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1. Introduction

1.1 Motivation

Realization of the complete genome sequence is the first important step in analyzing a 

particular  organism.  Once the nucleotide sequence is  known, various analyses  can be 

performed to gain insight on the function of the organism. Specialized software can be 

used to predict  genes of the organism. Combined with techniques such as SAGE and 

GIS-PET, we can uncover new transcripts  or genes. Technologies such as ChIP-chip, 

ChIP-seq,  or  ChIP-PET  can  aid  us  discover  new  transcription  factor  binding  sites 

(TFBS). Hence, knowing the complete genome sequence of an organism facilitates the 

understanding of the organism in multiple ways.

Despite  this  fact,  de  novo assembly  of  a  complete  genome  is  still  far  from straight 

forward.  Initial  bottlenecks  were  largely  wet-lab  bound.  However,  lately  sequencing 

technology has made progress by leaps and bounds. The main challenge presently lies in 

computational processing of wet-lab data. Our objective is to present a set of innovative 

algorithms which can manipulate next generation wet lab sequencing data to assemble 

underlying genome sequence as complete as theoretically possible. 

1.2 Sequencing background

A genome consists of one or many chromosomes. Each chromosome consists of two long 

complementary  strings  of  DNA  (DeoxyriboNucleic  Acid)  winded  in  a  double  helix 

structure (see Figure 1). The objective of genome sequencing is to determine the exact 

order in which DNA occurs in each chromosome. While this may sound straight forward 

in theory, the actual procedure is infinitely more complicated due to the fact that current 

technology limits the maximum ‘sequencable’ fragment length to ~1000 base pairs (bp) , 

where as a chromosome can span hundreds of millions of bp. Therefore the sequencing 

community has adapted ‘whole genome shotgun sequencing’ approach to decode large 

genomes.
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Figure 1: Chromosome structure [1]

The whole genome shotgun sequencing approach is as follows. Initially multiple copies 

of  the  target  DNA  sequence  are  sheared  into  small  fragments.  The  length  of  the 

fragments  is  generally  fixed  to  a  particular  desired  size.  Each  fragment  is  then 

individually sequenced to obtain their DNA sequence in the form of A, C, G, T or N, 

referring to four DeoxyriboNucleic Acids and N for ambiguous basecalls. In some cases 

the fragment is sequenced from both ends to obtain both forward and reverse reads. The 

most  challenging  part  of  shotgun  sequencing  is  ‘arranging’  these  short  fragments  to 

obtain the original genome and our focus is concentrated on this aspect of the pipeline.

Figure 2: Whole genome shotgun sequencing overview [2]

The process of assembling genome sequences depends on the sequencing platforms and 

strategies.  Until  mid  2000  the  only  sequencing  platform  available  was  ABI 

Sanger/Capillary sequencing. It is capable of reading up to 600bp from each end of a 

DNA fragment. However actual number of fragments it can read within a specified time 

was  low,  leading  to  very  low throughput.  As this  was  the  only sequencing  platform 
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available for nearly a decade, most previous genome assembly software was optimized to 

use fragments of this size.

454 Life Sciences released GS20 sequencing platform which was capable of sequencing 

up  to  400bp  at  much  higher  throughput.  Assembling  sequences  generated  by  this 

platform was not much different from assembling capillary sequences. Therefore existing 

algorithms were adapted with slight modifications.

In 2006 Illumina Solexa 1G sequencing platform was introduced to the market. Initially, 

it was capable of sequencing 25bp tags at a throughput far exceeding both capillary and 

454 sequencing at a much lower cost. The short fragment length impeded the de novo 

assembly of large mammalian genomes. However with its inherent capability to produce 

paired reads (figure 3),  sequencing bacterial  genomes was still  a possibility.  Previous 

generation of genome assembling software was not particularly geared for assembling 

such short reads and they were not explicitly designed to take advantage of paired reads. 

Therefore new approaches were needed to de novo assemble Solexa data. Several such 

algorithms have proposed and we will  be looking into some of the widely used ones 

further on.

Figure 3: Paired sequencing. First and last sequence tags of a fragment are sequenced and stored together.
   

In 2007 ABI launched a competing  sequencing  technology ‘ABI SOLiD’ sequencing 

platform, which too is capable of producing a massive number of short paired reads. A 

comparison between these next generation sequencing technologies is given in figure 4.
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Figure 4: Comparison of next generation sequencing platforms. Data obtained from [8]

1.3 Problem description & challenges

Before further analyzing the problem, we need to define the following. 

Read length
- Length  of  each  forward/reverse  read  generated  by  sequencing  machine. 

Depending on the sequencing technology used,  this  may not be a constant 
value for a given library. But we will assume so for our purpose.

Insert size (fragment length)
- Distance between forward – reverse read in the genome 

Coverage
- Approximate number of copies of original genome being sequenced. This is 

equal  to  read  length  x  2  x  no_of_reads  /  genome_length  for  paired  read 
libraries.

Contig
- An assembled sequence which we assume forms a contiguous region of the 

target genome.

Scaffold (Super contig)
- Series of contigs assumed to be in the same order as they are in target genome, 

possibly separated by a string of ‘NNN’.

N50 contig size
- The size of the contig such that 50% of the total assembled length is contained 

in contigs of size longer than or equal to that size.
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The  ‘De  novo  sequence  assembly  using  paired-end  short  reads’  problem  can  be 

succinctly stated as follows:

Given a set (sets) of paired reads where each forward and reverse read is separated by a  
known distance in the source genome, reconstruct the complete source genome.

However the actual assembly is complicated by the presence of errors and repeats. Errors 

in paired-end short reads are of mainly two forms.

Sequencing errors
- This may happen during sequencing phase when a particular base is misread as 

a  different  base.  In  some sequencing  platforms,  it  is  also  possible  to  have 
additional or missing base pairs. But this scenario is rare in platforms such as 
Illumina Solexa 1G and ABI SOLiD, so we omit insertions / deletions of base 
pairs from our error analysis.

Ligation errors (chimera)
-  Ligation errors occur during library preparation when ends of two different fragments 

are ligated and assumed to have originated from the same fragment.

Sequencing errors can be detected / corrected by having more than one read covering the 

same position.  Most sequencing errors can be modeled as purely random. If we have 

sequenced to a depth of 5x, should one read at a particular position exhibit a sequencing 

error, we can still expect other 4 reads covering that position not to contain any errors and 

therefore correct the erroneous read (figure 5). However there are many regions in the 

genome which are nearly identical except for a difference in a single base pair. In such 

cases  the assembler  should be prudent  enough to  resolve the  two regions  separately, 

rather than collapse it into a single contig. (figure 6)

Figure 5: Correcting sequencing errors using excess coverage
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Figure 6: Not a sequencing error. Should not be ‘corrected’

Assembling repeat regions of a genome is one of the most complicated aspects of de 

novo genome assembly. Repeats can be largely categorized into the following types.

Tandem repeats
- When a small block of sequences, usually a few bases to a few tens of bases, 

immediately repeat many times,  it  is called a tandem repeat (figure 7). The 
repeat segment maybe a few hundred base pairs long. In some cases there can 
be  slight  variations  in  between different  blocks.  Correctly  assembling  such 
regions using short reads can be extreme challenging, if not impossible.

Figure 7: Three different tandem repeat sequences

Large repeat regions
- Some sequences, possibly spanning more than a few thousand base pairs, tend 

to occur multiple times in different regions of the genome. However, there can 
be  slight  variations  between  each  occurrence.  (figure  6)  In  such  cases 
assembler should be able to identify such regions and resolve the differences 
whenever possible. Note that in some cases it maybe theoretically impossible 
to  resolve  such  differences  and  assembler  should  flag  such  base  pairs  as 
ambiguous.

In the next section we take an in-depth look at a few different de novo genome assembly 

approaches which are currently available.
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2. Current approaches

2.1 Traditional approach

Before  the  arrival  of  high  throughput  short  fragment  sequencing,  de  novo  genome 

assembly was a somewhat straight-forward problem. Sanger capillary sequences allowed 

reads lengths up to 600bp which resulted in a significant overlap between adjacent reads. 

Most  assemblers  of  that  era,  such  as  ARACHNE [6],  followed  the  Overlap-Layout-

Consensus approach. 

Each read was aligned against all other reads. The result is represented as an  Overlap 

Graph where each read is a node and a directed edge exists between nodes A to B if and 

only if 3’ of read A overlaps significantly with 5’ of read B. A unique traversal between 

any two nodes in this graph will give rise to a potential contig. Therefore the problem 

was reduced to finding the set on most consistent traversals in the overlap graph.

Similar to next generation sequencing platforms, Sanger capillary sequencing too was 

subjected to various errors. Single base pair misreads could be easily corrected by taking 

consensus  sequence  across  all  other  reads  which  have  significant  overlap  with 

problematic basecall. Another source of errors in Sanger sequencing is  chimeric reads, 

where  due  to  the  cloning  procedure  prior  to  sequencing  two different  regions  of  the 

genome can form a contiguous sequence. Similar errors are less likely in next generation 

sequencing due to shortness of reads and wet lab preparation procedures. 

However the challenges faced in de novo assembly of next generation sequencing data 

vastly  differ  from the above,  therefore a  fundamentally  different  approach is  needed. 

Compared  to  600bp  read  length  of  Sanger  sequencing,  next  generation  sequencing 

machines  are  limited  to  25-50bp  length  reads.  This  short  coming  can  be  somewhat 

overcome by relying on higher sequencing depth. Read coverage of 10x is sufficient for 

bacterial genome assembly with traditional Sanger reads, where as coverage up to 100x is 

not uncommon with next generation data. However expected overlap between two reads 

is still limited by read length, and in many cases overlap length is limited to around 20bp. 

Massive  number  of  reads,  coupled  with  such  short  overlap  would  result  in  a  highly 
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convoluted overlap graph with millions of nodes and many non-specific edges in between 

them. In addition, many noise reduction steps in traditional approaches take advantage of 

very specific long overlaps between Sanger reads. In absence of such, new methods for 

noise reduction had to be developed. 

There  are  a  few  approaches  developed  specifically  to  overcome  these  challenges 

presented by next generation sequencing data. Most of these algorithms are based on De 

Bruijn  graph approach popularized by Pavel Pevzer et  al  [7] in 2001. Therefore our 

analysis  of  present  approaches  will  be  preceded  by an  overview of  De Bruijn  graph 

method.

2.2 De Bruijn graph overview

De Bruijn graph approach to de novo sequence assembly was presented as an alternative 

to traditional Overlap-Layout-Consensus approach. Although it was initially designed to 

be used with long Sanger reads, some of its properties are more suited for short read 

sequences. Therefore we have seen newer approaches designed to deal with short reads 

have increasingly adapted De Bruijn graph method. Therefore before analyzing specific 

algorithms, it is necessary to have a sound understanding on De Bruijn graph itself.

De Bruijn graph is a set of nodes and edges where each node represents a sequence of 

length  k. A directed edge between two nodes  A  and  B exists if and only if k-1 length 

suffix of A is equal to k-1 length prefix of B.

Figure 8: A simple de Bruijn  graph [4]

Nodes comprise of length  k subsequences of all input reads. The length  k is a critical 

parameter of the assembly.  A large  k will result is a less convoluted and more linear 
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graph which would be straight forward to traverse, but may miss some overlaps. The 

smaller k will result in a highly connected graph, but will require some post processing to 

isolate the correct path.

The graph is further simplified by merging any two nodes with single outgoing/incoming 

edge; the sequence resulting from the traversing the merged path is represented in the 

resulting node. This process is illustrated in figure 9.

Figure 9: Simplifying the de Bruijn  graph [5]

Any error  that  was  present  in  paired  reads  is  propagated  to  the  de  Bruijn  graph.  A 

sequencing error towards the end of a read will take form of a ‘tip’ in the de Bruijn graph. 

‘Tip’ is a node which does not have any outgoing edges, as the erroneous base would 

likely to cause that none of the other reads would overlap with it. Sequencing error in 

middle of a short read will be manifested as a ‘bubble’ in the de Bruijn  graph, as there is 

likely to be two different paths from one node to the other, one resulting in the correct 

sequence and the other the erroneous sequence.

Once the De Bruijn graph is constructed, assembling the target genome can be simplified 

into  finding  an  euler  traversal  without  any  ambiguities.  However  this  case  is  rather 

idealistic as presence of various forms of noise will complicate this process. Therefore 
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most De Bruijn graph based approaches concentrates mainly on noise reduction and that 

accounts for most differences between various related approaches. 

2.3 SSAKE, VCAKE & SHARCGS

SSAKE (Short Sequence Assembly by progressive K-mer search and 3’ read Extension), 

VCAKE (Verified Consensus Assembly by K-mer Extension) and SHARCGS (SHort-

read Assembler based on Robust Contig extension for Genome Sequencing) are some of 

the  very  first  de  novo  genome  assembly  software  designed  to  work  with  short  read 

sequencing. All three algorithms are base on the same principal. The assembly starts by 

selecting an unused read as the initial contig and then searching for other reads which 

overlaps with the 3’ of the current contig. If an unambiguous consensus can be found the 

contig is extended and the process is repeated.  Three different methods differ  in way 

which the handle errors. However none of the above methods makes use of paired reads 

and therefore we focus our attention elsewhere.

2.4 VELVET

Velvet  [3]  is  perhaps  the  most  widely  used  short  read  genome  assembler  currently 

available.  It is popular due to its simplistic approach, speedy execution and relatively 

accurate results.

Velvet is based on the de Bruijn graph approach and employs a few novel methods to 

deal with noise inherent with short read data. As mentioned above, sequencing errors can 

manifest  in De Bruijn graph as either  ‘tips’  or ‘bubbles’.  Velvet  deals  with ‘tips’  by 

truncating it if the following conditions are met. The length of the ‘tip’ sequence should 

be less than twice the length of the k-mer and the node at which the ‘tip’ connects to the 

rest of the graph should have at least one outgoing edge with larger count than the edge 

connecting the tip. Otherwise the ‘tip’ is assumed genuine and will result in a separate 

contig. 

‘Bubbles’ occur in De Bruijn graph as a result of sequencing errors (in the middle of 

read) or SNPs. In case of a ‘bubble’ there would be two different paths between two 

nodes. One of the paths could be due to the erroneous read(s) and in such a case that path 
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should be merged with the one resulting in the correct  sequence. Velvet introduced a 

novel method named ‘Tour bus algorithm’ which carries out detection and correction of 

such errors.

‘Tour bus’ algorithm selects an arbitrary node as the starting position and traverses the 

entire  De  Bruijn  graph  in  breath-first  fashion.  However,  in  this  case  the  ‘distance’ 

between two consecutive nodes is defined as length of sequence denoted by destination 

node  divided  by  number  of  reads  connecting  the  two  nodes.  Therefore  the  distance 

between two nodes which are connected by more reads is less and such node is traversed 

prior to traversing nodes connected by lesser number of reads. If ‘Tour bus’ algorithm 

reaches a node that have been traversed before via a different path, it will backtrack both 

paths until a common ancestor is found while extracting the underlying sequence of each 

path.  The  two  sequences  are  aligned,  and  in  case  there  is  no  significant  difference 

between them, the two paths are merged while preserving the sequence of the path with 

lower distance (higher coverage).

Velvet uses an algorithm named ‘Breadcrumbs’ to make use of paired reads to span over 

repeat regions. Initially Velvet identifies all nodes which are longer than the maximum 

insert size of the paired reads. These are referred to as ‘long nodes’. Then all paired reads 

are mapped to the graph and any non-unique mappings or mappings that spans larger than 

the insert size are ignored. Nodes which are connected to a ‘long nodes’ via at least 5 

read paired are marked. Now there is a better chance of finding a unique path between 

two ‘long nodes’ by traversing only via the marked nodes. (figure 10) The results of 

paired reads and ‘Breadcrumbs’ algorithm are illustrated in figure 12.

Figure 10: Illustration of ‘Breadcrumbs’ algorithm [3]. A unique path between ‘long nodes’ A and B can be 
found after marking nodes (blue dots) which are connected to them via paired reads.
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According to results presented in [3] Velvet performed admirably well against SSAKE 

and VCAKE. It produces far less contigs of far greater size in much less time with only a 

small  increase  in  memory usage.  The  statistics  presented  testify  that  error  correction 

algorithms employed by Velvet are highly effective and reduced the number of nodes 

(potential contigs) considerably. 

Figure 11: Comparison of Velvet against other short read assemblers on Streptococcus suis Solexa 
experimental data [3]

However we have a few gripes against Velvet. Currently k-mer size in Velvet is limited 

to 31 (on 64 bit  machines).  This is  possibly due to  bitwise operations  carried out  in 

overlap  detection.  But  as  the  read  length  on  next  generation  sequencing  machines 

continues  to  increase  (currently  ~100bp),  allowing  a  higher  k-mer  size  would 

substantially reduce the complexity of De Bruijn graph. In future Velvet may need to 

accommodate longer k-mers possibly at performance penalty. 

Figure 12: Results of ‘Breadcrumbs’ algorithm. Dotted line denotes results without ‘Breadcrumbs’/paire 
reads. Solid lines represents ‘Breadcrumbs’ results. Contig lengths in black and supercontig lengths in red.
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While ‘Tour bus’ algorithm appears to be very robust and effective it is likely to collapse 

large repeat regions with subtle differences in to a single node. We find such regions are 

common in various bacterial  genomes and there exists  small  difference between each 

region  that  may  hold  key  to  functioning  of  those  organisms.  But  with  ‘Tour  bus’ 

algorithm those repeat regions are likely to be merged in to a single consensus sequence, 

thus all such differences will be lost unless any post-processing is carried out to correct 

them. In presence of paired reads ‘Breadcrumbs’ algorithm maybe able to resolve such 

subtle differences if it is carried out before the ‘Tour bus’. But this is likely not the case 

as ‘Breadcrumbs’ algorithm appear to be more a post-processing step.

The use of paired reads itself seems an afterthought in Velvet. Rather than using paired 

information  initially  during construction  of  De Bruijn  graph the  program uses  paired 

reads  as  a  post  processing  step  towards  end of  the  execution.  This  results  in  Velvet 

having to deal with a complicated De Bruijn graph where as it could have been avoided. 

Velvet  also  fails  to  use  subtle  paired  read  information  such  as  average  span  or  the 

standard deviation of insert size to its advantage. Furthermore it does not explicitly deal 

with tandem repeats  which is  possibly the biggest  hurdle  in short  read assembly,  yet 

frequented in all bacteria and eukaryotic genomes.

2.5 EULER-USR

Similar to Velvet, EULER-USR [5] (EULER-Ultra Short Reads) is a set of tools for de 

novo genome assembly using short reads based on De Bruijn graph approach. It is able to 

incorporate paired read information to further the assembly. As the actual assembly using 

De Bruijn graph is well studied topic, the paper focus more on various error detection and 

correction methods.

Incremental improvements to Solexa platform has resulted in longer (than 35bp) reads. 

However the quality of the sequencing suffers toward the end of each read. Error rate in 

Solexa reads remains less than 2% for first 30bp but rapidly increase to around 20% at 

50th bp.  This  makes  the  latter  part  of  the  sequence  unreliable  for  de  novo assembly 
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without any form of correction. EULER-USR presents a few novel methods to correct 

these errors and make the full length of the read available for assembly.

EULER-USR makes use of the fact that prefix of each read sequence is likely to be of 

better quality that the latter part. However prefix itself is prone to errors should therefore 

be assessed and corrected. Therefore the first step in the program is to obtain a set of 

error-free read prefixes.

Given the set of reads R and threshold m, a k-mer is said to be solid is the k-mer occurs at 

least  m times  in  the  set  of  reads.  Given enough  coverage,  set  of  such  solid  k-mers 

approximate all k-mers in the original genome. A read is assumed to be error-free is all 

its k-mers are solid. In case a read contains one or more non solid k-mers the program 

allows a few base-pair mutations until all k-mers become solid and the read is error-free. 

A read that cannot be made error-free is discarded and the prefixes of the error-free reads 

are used for the next step.

In the following step EULER-USR uses prefixes of all  error-free reads to build a De 

Bruijn graph. The graph is further processed to remove ‘tips’ and ‘bubbles’ to obtain a 

‘Repeat Graph’. (figure 13).

Figure 13: De Bruijn graph and repeat graph of same genome.

In order to correct more error prone read suffixes, EULER-USR uses the repeat graph in 

a technique which it refers to as ‘read threading’. As the repeat graph is based on prefixes 

of error-free reads, prefix of any read is likely to be in the repeat graph. For each such 

read the program locates the prefix sequence in the repeat graph and then extends into the 

suffix of the read following the sub-path with minimum edit distance. If there are any 

differences  it  is  regarded  as  an  error  in  the  read  suffix  and  is  corrected.  Once  this 
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procedure is complete the repeat graph is reconstructed using full-length reads instead of 

just the prefixes.

EULER-USR makes use of paired reads in a different way than that of Velvet. EULER-

USR attempts to reconstruct the sequence in between two reads so that each paired read 

of insert size d will become a single read sequence of length d + 2 x read length. For each 

paired read it searches within repeat graph for path between two nodes where the two 

reads maps to. In case there is only a single such path with distances similar to insert size 

then that path is chosen. In case there are multiple paths it selects the path with highest 

support. Support for each path is defined as the number of paired reads where one end of 

the  read  maps  to  starting  or  ending  node  and  the  other  end  maps  to  a  node  in  the 

concerned path. This is illustrated in figure 14.

Figure 14: Definiton of support. Black lines denote paired read mappings. Read path has support of 4 and 
blue path has support of 2.

Once the  correct  path is  determined,  the  sequence  across  that  path  is  assembled  and 

assumed to be the full sequence in between the paired read. Once the full sequence for all 

paired reads are found the repeat graph is updated again using that information.  This 

would be the final repeat graph and can be traversed similar to De Bruijn graph to find 

the contigs.

For  comparison  purposes  EULER-USR and Velvet  was  run on 35bp E.  Coli  dataset 

sequenced by Solexa platform. The results are summarized in figure 15. Based on N50 

contig size EULER-USR seems to outperform Velvet both with and without paired reads. 

Results also highlight the advantage of having paired reads, as both programs will then 

result in higher N50 size with less number of contigs.
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Figure 15: Comparison of EULER-USR and Velvet. Repeat graph denotes the theoretical maximum. [5]

An obvious reason for the improvement of results over Velvet is effectiveness of error 

correction algorithms employed by EULER-USR. Performance of two error correction 

algorithms is summarized in figure 16. ‘SA corrected reads’ in this  instance refers to 

reads corrected by solid k-mer strategy. For instance in 50bp Solexa reads EULER-USR 

was able to reduce the error to a very acceptable 0.05% from an unusably high 4.36% 

without truncating the 3’ end of the reads.

Figure 16: Results of EULER-USR error correction. Error rate for Human BAC reads were estimated by 
mapping to human genome. [5]

Although  EULER-USR  seems  like  another  algorithm  based  on  De  Bruijn  graph 

approach, the novelty of the method seems to lay in the error detection and correction. 

Judging by the presented results it is very effective. In spite of this we feel that overly 

aggressive  error  correction  methods  employed  by  EULER-USR  may  work  to  its 

disadvantage. The subtle base pair differences within large repeat regions are likely to be 

lost  during this  process,  especially given that  error correction procedures  do not take 

paired read information in to account for localization.

Another complain which was also common to Velvet is the fact that use of paired reads in 

EULER-USR seems  a  post  processing  step.  Again  EULER-USR fails  to  account  for 

tandem repeats;  in  fact  the  support function  in  paired  read  ‘filling’  procedure  could 

favour paths containing tandem repeat regions as then higher number of ‘support reads’ 

will map to those paths. 
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2.6 ALLPATHS

ALLPATHS [11] is an algorithm developed by Broad Institute exclusively for de novo 

sequencing  with  paired  reads.  The  algorithm  is  somewhat  based  on  a  graph  based 

approach similar  to  Velvet  and EULER-USR but  differentiates  itself  in  some crucial 

ways.

ALLPATHS initially carries out a sequence error correction step using the same solid k-

mer method used in EULER-USR. Then the corrected  sequences are used to  build  a 

‘unipath graph’ which is in theory identical to the repeat graph structure in EULER-USR. 

Each linear segment in unipath graph is called a unipath and forms the basis for assembly 

algorithm. 

One  crucial  way  ALLPATHS  differ  from  other  methods  is  that  it  incorporates 

localization of reads with the help of paired reads. A unipath with ‘normal’ coverage (to 

exclude repeat regions) is chosen as a seed, and any other unipaths iteratively connected 

to the seed via paired reads are  defined to be in  the neighbourhood.  The size of the 

neighbourhood is typically limited to 10kb distance for each direction. Any paired reads 

where one tag maps to any of the neighbourhood unipaths are also considered to be in the 

neighbourhood.  From  here  on  the  assembly  program  works  within  this  isolated 

neigbhourhood. This break down the complexity of the problem while also makes the 

program usable on clustered computer systems, effectively speeding up the execution.

The program dwell on finding all paths (hence the title) between two tags of each paired 

read (similar to EULER-USR) but proves that this is intractable in the presence of repeat 

regions as number of possible paths between each pair could run in to thousands. To 

conquer this problem ALLPATHS presents as ingenious solution.

It extends each tag of a read pair based on overlap with other tags. Once the tags are 

sufficiently long it is able to find other extended paired reads which would overlap with 

both tags. Then the two paired reads can be combined together to obtain a longer reads 

with a reduced variance. Consider the example below.
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represents an extended paired read, where left tag is made of two segments B and C and 

right segment with four segments. The distance between the two ends is 40 +/- 5 k-mers. 

This paired read can be merged with the following,

And obtain 

Now not  only  that  read  lengths  are  longer,  the  variance  of  distance  in  between  are 

decreased. This process can be carried out iteratively until the full sequence between the 

paired read is obtained. Gaps between unipaths in each neighbourhood can be filled will 

such reads. Once neighbourhood sequence is complete they can be used to assemble the 

whole genome.

ALLPATHS was run on various sets of simulated data by the authors and the results are 

summarized below.

Figure 17: Summary of ALLPATHS results [11]

ALLPATHS results are very impressive. Not only that it is able to produce assemblies 

with  large  N50  sizes,  the  number  of  errors  is  very  few.  Our  analysis  showed  at 

ALLPATHS was even able to correctly assemble complex tandem repeat regions, which 

was thought to be beyond realm of short read sequencing. 

However there are many shortcomings in ALLPATHS approach.  One of the assumed 

data  set  for  above  simulation  is  a  set  of  short  reads  of  span  500bp  +/-  5bp  at  40x 
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coverage.  In  practice  getting  such  high  throughput  with  such  a  sharp  peak  is  rather 

unrealistic. Other disadvantage with ALLPATHS is that it performance. Some assemblies 

required up to 64GB memory in a multi-node cluster environment running for 1.5 days, 

and does not compare favourably with program such as Velvet which are extremely fast 

and efficient.

In conclusion ALLPATHS bring forward some interesting ideas to field of paired read 

assembly, but however unrealistic demands on both wet lab and computer resources has 

made this approach lacking. 
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