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Abstract

PeerCQ is a totally decentralized system that per-
forms information monitoring tasks over a network of
peers with heterogeneous capabilities. It uses Continual
Queries (CQs) as its primitives to express information-
monitoring requests. A primary objective of the PeerCQ
system is to build a decentralized Internet scale distributed
information-monitoring system, which is highly scalable,
self-configurable and supports efficient and robust way of
processing CQs. This paper describes the basic architec-
ture of the PeerCQ system and focuses on the mecha-
nisms used for service partitioning at the P2P protocol
layer. A set of initial experiments is reported, demon-
strating the sensitiveness of the PeerCQ approach to large
scale P2P information monitoring and the effectiveness of
the PeerCQ service-partitioning algorithms with respect to
load balancing and system utilization.

1 Introduction

With the emergence of successful applications like
Gnutella [3] and Napster [7], peer-to-peer technology has
received rapid and widespread deployment, and a striking
visibility over the past few years.

There are currently several P2P systems in operation,
and many more are under development. Gnutella [3],
Napster [7] and Freenet [1] has been among the most
prominent peer-to-peer file sharing systems. In these sys-
tems, files are stored at the end user machines rather than
at a central server, and as opposed to the conventional
client/server model. Files are transferred directly between
peers. However, they differ from one another in terms of
their lookup services, and the current P2P protocols in
these systems are not scalable.

Chord [13], Pastry [10], Tapestry [14], CAN [9] are ex-
amples of a second generation of peer-to-peer systems.
Their routing and location schemes are based on dis-
tributed hash tables. In contrast to the first generation
P2P systems such as Gnutella and Freenet, these systems
provide reliable content location (persistence and avail-
ability) through a tighter control of the data placement
and topology within a P2P network. A query is guar-

anteed a definite answer in a bounded number of net-
work hops. The second generation of routing and location
schemes is also considered more scalable.

Surprisingly, most of the P2P protocols [1, 13, 9, 10, 3]
to date make the assumption that all nodes tend to par-
ticipate and contribute equally to the system. Thus, these
protocols distribute tasks and place data to peers based
on this assumption. However P2P applications should re-
spect the peer heterogeneity and user characteristics in
order to be more robust [12]. Another common weak-
ness of the second generation P2P protocols is the lack
of flexibility in optimizing the key to peer matching al-
gorithms to incorporate important performance metrics
such as load balance, system utilization, reliability, and
trust.

In this paper we describe PeerCQ, a peer-to-peer in-
formation monitoring system, which utilizes a large set of
heterogeneous peers to form a peer-to-peer information
monitoring network. Many application systems today
have the need for tracking changes in multiple information
sources on the web and notifying users of changes if some
condition over the information sources is met. A typical
example in business world is to monitor availability and
price information of specific products, such as “monitor
the price of 2 MP digital cameras in next two months and
notify me when one with price less than 100$ becomes
available”, “monitor IBM stock price and notify me when
it increases by 10%”.

PeerCQ uses continual queries (CQs) as its primi-
tives to express information monitoring requests (sub-
scriptions). Continual Queries [5] are standing (long run-
ning) queries that monitor information updates and re-
turn results whenever the updates reach certain specified
thresholds. There are three main components of a CQ:
query, trigger, and stop condition. Whenever the trig-
ger condition becomes true, the query part is executed
and the part of the query result that is different from the
result of the previous execution is returned. The stop
condition specifies the termination of a CQ.

In this paper, we focus on how PeerCQ addresses the
problems related to service partitioning, and describe our
proposed technical solutions. The paper has two main



contributions. First, we introduce a distinct approach to
CQ systems, which enables processing of large number of
CQs by harnessing the power at the edge of the Internet,
without a need for centralized servers. Second, we intro-
duce an effective service-partitioning scheme. A unique
feature of the PeerCQ service-partitioning mechanism is
its ability to integrate both the peer heterogeneity and the
information monitoring characteristics of the users into
the load balancing scheme, a challenge in large-scale, het-
erogeneous, and totally decentralized systems.

2 System Overview

Peers in the PeerCQ system are user machines on
the Internet that execute information monitoring appli-
cations. Peers act both as clients and servers in terms
of their roles in serving information monitoring requests.
An information-monitoring job, expressed as a continual
query (CQ), can be posted from any peer. There is no
scheduling node in the system. No peers have global
knowledge about other peers in the system.

There are three main mechanisms that make up the
PeerCQ system. The first mechanism is the overlay net-
work membership. Peer membership allows peers to com-
municate directly with one another to distribute tasks or
exchange information. A new node can join the PeerCQ
system by contacting an existing peer (an entry node)
in the PeerCQ network. There are several bootstrapping
methods to determine an entry node. We may assume
that a PeerCQ service has an associated DNS domain
name. It takes care of resolving the mapping of PeerCQ’s
domain name to the IP address of one or more PeerCQ
bootstrapping nodes. A bootstrapping node maintains a
short list of PeerCQ nodes that are currently alive in the
system. To join PeerCQ, a new node looks up the PeerCQ
domain name in DNS to obtain a bootstrapping node’s IP
address. The bootstrapping node randomly chooses sev-
eral entry nodes from the short list of nodes and supplies
their IP addresses. Upon contacting to an entry node
of PeerCQ, the new node is integrated into the system
through the PeerCQ protocol’s initialization procedures.

The second mechanism is the PeerCQ protocol, includ-
ing the service partitioning and the routing query based
service lookup algorithm. In PeerCQ every peer partici-
pates in the process of evaluating CQs, and any peer can
post a new CQ of its own interest. When a new CQ is
posted by a peer, this peer first determines which peer
will process this CQ with the objective of utilizing sys-
tem resources and balancing the load on peers. Upon a
peer’s entrance into the system, a set of CQs that needs to
be re-distributed to this new peer is determined by taking
into account the same objectives. Similarly, when a peer
departs from the system, the set of CQs of which it was
responsible is reassigned to the rest of peers, while main-
taining the same objectives−maximize the system utiliza-
tion and balance the load of peers.

The third mechanism is the processing of informa-
tion monitoring requests in the form of continual queries

(CQs). Each information monitoring request is assigned
to an identifier. Based on an identifier matching crite-
ria, CQs are executed at their assigned peers and cleanly
migrated to other peers in the presence of failure or peer
entrance and departure.
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Figure 1: PeerCQ Architecture

Figure 1 shows a sketch of the PeerCQ system archi-
tecture from a user’s point of view. Each peer in the P2P
network is equipped with the PeerCQ middleware, a two-
layer software system. The lower layer is the PeerCQ pro-
tocol layer responsible for peer-to-peer communication.
The upper layer is the information monitoring subsys-
tem responsible for CQ subscription, trigger evaluation,
and change notification. Any domain-specific informa-
tion monitoring requirements can be incorporated at this
layer.

A user composes his or her information monitoring re-
quest in terms of a CQ and posts it to the PeerCQ system
via an entry peer, say Peer A. Based on the PeerCQ’s
service partition scheme (see Section 3.2), Peer A is not
responsible for this CQ. Thus it triggers the PeerCQ’s
service lookup function. The PeerCQ system determines
which peer will be responsible for processing this CQ us-
ing the PeerCQ service portioning scheme. Assume that
Peer B was chosen to execute this CQ. After the CQ is
assigned to Peer B, it starts its execution there. During
this execution, when an interested information update is
detected, the query is fired, and the owner of this CQ is
notified with the newly updated information. The notifi-
cation could be realized by e-mail or by directly sending it
to Peer A if it is online at the time of notification. Even if
a peer is not participating in the system at a given time,
its previously posted CQs are in execution at other peers.

3 The PeerCQ Protocol

The PeerCQ protocol specifies how to find peers that
are best to serve the given information monitoring re-
quests in terms of load balance and overall system utiliza-
tion, how new nodes join the system, and how they recover
from the failures or departures of existing nodes. In this
section we first give an overview of the protocol, including
the system model. We then introduce the PeerCQ service
partitioning scheme and its lookup service. We also dis-
cuss how PeerCQ initialization module works when a new
peer joins the network and how the departure or failure
of existing peers is handled.



3.1 Overview

Similar to most of the second generation of P2P pro-
tocols [1, 13, 10, 14, 8], PeerCQ provides a fast and dis-
tributed computation of a hash function, mapping infor-
mation monitoring requests (in form of continual queries)
to nodes responsible for them. It extends consistent hash-
ing [4] to take into account of peer heterogeneity and char-
acteristics of user subscriptions in the distribution of CQs
to peers, aiming at achieving load balance and efficient
processing of large number of information monitoring re-
quests.

An information monitoring request (subscription) is
described in terms of a continual query (CQ). For-
mally, a CQ is defined as a quadruplet, denoted by
cq : (cq id, trigger, query, stop cond) [5]. cq id is the
unique identifier of the CQ, which is an m-bit unsigned
value. trigger defines the target data source to be moni-
tored (mon src), the data item to be tracked for changes
(mon item), and the condition that specifies the update
threshold (amount of changes) of interest (mon cond).
query part specifies what information should be deliv-
ered when the mon cond is satisfied. stop cond spec-
ifies the termination condition for the CQ. For nota-
tional convenience, in the rest of the paper a CQ is
referenced as a tuple of six attributes, namely cq :
(cq id,mon src,mon item,mon cond, query, stop cond).

The PeerCQ system provides a distributed service par-
titioning and lookup service that allows applications to
register, lookup, and remove an information monitoring
subscription using an m-bit CQ identifier as a handle. It
maps each CQ subscription to a unique, effectively ran-
dom m-bit CQ identifier. To enable efficient processing of
multiple CQs with similar trigger conditions, the CQ-to-
identifier mapping also takes into account the similarity of
CQs such that CQs of the similar trigger conditions can be
assigned to same peers (see Section 3.2 for details). This
property of the PeerCQ is referred to as CQ-awareness.

Similarly, each peer in PeerCQ corresponds to a set of
m-bit identifiers, depending on the amount of resources
donated by each peer. A peer that donates more resources
is assigned to more identifiers. We refer to this prop-
erty as Peer-awareness. It addresses the service parti-
tioning problem by taking into account of peer hetero-
geneity and by distributing CQs over peers such that the
load of each peer is commensurate to the peer capacities
(in terms of cpu, memory, disk, and network bandwidth).
Formally, let P denote the set of all peers in the system.
A peer p is described as a tuple of two attributes, de-
noted by p : ({peer ids}, (peer props)). peer ids is a set
of m-bit identifiers. No peers share any identifiers, i.e.
∀p, p′ ∈ P, p.peer ids ∩ p′.peer ids = ∅. The identifier
length m must be large enough to make the probability
of two nodes or two CQs hashing to the same identifier
negligible. peer props is a composite attribute which is
composed of several peer properties, including IP address
of the peer, peer, resources such as connection type, CPU
power and memory, and so on. The concrete resource do-

nation model may be defined by PeerCQ applications (see
Section 3.2 for details).

Identifiers are ordered in an m-bit identifier circle mod-
ulo 2m. The 2m identifiers are organized in an increasing
order in the clockwise direction. To guide the explanation
of the protocol, we first define our notation:

• The distance between two identifiers i, j, denoted as
Dist(i, j), is the shortest distance between them on
the identifier circle, defined by Dist(i, j) = min(|i−
j|, 2m − |i − j|).

• Let path(i, j) denote the set of all identifiers on the
clockwise path from identifier i to identifier j on
the identifier circle. An identifier k is said to be in-
between identifiers i and j, denoted as k ∈ path(i, j),
if k �= i, k �= j, and it can be reached before j going
in the clockwise path starting at i.

• A peer p′ with its peer identifier j is said to be an
immediate right neighbor to a peer p with its peer
identifier i, denoted by (p′, j) = IRN(p, i), if there
are no other peers having identifiers in the clockwise
path from i to j on the identifier circle. Formally
the following condition holds: i ∈ p.peer ids ∧ j ∈
p′.peer ids ∧ �p′′ ∈ P s.t. ∃k ∈ p′′.peer ids s.t. k ∈
path(i, j). The peer p with its peer identifier i is
referred to as the immediate left neighbor(ILN) of
peer p′ with its identifier j.

• A neighbor list of a peer p0 associated with one of
its identifiers i0, denoted as NeighborList(p0, i0),
is formally defined as: NeighborList(p0, i0) =
[(p−r, i−r), . . . , (p−1, i−1), (p0, i0), (p1, i1), . . . , (pr, ir)],
where

∧r
k=1((pk, ik) = IRN(pk−1, ik−1)) ∧∧r

k=1(p−k, i−k) = ILN(p−k+1, i−k+1). The size of
the neighbor list is 2r+1 and we call r the neighbor
list parameter.

3.2 Capability-Sensitive Service Partitioning

The PeerCQ protocol extends the existing routed-
query based P2P protocols, such as Chord [13] or Pas-
try [10], to include a capability-sensitive service partition-
ing scheme. Service partitioning can be described as the
assignment of CQs to peers. By capability-sensitive, we
mean that the PeerCQ service partitioning scheme ex-
tends a randomized partition algorithm, commonly used
in most of the current P2P protocols, with both peer-
aware and CQ-aware capability. As demonstrated in
[13, 10, 14, 8], randomized partitioning schemes are easy
to implement in decentralized systems. However they
do not perform well in terms of load balancing in het-
erogonous peer-to-peer environments.We implement peer-
awareness based on peer donation. Each peer donates a
self-specified portion of its resources to the system. The
scheduling decisions are based on the amount of donated
resources. We implement CQ-awareness by distributing
CQs having similar information monitoring requests to
same peers. CQ-awareness is an important consideration



for reducing or minimizing redundant processing and con-
sumption of network resources when multiple users mon-
itor the same or similar information updates.

Concretely, capability-sensitive service partitioning
manages the assignment of CQs to appropriate peers, with
the objective of balancing the load of the peers in the
system and improving the overall system utilization. By
balanced load we mean there are no peers that are over-
loaded. By system utilization, we mean that when taken
as a whole the system does not incur large amount of du-
plicated computations or consume unnecessary resources
such as the network bandwidth between the peers and the
data sources.

In PeerCQ, the assignments of CQs to peers are based
on a matching algorithm defined between CQs and peers,
derived from a relationship between CQ identifiers and
peer identifiers. The PeerCQ service partitioning scheme
can be characterized by the careful design of the mappings
for creating CQ identifiers and peer identifiers, and the
two-phase matching defined between CQs and peers.

In the Strict Matching phase, a simple matching crite-
rion, similar to the one defined in Consistent Hashing [4],
is used. A distinct feature of the PeerCQ strict matching
algorithm is the two identifier mappings that are carefully-
designed to achieve some level of peer-awareness and CQ-
awareness, namely the mapping of CQs to CQ identifiers
that enables the assignment of CQs having similar trig-
gers to same peers, and the mapping of peers with het-
erogeneous resource donations to a varying set of peer
identifiers. In the Relaxed Matching phase, an extension
to strict matching is applied to relax the matching criteria
to include application semantics in order to achieve the
desired level of peer-awareness and CQ-awareness.

3.2.1 Strict Matching

The idea of strict matching is to assign a CQ to a peer such
that the chosen peer has a peer identifier that is numeri-
cally closest to the CQ identifier among all peer identifiers
on the identifier circle. Formally, strict matching can be
defined as follows: The function strict match(cq) returns
a peer p with identifier j, denoted by a pair (p, j), if and
only if the following condition holds:

strict match(cq) = (p, j), where j ∈ p.peer ids ∧
∀p′∈P,∀k∈p′.peer ids, Dist(j, cq.cq id)≤Dist(k, cq.cq id)

Peer p is called the owner of the cq. To guide the un-
derstanding of the strict matching algorithm, we first de-
scribe how CQ identifiers and peer identifiers are gener-
ated, and why they play a vital role in achieving peer-
awareness and CQ-awareness. Then we discuss the prop-
erties of the algorithm.

Mapping peers to identifiers
In PeerCQ a peer is mapped to a set of m-bit identifiers,
called the peer’s identifier set (peer ids). m is a system
parameter and it should be large enough to ensure that
no two nodes share an identifier or this probability is neg-
ligible. To balance the load of peers with heterogeneous

resource donations when distributing CQs to peers, the
peers that donate more resources are assigned more peer
identifiers, so that the probability that more CQs will
be matched to those peers is higher. Figure 2 shows an
example of mapping two peers, say p′ and p′′, to their
peer identifiers on an identifier circle modulo 2m. Based
on the amount of donations, peer p′ has 3 peer identi-
fiers, whereas peer p′′ has 6. The example shows that
p′′ is assigned more CQs than p′ using the defined strict
matching.
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The number of identifiers to which a peer is mapped
is calculated based on a peer donation scheme. We intro-
duce the concept of ED (effective donation) for each peer
in the PeerCQ network. ED of a peer is a measure of
its donated resources effectively perceived by the PeerCQ
system. For each peer, an effective donation value is first
calculated and later used to determine the number of iden-
tifiers that peer is going to be mapped. The calculation
of ED is omitted in this paper due to space restriction
and readers may refer to our technical report [2] for de-
tail. The mapping of a peer to peer identifiers needs to
be as uniform as possible. This can be achieved by us-
ing the base hashing functions like MD5 or SHA1 (or any
well-known message digest function). The following algo-
rithm1 explains how the peer identifier set is formed given
the effective donation:

generatePeerIDs(p, ED)
p.peer_ids = empty
for i = 1 to donation_to_ident(ED)

add SHA1(concat(p.peer_props.IP, counter), m) into p.peer_ids
increment counter

Mapping CQs to identifiers
This mapping function is intended to address the CQ-
awareness objective. It maps CQs with similar trigger
conditions to the same peers as much as possible, in or-
der to achieve higher overall utilization of the system.
Two CQs, cq and cq′, are considered similar if they
are interested in monitoring updates on the same item
from the same source, i.e. cq.mon src = cq′.mon src ∧
cq.mon item = cq′.mon item.

A CQ identifier is composed of two parts. The first part
is expected to be identical for similar CQs and the second

1The function donation to ident used in the algorithm is re-
sponsible of mapping the effective donation value of a peer to the
number of m-bit identifiers, which forms the peer’s peer identifier
set.



part is expected to be uniformly random. This mechanism
allows similar CQs to be mapped into a contiguous region
on the m-bit identifier circle. The length of a CQ identifier
is m. The length of the first part of an m-bit CQ identifier
is a, which is a system parameter called grouping factor.
Given m and a, the method that maps CQs to the CQ
identifiers uses two message digest functions. A sketch of
the method is described as follows:

calculateCQID(p, cq)
part1 = SHA1(concat(cq.mon_src,cq.mon_item),a)
part2 = SHA1(concat(p.peer_props.IP, counter), m-a)
cq.cq_id = concat(part1,part2)
increment counter

According to the parameter a (grouping factor) of the
first digest function, the identifier circle is divided into
2a contiguous regions. The CQ-to-identifier mapping im-
plements the idea of assigning similar CQs to the same
peers by mapping them to a point inside a contiguous
region on the identifier circle. As the number of CQs is
expected to be larger than the number of peers, the num-
ber of CQs mapped inside one of these regions is larger
than the number of peers mapped. Introducing smaller
regions (i.e., the grouping factor a is larger) increases the
probability that two similar CQs are matched to the same
peer. This by no means implies that the peers within a
contiguous region are assigned only to CQs that are sim-
ilar for two reasons. First, if the grouping factor a is not
large enough, then two non-similar CQs might be mapped
into the same contiguous region by the hashing function
used (SHA1 in our case). Second, peers might have more
than one identifier possibly belonging to different contigu-
ous regions. Taking into account the non-uniform nature
of the monitoring requests, there is a trade-off between
reducing redundancy in CQ evaluation and forming hot-
spots (some peers may be responsible for too many CQs).
Thus, the grouping factor a should be chosen carefully.

We refer to the grouping provided by the CQ-to-
identifier mapping as the level-one grouping. A fine tuning
of the level-one grouping will be introduced in the relaxed
matching phase in Section 3.2.2.

3.2.2 Relaxed matching

The goal of Relaxed Matching is to fine tune the perfor-
mance of PeerCQ service partitioning by incorporating
additional characteristics of the information monitoring
applications. Concretely, in the Relaxed Matching phase,
the assignments of CQs to peers are revised to take into
account factors such as the network proximity of peers to
remote data sources, whether the information to be mon-
itored is in the peer’s cache, and how peers are currently
loaded. By taking into account the network proximity
between the peer responsible of executing a CQ and the
remote data source being monitored by this CQ, the uti-
lization of the network resources is improved. By con-
sidering the current load of peers and whether the infor-
mation to be monitored is already in the cache, one can
further improve the system utilization.

We calculate these three measures for each match
made between a CQ and a peer at the strict matching
phase. Let p denote a peer and cq denote the CQ
assigned to p.

Cache affinity factor is denoted as
CAF (p.peer props.cache, cq.mon item). It is a measure
of the affinity of a CQ to execute at a peer p with a given
cache. It is defined as:

CAF (p.peer props.cache, cq.mon item) ={
1 if cq.mon item is in p.peer props.cache

0 otherwise

Peer load factor is denoted as PLF (p.peer props.load).
It is a measure of a peer p’s willingness to accept one
more CQ for execution, considering its current load. It is
defined as:

PLF (p.peer props.load) =


1 if p.peer props.load

≤ tresh∗MAX LOAD

1 − p.peer props.load
MAX LOAD

if p.peer props.load

> tresh∗MAX LOAD

Data source distance factor is denoted as
SDF (cq.mon src, p.peer props.IP ). It is a measure
of the network proximity of the peer p to the data source
of the CQ specified by identifier cq. It is defined as:

SDF (cq.mon src, p.peer props.IP ) =

1

ping time(cq.mon src, p.peer props.IP )

The idea behind the relaxed matching is as follows:
The peer that is matched to a given CQ according to the
strict matching, i.e. the owner of the CQ, has the oppor-
tunity to query its neighbors to see whether there exists
a peer that is better suited to process the CQ in terms
of the three additional factors described above. In case
such a neighbor exists, the owner peer will assign this CQ
to one of its neighbors for execution. We call the neigh-
bor chosen for this purpose the executor of the CQ. The
relaxed matching algorithm enables efficient CQ process-
ing through the use of cache-awareness, decreases overall
bandwidth requirement through the use of data source-
awareness, and fine tunes the load balancing through the
use of load-awareness.

Let UtilityF (p, cq) denote the utility function of re-
laxed matching, which returns a utility value for assigning
cq to peer p, calculated based on the three measures given
above:

UtilityF (p, cq) = PLF (p.peer props.load) ∗
(CAF (p.peer props.cache, cq.mon item) + α ∗
SDF (p.peer props.IP, cq.mon src))

Note that the peer load factor PLF is multiplied with
the sum of cache affinity factor CAF and the data source
distance factor SDF . This gives more importance to the



peer load factor. α is used as a constant to adjust the
importance of data source distance factor with respect to
cache affinity factor.

The function relaxed match(cq) is formally defined as
follows. It returns a peer identifier pair (p, i) if and only
if the following condition holds:

relaxed match(cq) = (p, i), where

(p′, j) = strict match(cq) ∧ (p, i) ∈ NList(p′, j) ∧
∀(p′′, k) ∈ NList(p, j), UtilityF (p, cq) ≥ UtilityF (p′′, cq)

It is interesting to note that the cache-awareness prop-
erty of the relaxed matching provides additional level of
CQ grouping by favoring the selection of a peer as a CQ’s
executor if the peer has a cache ready for this CQ (which
means that one or more similar CQs are already execut-
ing at that peer). We refer to the cache-awareness based
grouping as level-two grouping.

An extreme case of relaxed matching is called the ran-
dom relaxed matching. Random relaxed matching is sim-
ilar to relaxed matching except that instead of using a
value function to find the best peer to execute a CQ, it
makes a random decision among the neighbors of the CQ
owner. In the rest of the paper we call the original relaxed
matching optimized relaxed matching.

3.3 PeerCQ P2P Lookup

In this section we shortly describe PeerCQ’s ability to
efficiently find peers to execute a CQ from a potentially
huge number of peers.

Inspired by the lookup operations described in
Pastry [10], Tapestry [14], Plaxton Routing [8], and
Chord [13], the PeerCQ P2P lookup service is designed
to find peers that are most appropriate to execute a CQ
in a PeerCQ network in terms of good load balance and
better system utilization. It provides two basic functions
to implement the matching algorithms described in the
previous section:

p.lookup(i): The lookup function takes an m-bit identifier
i as its input parameter, and returns a peer -identifier
pair (p, j) satisfying the matching criteria used in
strict matching, i.e. j ∈ p.peer ids ∧ ∀p′ ∈ P,∀k ∈
p′.peer ids,Dist(j, cq.cq id) ≤ Dist(k, cq.cq id).

p.get neighbors(i): This function takes an identifier from
the peer identifier set of p as a parameter. It returns the
neighbor list of 2r + 1 peers associated with the identifier
i of the peer p, i.e., NeighborList(p, i).

The p.lookup(i) function implements a routed query
based lookup algorithm. Lookup is performed by recur-
sively forwarding a lookup query containing a CQ identi-
fier to a peer which has a peer identifier closer to the CQ
identifier in terms of the strict matching, until it reaches
the owner peer of this CQ. PeerCQ maintains two types of
routing information − a routing table and a neighbor list
for each identifier possessed by a peer. The routing table
is used to locate a peer that is more likely to answer the

lookup query, where a neighbor list is used to locate the
owner peer of the CQ and the executor peer of the CQ.
The routing table is basically a table containing infor-
mation about several peers in the network together with
their identifiers. The structure of the neighbor list is al-
ready described in Section 3.1. A naive way of answering
a lookup query is to iterate on the identifier circle using
only neighbor lists until the matching is satisfied. The
routing tables are simply used to speed up this process.

Due to the space restriction, we omit the details of the
lookup algorithm. Readers who are interested in further
details may refer to our technical report [2].

3.4 Peer Joins, Departures, and Failures

A key issue in PeerCQ is the maintenance of the CQ-to-
peer matchings defined by the PeerCQ service partition-
ing scheme in a dynamic environment where peers join
and depart at any time and peers may fail without no-
tice. To facilitate the understanding of the mechanisms
used during peer joins and departures, we first illustrate
how to maintain strict matching during peer joins and
departures, then we extend the discussion to the main-
tenance of relaxed matching before we describe how to
handle node failures.

Joins, Departures with Strict Matching
Assume that after a new peer p joins the PeerCQ network,
its routing table and neighbor list information is initial-
ized. For each identifier i ∈ p.peer ids, a set of CQs,
owned by p’s immediate right and left neighbors before
p joins the system, are migrated to p if they meet the
strict matching criteria. The departure of a peer p re-
quires a similar but reverse action to be taken. Again for
each identifier i ∈ p.peer ids, p distributes all CQs that it
owns to its immediate left and right neighbors associated
with i according to strict matching.

Joins, Departures with Relaxed Matching
For each CQ migrated to a new peer p, p becomes the
owner of these CQs. By applying the relaxed matching,
the executor peer can be located from p’s neighbor list.
Concretely, each peer keeps two possibly intersecting sets
of CQs, namely Owned CQs and Executed CQs. Owned
CQs set is formed by the CQs that are assigned to a peer
identifier according to strict matching and the executed
CQs set is formed by the CQs that are assigned to a peer
identifier according to relaxed matching. CQs in the exe-
cuted CQs set of a peer are executed by that peer, where
the CQs in the owned CQs set are kept for control pur-
pose.

A peer p upon entering the system first initializes its
owned CQs set as described in the strict matching case.
Then it determines where to execute these CQs based on
the relaxed matching. If peers different than the previ-
ous executors are chosen to execute these CQs, then they
are migrated from the previous executors to the new ex-
ecutors. Peers whose neighbor lists are effected from the
entrance of the peer p into the system also re-evaluate the
relaxed matching phase for their owned CQs, since the p’s



entrance might have effected the relaxed matching. The
departure process follows a reverse path. A departing peer
p distributes its owned CQs to its immediate neighbors in
terms of strict matching. Then the neighbors determine
which peers to execute these CQs according to the relaxed
matching function. The departing p also returns CQs in
its executed CQs set to their owners, and these owner
peers will find peers to execute these CQs according to
relaxed matching.

Concurrent Joins, Departures
Concurrent joins and departures of peers introduces some
problem both in initializing routing information and in re-
distributing CQs. The approach taken by PeerCQ to pro-
vide consistency in the presence of concurrent joins and
departures is to enable only one join or one departure op-
eration at a time inside a neighbor list. This is achieved
by a distributed synchronization algorithm, which serial-
izes the modifications to the neighbor lists. Instead of
a weaker solution based on periodic polls to detect and
correct inconsistencies, we use a locking scheme to ensure
the correctness.

Node Failures
A failure in PeerCQ is a disconnection of a peer from
the PeerCQ network without notifying the system. This
can happen due to a network problem, computer crash
or improper program termination. Failures are detected
through periodic pollings between peers in a neighbor list.
A dynamic replication mechanism is developed for recov-
ering the lost CQs due to unexpected node failures. An
important question to ask is where to replicate CQs. Cur-
rently we choose to select the peers to store replicas of a
CQ from the peers within the neighbor list of its owner
peer. Due to the space restriction, the replication mech-
anisms of the PeerCQ system are omitted.

4 Simulation Results

A unique characteristic of the PeerCQ protocol is its
service-partitioning scheme, which distributes CQs among
peers of diverse capacities, while maintaining balanced
loads on peers as well as good overall utilization of the
system. To evaluate PeerCQ’s service partitioning scheme
with respect to system utilization and load balancing, we
have designed a series of experiments. In the subsequent
sections we first describe our experimental setup, includ-
ing the simulator, the list of system parameters, and the
performance metrics. Then we report three sets of exper-
iments.

4.1 Protocol Implementation and Simulator

We built a simulator that assigns CQs to peers using
the service partitioning and lookup algorithms described
in the previous sections. The system parameters to be set
in the simulator include; m: length of identifiers in bits, a:
grouping factor, r: neighbor list parameter, N : number
of peers, and K: number of CQs. In all experiments
reported in this paper, the length of the identifiers (m) is

set to 128, and the size of the neighbor list 2r + 1 is set
to 5, i.e. r = 2.

We model each peer with its resources, the amount of
donation it has, and its IP address. The resource distri-
bution is taken as normal distribution. The donations of
peers are set to be a half of their resources. We model CQs
with the data sources, the data items of interest, and the
update thresholds being monitored. The distribution of
the user interests on the data sources is selected to model
the hot spots that arise in real-world situations due to the
popularity of some triggers.

4.2 Sensitiveness to Peer Heterogeneity

The heterogeneity of peers in the PeerCQ system is
captured by their effective donation (ED) values. Based
on different ED values, peers are mapped to different
number of peer identifiers on the identifier circle. There-
fore, peer heterogeneity is reflected by the number of peer
identifiers that different peers posses. To understand sen-
sitiveness of the PeerCQ service partitioning scheme with
respect to peer heterogeneity, we model peers with dif-
ferent resources using a normal distribution. We measure
the number of CQs distributed over peers having different
number of peer identifiers. The results of this experiment
where we consider a 10,000 node network (N = 104) is
plotted in Figure 3.

The x-axis of the graph in Figure 3 represents the num-
ber of identifiers possessed by peers, and the y-axis repre-
sents the average number of CQs assigned to peers having
x number of peer identifiers. This graph shows that the
number of CQs that a peer is assigned for processing is
proportional to the number of identifiers it has on the
identifier circle, which is in turn proportional to the effec-
tive donation value of the peer.

4.3 Effect of Grouping Factor

Another important factor that may affect the effective-
ness of the service partitioning scheme is the grouping fac-
tor. The grouping factor a is designed to tune the prob-
ability of assigning similar CQs to the same peer. The
larger the a value is, the higher the probability that two
similar CQs will be mapped to the same peer, thus the
fewer number of CQ groups per peer. However, increasing
a has limitations as discussed in Section 3.2.1.

This experiment considers again a 10,000 node network
(N = 104), and the total number of CQs in the network
is 100 times of N , i.e., K = 106. Figure 4 compares
the average group size and the average number of groups
per peer. The values on the x-axis of Figure 4 are the
grouping factors, where the two series represent average
CQ group size (average number of CQs per CQ group)
and average number of CQ groups per peer. When a = 0,
there is nearly no grouping since the average CQ group
size is close to one and the number of CQ groups is large
(one CQ per group). As the grouping factor increases,
the average size of CQ groups also increases, while the
number of CQ groups decreases.



Number of CQs: 10000
Number of sources: 20
Number of source item
Random Relaxed Matc
CQ trigger distribution 
peer properties distribu
a(grouping factor): 0

1 15.29237 1 1.484163
2 30.54925 2 3.104389
3 46.51316 3 4.520451
4 61.12253 4 6.047179
5 77.09263 5 7.733663
6 92.7437 6 9.225171
7 109.2438 7 10.6934
8 124.4667 8 12.62017
9 141.6047 9 13.66667

10 156.1879 10 15.38535
11 171.2589 11 16.99833
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These observations have an important implication. As-
signment of CQs to peers that try to achieve better group-
ing (setting the grouping factor a to be higher) will de-
crease the number of CQ groups processed by a peer,
while increasing the number of CQs contained in each CQ
group (CQ group size). As a result, the average load of
peers will be decreased and the overall system utilization
will be better. However, increasing the grouping factor
too much will degrade the load balance as it will be de-
scribed in Section 4.4.

To provide an in-depth understanding of the effect of
grouping factor, we also compare the optimized relaxed
matching algorithm with the random relaxed matching al-
gorithm under a given grouping factor. Figure 5 compares
the two matching algorithms when a = 10. The graph
shows that the number of CQ groups per peer is lower
with optimized relaxed matching. It is clear that the op-
timized relaxed matching is more effective in its ability
to group CQs, which is due to its cache-awareness. We
can say that random relaxed matching has only level-one
grouping which is the grouping provided by the grouping
factor, where the optimized relaxed matching algorithm
also has level-two grouping which is supported through its
cache-awareness.

4.4 Effectiveness with respect to Load Balancing
and System Utilization

This section presents a set of experiments to evaluate
effectiveness of the PeerCQ service partitioning scheme
with respect to load balance and system utilization. By
better system utilization, we mean that the system can
achieve higher throughput and lower overall consumption
of resources in terms of processing power and network
bandwidth. By load balancing, we mean that no peer
in the system is overloaded due to increase of requests
to monitoring data sources that are hot spots at times.
The notion of load on a peer we use in our performance
evaluation is relative to the peer capacities.

4.4.1 Computing Peer Load

An effective measure to evaluate the load balance is the
load on peers. In order to analyze the load on peers we
first formalize the load on a peer. In PeerCQ, the cost
associated with the P2P protocol level processing is con-
sidered to be proportional to peer capacities, since the
protocol level processing is proportional to the number of

identifiers a peer has. Based on this understanding, we
consider the continued monitoring of remote data sources
and data items of interest to be the dominating factor in
computing the peer load. We formalize the load on a peer
p as follows:

Let Gp represent the set of groups that peer p has,
denoted by a vector 〈g1, . . . , gn〉, where n is the number
of CQ groups that peer p has. Each element gi repre-
sents a group in p, which can be identified by the data
source being monitored and the data items of interest.
Let cost(gi) be the cost of processing all CQs in a group
gi, monCost(gi) be the cost of monitoring a data item,
and gCost(size(gi)) be the cost of grouping for group gi,
which is dependent on the number of CQs in gi. Then the
cost of processing all CQs in a peer, denoted as cost(Gp),
can be calculated as follows:

cost(Gp) =

size(Gp)∑
i=1

(monCost(gi) + gCost(size(gi))

Given that the cost of detecting changes on the data items
of interest from remote data sources is the dominating
factor in the overall cost of processing a CQ, we assume
that the cost of monitoring is the same for all data items
independent of the monitoring conditions defined by CQs,
and is equal to monCost:

cost(Gp) = size(Gp) ∗monCost+

size(Gp)∑
i=1

gCost(size(gi))

In order to calculate the load on a peer, the cost is nor-
malized via dividing it by the effective donation. Let EDp

be the effective donation of peer p. We calculate the load
on a peer, denoted as load(p), as follows:

load(p) = cost(Gp)/EDp

The load values of peers are used as both a measure
of system utilization and a measure of load balance in
our experiments. First, the mean peer load, which is the
average of peer load values, is used as a measure of sys-
tem utilization. The smaller the mean load is, the better
the system utilization is. However, the system utilization
is also influenced by the amount of network bandwidth
consumed, which is captured by the average network cost
defined below. Second, the variation in peer loads is used
as a measure of load balance. To compare different sce-
narios, the load variance is normalized by dividing it into
the mean load. This measure is called the balance in peer
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loads. Small values of balance in peer loads imply a better
load balance.

PeerCQ service partitioning makes use of network
proximity between peers and data sources when assigning
CQs to peers. It aims at decreasing the network cost of
transferring data items from the data sources to the peers
of the system. For simulation purpose, we assign a cost to
each (peer, data source) pair in the range [10,1000]. We
model such a cost by the ping times between peers and
data sources. Then we calculate the sum of these costs
for each CQ group at each peer and divide it by the total
number of peers to get an average. Let P denote the net-
work consisting of N peers, and the function that assigns
costs to (peer, data source) pairs as net cost, then the re-
sulting value named as average network cost and denoted
by avgNetCost is equal to:

avgNetCost =

∑
p∈P

∑size(Gp)
i=1 net cost(p, gi.mon src)

N

4.4.2 Experimental Results

All experiments in this section were conducted over a net-
work consisting of N peers and K CQs, where N = 104

and K = 106. To evaluate the effectiveness of the opti-
mized relaxed matching algorithm, we compare it with the
random relaxed matching algorithm using the set of pa-
rameters discussed earlier, including the grouping factor
a, the mean peer load, the variance in peer loads, balance
in peer loads, average network cost, variance in CQ loads
of peers.

Figure 6 shows the effect of the grouping factor a on
the effectiveness of relaxed matching with respect to mean
load. Similarly, Figure 7 shows the effect of the group-
ing factor a on the effectiveness of relaxed matching with
respect to network cost. From Figures 6, 7, and 8, we
observe a number of interesting facts:

First, as the grouping factor increases the mean peer
load decreases. This is because, increasing the grouping
factor reduces the redundant computation by enabling
better group processing. Optimized relaxed matching
provides more effective reduction in the mean peer load
due to its level-two grouping. Level-two grouping works
better as the grouping factor a increases.

Second, increasing the grouping factor also helps in de-
creasing the average network cost, since the cost of fetch-
ing data items of interest from remote data sources is
incurred only once per CQ group, and served for all CQs

within the group. It is also clear that optimized relaxed
matching provides more effective reduction in their aver-
age network cost, due to its level-two grouping and its
data source awareness.

Third but not the least, the decrease in the mean peer
load and in the average network cost is desirable, since it
is an implication of better system utilization. However, if
the grouping factor increases too much, then the goal of
load balancing will suffer.

Figure 8 shows the effect of increasing the grouping
factor a on load balance of both the optimized relaxed
matching algorithm, and the random relaxed matching
algorithm. As expected, the optimized relaxed match-
ing provides better load balance, since optimized relaxed
matching explicitly considers peer loads in its value func-
tion for determining the peer that is appropriate for exe-
cuting a CQ (i.e., the UtilityF function in Section 3.2.2).
In the case of a = 0 it provides the best load balance.
However, as the grouping increases, peers having identi-
fiers belonging to some hot spotted regions of the identifier
space are matched much more CQs than others (due to
the non-uniform nature of information monitoring inter-
ests and the mechanisms used to match CQs to peers).
Consequently, the load balance gets worse as the group-
ing increases. For our experiment setup, the load balance
degrades quickly when a≥8.

It is interesting to note that random relaxed matching
shows an improvement in load balance for smaller values
of the grouping factor and start switching to a degrada-
tion trend when a is set to 10 or higher. This is mainly due
to the fact that random relaxed matching only relies on
randomized algorithms to achieve load balance in the sys-
tem. Thus the load balance obtained in the case of a = 0
is inferior when compared to optimized relaxed matching.
This means that there are overloaded and under-loaded
peers in the system. Grouping helps decreasing the loads
of over-loaded peers by enabling group processing. This
effect decreases the gap between overloaded peers and
under-loaded peers, resulting in better balance to some
extent.

Finally, it is important to note that, when we increase
a too much, the optimized relaxed matching looses its
advantage in terms of load balancing over the random
relaxed matching. Intuitively this happens due to the fact
that in optimized random relaxed matching there are two
levels of grouping, whereas in random relaxed matching



there is only one level of grouping. More concretely, in
overloaded regions of the identifier space, there is nothing
to balance. In under-loaded regions, when a increases,
the optimized relaxed matching maps more CQs to fewer
peers due to the second-level grouping, causing even more
unbalance since several peers get no CQs at all from the
under loaded region.

In summary, to provide a reasonable balance between
overall system utilization and load balance, it is advisable
to choose a value for a, which is equal to or smaller than
the value where the randomized relaxed matching changes
its load balance trend to degradation, but is greater than
half of this value. This results in the range [6, 10] in our
setup. In this range, higher values are better for favoring
overall system utilization, whereas lower values are better
for favoring load balance. Figure 9 shows this trade-off.
The values on the x-axis are the peer load values , and the
corresponding values on the y-axis are the frequencies of
peers having x amount of load. It is easy to see that the
balance is better when a = 6 and load values are lower
when a = 10.

5 Related work

WebCQ [6] is a system for large-scale web informa-
tion monitoring and delivery. It makes heavy use of the
structure present in hypertext and the concept of contin-
ual queries. It is a client-server system, which monitors
and tracks various types of changes to static and dynamic
web pages. It includes a proxy cache service in order
to reduce communication with the original information
servers. PeerCQ is similar to WebCQ in terms of func-
tionality but differs significantly in terms of the system
infrastructure, the cost of administration, the implemen-
tation architecture, and the technical algorithms used to
scheduling CQs. PeerCQ presents a large scale informa-
tion monitoring system that is more scalable and less ex-
pensive to maintain due to the total decentralization and
the self-configuring capability.

To our knowledge, the only P2P application that ad-
dresses information monitoring applications is Scribe [11].
Scribe is a publish/subscribe based large-scale, decentral-
ized event notification system. It uses Pastry [10] as its
underlying peer-to-peer protocol and builds application
level multicast trees to notify subscribers from events pub-
lished in their subscribed topic. Pastry’s location algo-
rithm is used to find rendezvous points for managing the
group communication needed for a topic. It uses topic
identifiers to map topics to peers of the system. In con-
trast to Scribe, which is a topic based event notification
system, PeerCQ is a generic information monitoring and
event notification system that demonstrates the benefits
of the PeerCQ protocol in building a scalable information
monitoring application.

There are several P2P protocols proposed so far [9, 13,
10, 14]. Similar to work done in Chord [13], Tapestry
[14], and Pastry [10], the P2P protocol described in this
paper is built based on distributed hash table and ideas

originated from Plaxton’s routing algorithm [8].

6 Conclusion

We have described PeerCQ, a decentralized peer-to-
peer Continual Query system for distributed information
Monitoring at Internet-scale. PeerCQ is highly scalable,
self-configurable and supports efficient and robust way of
processing CQs.
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