
rectly on each pixel. The GeForce FX class of GPU provides frag-
ment shaders which are capable of 32 bit (per each of R,G,B, and
A components, for a total of 128 bit width) floating point calcula-
tions. They are also capable of doing texture lookups at arbitrary
coordinates. The per–pixel functionality provided by the fragment
shaders makes them a natural for image processing and computer
vision.

5.1. Blurring and downsampling, and derivatives
The following Cg [14] code (unrolled by the Cg compiler) can be
used to create a simple low–pass filtered image:

float4 diff = {0.0,0.0,0.0,0.0};
for( i=-1 ; i<=1; i++ ) {
for( j=-1 ; j<= 1; j++ ) {
diff+= texRECT(texture,Coord+float2(i,j));

} }
diff = diff/9.0;

In the case that the downsampled image is desired, the image
can be texture mapped onto a quadrilateral which fills a window
which is one quarter the size of the original image. In this way, the
fragments displayed will be every other image coordinate, and the
fragment program will only be run at the desired pixels.

Derivatives can be easily calculated in the fragment program
as well. To do this, we use the multitexturing capabilities found
on graphics cards. This allows more than one texture to contribute
to the final value of a texture. Results are stored as 32-bit floating
point numbers.

We require image derivatives Dx, Dy , and Dt (derivatives
with respect to each axis and a temporal derivative between suc-
cessive frames). By placing two successive frames in two different
texturing units, we can access each. A simple image derivative is
formed by the following:

float4 Dx =
texRECT(tex1, Coord1 + float2(0.0,-1.0)) -
texRECT(tex1, Coord1 + float2(0.0, 1.0));

float4 Dt =
texRECT(tex1,Coord1)-texRECT(tex2,Coord2);

V - 94

➡ ➡



Again, these run on each fragment sent to the frame buffer,
thus calculating derivatives for the whole image. Though graphics
cards have register combiners which can perform color blending
operations, these are not accessible for the full floating point pre-
cision, thus the temporal derivative must be explicitly calculated.

5.2. Projective Texture Lookups, and Lightspace conversion
Fragment shaders can perform arbitrary lookups. Thus, on a sub-
sequent repetition of the algorithm, two images are compared, with
one projected by the 8 parameters of equation 1 estimated in the
previous repetition. The image value at the projected coordinate
must be looked up.

This can be achieved in several ways: 1. By setting the ap-
propriate OpenGL project matrix, 2. By performing a projective
texture lookup, or 3. By explicitly calculating and looking up the
desired texture. We implemented the latter option because it was
the most direct way to ensure the GPU estimation and CPU es-
timation were as closely matched as possible. A 4x4 projection
matrix can be sent to the fragment shader, and texture coordinates
explicitly calculated according to equation 1

Lookup tables can be easily placed in a 1D texture, and used
for easy imagespace to lightspace [15] conversion, and vice versa.
Furthermore, arbitrary equations can be placed in the fragment
shading program for more complex transformations on the do-
main.

5.3. Render to Texture
When calculated values are to be repeatedly used it is beneficial
to store them in texture memory on the card. The image deriva-
tives are re–used frequently in the algorithm and generating them
involves a number of texture lookups, which requires fetching tex-
ture values the texture memory, taxing the texture bandwidth of
the graphics card.

Instead, the processed image is rendered into the graphics card
texture memory, avoiding making an AGP bus transfer. This tex-
ture is then rendered in subsequent passes.

5.4. Summations
Consider the summation:

x=X∑
x=0

y=Y∑
y=0

(x2
Dx + xyDy)(xyDx + y

2
Dy) (2)

which is a summation found in the linear least squares step of
VideoOrbits. x and y are image coordinates, and Dx, Dy , Dt are
the image derivatives with respect to x y and time t.

Evaluation of the equation within in sums is straightforward
in a fragment shader, since the texture coordinates are known, and
the derivatives can be calculated as above. However, the above
must be summed across the entire image. One solution would be
to readback the entire framebuffer, and perform an addition. While
this reduces the computation load on the CPU (since it only needs
to sum the output of the fragment shader across the image), read-
back takes a considerable amount of time.

Because readback can be the slowest part of the computation,
it is desirable whenever possible to reduce the amount of informa-
tion which needs to be read back from the graphics card. When
only a summation of the image is required, fragment shader pro-
grams can be used to conduct a partial summation. What can be
done, is that only a fraction of the entire texture map need be dis-
played. At each texture coordinate, the suA of that coordinate,
and a regular pattern of scanlines below (or nearby values) is cal-
culated. Displaying only a portion of the texture map prevents

unnecessary calculations by the fragment shader. After this frac-
tional part of the texture has been rendered, it can then be read back
into the CPU. Four unique summations can be readback each pass,
placing them in each of the four framebuffer colour channels (red,
green, blue, and alpha). Thus, the readback is much faster because
less memory from the framebuffer is read. In cases where the com-
plete summation cannot be carried out by the fragment shader (for
instance, because of the limitation of the number of instructions
which can be placed into a pixel shader program), the final sum-
mation can be carried out on the CPU, but on the already partially
summed, smaller, buffer. This reduces the processing load for the
CPU. This technique is similar to that found in [6], and used in
parallel processing to maintain a low memory footprint. Such bal-
ancing of resources in multipass algorithms on GPU computation
is also discussed in [16].

6. ARCHITECTURAL PERFORMANCE
The GeForce FX 5900 completes 145 estimations each second,
where as the same process, running on the CPU (an AMD Athlon
running at 2.0 GHz), takes 3.5 seconds to complete the same num-
ber of estimations. Thus, the speed up provided by the GPU is
3.5x. A GeForce FX 5200 card runs 41 estimations per second,
which makes it equivalent to the processing power of an AMD
Athlon 2.0 GHz.

Operation FX5200 FX5900

Derivative Render 5.7 msecs 0.88 msecs
Render to Texture Memory 0.7 msecs 0.23 msecs
Fragment shaders (10 passes) 15.34 msecs 4.38 msecs
Readback (10 passes) 3.9 msecs 1.26 msecs

6.1. AGP and CPU Effects
The AGP bus is used when an image from the camera is sent to
the GPU for processing, and then again when the results are read
back from the graphics card. The AGP bus proved to not be a bot-
tleneck for 20 frame per second 320x240 images. This was tested
by running the program at the 4x and 8x AGP speed supported by
the motherboard and video card. The performance was identical
for both AGP speeds.

At 1x downsampling, an estimation rate of 135 repetitions per
second was observed at 800 MHz, 145 at 1.4 GHz, and 148 at 2.0
GHz. It was concluded that the CPU speed made little difference
on the algorithm performance. Thus, this shows that our imple-
mentation leaves the CPU free to run other tasks.

6.2. Fragment Program Length
From figure 2, a linear least squares approximation to the trend line
gives a 2.7 millisecond overhead, with the time required to run in-
creasing roughly linearly with more instructions. The overhead
is considered due to the downsampling, and rendering to texture
memory required between each pass of the algorithm. The addi-
tional instructions represent additional iterations of identical loops
(thus there are the same number of multiplies and texture lookups
added as more instructions are added).

The effect of the readback calls was also examined by remov-
ing the readback between passes. From the graph, it is seen that
this resulted in the reduction of the estimation time by about 1.3
milliseconds, consistent regardless of the number of fragment pro-
gram instructions. The implementation shows that 80 percent of
the time is spent in the fragment shading process. Thus, the imple-
mentation is fragment limited, but that is not the only bottleneck.

V - 95

➡ ➡



Fig. 2. Time per estimation vs. Fragment Program Length.

Because of the overhead, it is also likely that the fragment shaders
are not being utilized all of the time, but lie idle during some parts
of the rendering (during readback for instance).

7. PARALLEL COMPUTATION ON MULTIPLE GPUS

We have also designed and built various kinds of architectures that
use multiple graphics cards in a single system. For example, we
put together a system with six ATI video capture/display graphics
cards, a system with seven nVIDIA cards (one AGP plus six PCI),
and a system with six video capture (Viewcast) cards for doing
computer vision 1. In some of these systems we also implemented
a “fuzzy bus” by using the I/O of the TV tuners on graphics cards
to frequency-division-multiplex approximate array values onto a
bus formed by connecting some or all of the TV tuners together,
with each card assigned a different TV channel (e.g. TV channels
2 through 7).

The use of multiple (6) GPUs has advantages for parallel com-
putation. Firstly, each card has its own RAM. Thus, they can ac-
cess their memories in parallel which increases the overall mem-
ory bandwidth of the system. The GPUs do not contend with
each other for access to a shared memory area. The fragment pro-
grams are also stored locally on each graphics card, and thus they
can run relatively independently, requiring little supervision from
the CPU. Additionally, OpenGL’s display list functionality stores
OpenGL calls on the graphics card, further reducing CPU over-
head.

We have implemented an eigenspace image recognition sys-
tem, and preliminary results have provided a 4.5x speedup when 5
PCI cards are used, over the single PCI case. Each PCI card runs
at about 0.96x the speed of an AMD 2800+ CPU, and it was noted
the primary bottleneck in the CPU case was the RAM (333 MHz
DDR). Thus, much of the speedup likely results from the parallel
RAM access provided by the multiple graphics cards.

8. CONCLUSION

Although other special purpose hardware systems could be used to
provide hardware acceleration of computer vision algorithms, the

1for the automation of a six-person column shower in a mass casualty
decontamination facility (six cameras embedded in the shower column for
user-tracking), August 29th, 2002 (http://deconference.com)

low cost and widespread availability of computer graphics hard-
ware will make hardware accelerated computer vision algorithms
more accessible. Given the success of our computer mediated re-
ality algorithms running in graphics hardware, we have shown that
graphics processors provide new and useful ways of doing com-
puter vision calculations.

9. REFERENCES

[1] Erik Lindholm, Mark J. Kilgard, and Henry Moreton, “A user–
programmable vertex engine,” in Computer Graphics, Proc. of SIG-
GRAPH 2001, 2001, pp. 149–158.

[2] James Fung, Felix Tang, and Steve Mann, “Mediated reality us-
ing computer graphics hardware for computer vision,” in Proceed-
ings of the International Symposium on Wearable Computing 2002
(ISWC2002), Seattle, Washington, USA, Oct. 7 – 10 2002, pp. 83–
89.

[3] Shingo Kagami, Takashi Komuro, Idaku Ishii, and Masatoshi
Ishikawa, “A real–time visual processing system using a general pur-
pose vision chip,” in Proceedings of the 2002 IEEE International
Conference on Robotics and Automation, Washington, DC, USA,
May 2002, pp. 1229–1234.

[4] Peter J. Burt, “A pyramid-based front-end processor for dynamic
vision applications,” Proceedings of the IEEE, vol. 90, no. 7, pp.
1188–1200, July 2002.

[5] A. Darabiha, J.R. Rose, and W.J. MacLean, “Video rate stereo depth
measurement on programmable hardware,” in IEEE Conference on
Computer Vision & Pattern Recognition, June 2003, pp. 203–210.

[6] Jens Krueger and Ruediger Westermann, “Linear algebra operators
for gpu implementation of numerical algorithms,” ACM Transactions
on Graphics (TOG), vol. 22, no. 3, pp. 908–916, 2003.

[7] C. Thompson, S. Hahn, and M. Oskin, “Using modern graphics ar-
chitecture for general-purpose computing: A framework and anal-
ysis,” in SIGGRAPH/Internation Symposium on Microarchitecture,
Turkey, Nov. 2002.

[8] Anthony Sherbondy, Mike Houston, and Sandy Napel, “Fast volume
segmentation with simultaneous visualization using programmable
graphics hardware,” in To appear in IEEE Visualization 2003.

[9] M. Hopf and T. Ertl, “Accelerating Morphological Analysis with
Graphics Hardware,” in Workshop on Vision, Modelling, and Visual-
ization VMV ’00. 2000, pp. 337–345, infi x.

[10] Steve Mann, “Wearable computing: Toward humanistic intelli-
gence,” IEEE Intelligent Systems, vol. 16, no. 3, May/June 2001.

[11] Steve Mann and James Fung, “Eye tap devices for augmented, de-
liberately diminished or otherwise altered visual perception of rigid
planar patches of real world scenes,” Presence, vol. 11, no. 2, pp.
158–175, 2002.

[12] K. Proudfoot, W. R. Mark, S. Txvetkov, and Hanrahan P., “A real-
time procedural shading system for programmable graphics hard-
ware,” in Proceedings of ACM SIGGRAPH (2001). The Eurographics
Association 2002, 2001, pp. 159–170.

[13] Tiberiu S. Popa Michael D. McCool, Zheng Qin, “Shader metapro-
gramming,” in Proceedings of the conference on Graphics hardware
2002. Eurographics Association, 2002, pp. 57 – 68.

[14] W. Mark, R. Glanville, K. Akeley, and M. Kilgard, “Cg: A system
for programming graphics hardware in a c–like language,” in Pro-
ceedings of ACM SIGGRAPH. ACM Press, 2003, July 2003, vol. 22.

[15] S. Mann, C. Manders, and J. Fung, “Painting with looks: Photo-
graphic images from video using quantimetric processing,” in ACM
Multimedia 2002 (to appear in), Juan Les Pins, France, December
1-6, 2002.

[16] E. Chan, R. Ng, Pradeep Sen, K. Proudfoot, and P. Hanrahan, “Effi -
cient partitioning of fragment shaders for multipass rendering on pro-
grammable graphics hardware,” in SIGGRAPH/Eurographics work-
shop on graphics hardware, 2002, pp. 1–11.

V - 96

➡ ➠


