
Wee Siong Ng Beng Chin Ooi Yan Feng Shu Kian-Lee Tan Wee Hyong Tok
Department of Computer Science
National University of Singapore

3 Science Drive 2, Singapore 17543
email: {ngws, ooibc, shuyanfe, tokwy, tankl}@comp.nus.edu.sg

Technical Report NUS-CS01-03

January, 2003

Abstract

In this paper, we propose a distributed continuous query (CQ) processing system based on Peer
to Peer architecture (P2P) technology, where peers collaborate in terms of processing and providing
data. In particular, we propose that data streams be reallocated and query sharing be exploited
at the peer-to-peer level. Our proposed approach supports a novel class of queries, which we call
pervasive CQ. A pervasive CQ issued by peer A is evaluated by peer B and stored there to be
retrieved by peer A at a later time. This class of continuous queries is particularly beneficial in the
heterogeneous environment in which peers operate. We conduct an extensive performance study to
evaluate the proposed strategies, and our results show the effectiveness of the proposed schemes.

Contact Author:
Wee Siong Ng
Department of Computer Science
National University of Singapore
Science Drive 2, Singapore 17543

Office: (65) 6874-4774 http://www.comp.nus.edu.sg/∼ngws
Fax: (65) 6779-4580 Email: ngws@comp.nus.edu.sg

I



Efficient Distributed Continuous Query Processing using Peers

Wee Siong Ng Beng Chin Ooi Yan Feng Shu Kian-Lee Tan Wee Hyong Tok
Department of Computer Science
National University of Singapore

3 Science Drive 2, Singapore 17543
email: {ngws, ooibc, shuyanfe, tokwy, tankl}@comp.nus.edu.sg

Abstract

In this paper, we propose a distributed continuous query (CQ) processing system based on

Peer to Peer architecture (P2P) technology, where peers collaborate in terms of processing and

providing data. In particular, we propose that data streams be reallocated and query sharing

be exploited at the peer-to-peer level. Our proposed approach supports a novel class of queries,

which we call pervasive CQ. A pervasive CQ issued by peer A is evaluated by peer B and stored

there to be retrieved by peer A at a later time. This class of continuous queries is particularly

beneficial in the heterogeneous environment in which peers operate. We conduct an extensive

performance study to evaluate the proposed strategies, and our results show the effectiveness of

the proposed schemes.

1 Introduction

Continuous queries (CQ) are queries that are executed for a potentially long period of time, and

are used in the monitoring of data semantics in the underlying data streams to trigger user-defined

actions. Continuous queries transform a passive networked structure into an active environment,

and are particularly useful in distributed environments where huge volumes of information are

updated frequently and remotely. For example, users may be interested in monitoring the trading

volume or price of a particular stock over a period of time. They could then express their request

in a continuous query as follows:

Notify me whenever the trading volume increases 2% OR Oracle
stock increases by more than 5% over the next three months.

Figure 1: Example CQ query.

Peer-to-Peer architecture (P2P) is emerging as a new paradigm for information sharing. In

a P2P distributed system, a large number of nodes (e.g., PCs connected to the Internet) can

potentially be pooled together to share their resources, information and services. Unlike traditional

client-server architecture, P2P allows peers to publish information and share data with other peers

1



without going through any intermediate machines. As a result, the information that is accessible

to individuals grows at a faster and larger scale.

In the literature, much of the existing work that seeks to support a large number of potential CQ

requests, focuses on efficiently handling the processing of a large number of continuous queries. Most

of that effort centers on finding an optimal plan for similar queries or subsuming a new incoming

query into an existing queries group [1]. These existing techniques, however, are not expected to

perform well in a highly distributed environment for several reasons. First, these techniques were

designed mainly based on a centralized client-server architecture. Queries are routed and registered

to a central continuous query system (CQS). Thus, much of the existing work focuses on supporting

as many queries as possible against external data sources. However, it is clear that there is a limit to

the number of queries that can be handled by a single server, no matter how efficient the CQS may

be. Second, most of these techniques focus on the data stream consumer (i.e. the system processing

the continuous queries), and neglect that the data stream providers do have a significant impact

on the responsiveness of the CQS. A popular data stream provider may be easily overwhelmed by

requests and consequentially delay the response of a CQS. Third, there exists no computational

sharing among CQS. Each of the server is autonomous and performs optimization for queries that

are registered to them. Queries are merged into existing local groups and no knowledge is shared

among CQS [1]. Thus, much of the work performed by individual CQS is duplicated. In addition,

resources at some CQS are under-utilized. For example, a large number of CQS may be accessing

the same data source, thus overloading the data sources providers. Furthermore, existing CQS is

designed to deliver results as they are computed. However, there are many situations in which

continuous delivery of results may be infeasible and impractical. For example, Data Recharging [2]

describe a process through which personal mobile devices such as PDAs connect to the network

and refresh its contents periodically. Clearly, with the limited connection time to the data source,

continuous delivery is inefficient.

In this paper, we propose a distributed continuous query processing system based on P2P

technology. Peers collaborate in terms of processing and providing data. In particular, we propose

that data streams be reallocated and query sharing be exploited at the peer-to-peer level. The

proposed approach supports a novel class of queries, which we call pervasive CQ. A pervasive CQ

issued by peer A is evaluated by peer B and stored there to be retrieved by peer A at a later

time. This class of continuous queries are particularly beneficial in the heterogeneous environment

in which peers operate. In the existing P2P contexts, all devices (i.e. peers) may differ both

in hardware and software configurations, as well as computational capabilities [3, 4, 11, 17]. For

example, a mobile device such as a Personal Digital Assistant (PDA) has limited computational

2



power and memory compared to a desktop machine. Clearly, a PDA has limited functionality

compared to a desktop machine. pervasive CQ leverages on this difference, relying on “stronger”

peers to compensate for the physical limitations of “weaker” peers. It also allows peers to disconnect

and rejoin the network without any restriction, and without any loss to the users in terms of access

to requested information.

The rest of this paper is organized as follows: in the next section, we discuss how we can make

use of a large network of peers for continuous query processing. In addition, we discuss issues that

are prevalent when applying P2P to the domain of continuous query processing, and we present

solutions. In Section 3 we present the CQ-Buddy, a distributed CQS. Section 4 reports the findings

of an extensive experimental study to benchmark the performance of CQ-Buddy. We review related

work in Section 5, and finally, we conclude in Section 6.

2 Towards P2P Continuous Query Processing

As noted in the introduction, practically all existing CQ systems are designed and implemented

based on a client-server architecture, and are not expected to scale well in a distributed environment

for these reasons: (i) the data provider may become a bottleneck, (ii) there may be duplicate

processing among nodes, and (iii) the operating environment is heterogeneous. In this section, we

discuss how distributed CQS can be realized using P2P technology. For this purpose, we shall refer

to a node in the distributed network as a peer. We shall briefly discuss the basic approaches here,

and leave the detailed discussion and strategies to subsequent sections. We address the problem in

three different aspects. First, we study how data streams reallocation can be employed in a CQS

to reap substantial performance improvement. Second, we consider similar queries sharing and

queries grouping at a peer-to-peer level. Finally, we introduce the notion of pervasive continuous

queries and show how peers can benefit from the pervasiveness.

2.1 Data streams reallocation

When a large number of peers access the same data source, the data provider becomes a bottleneck.

There are two strategies that can be adopted to alleviate this problem. We refer to these strategies

as REDIRECT and ISO-PEER.

In the REDIRECT strategy, a peer re-directs a new request to other peers that can provide

the same data requested. The issues here are three-fold. First, a criterion has to be determined on

when redirection should be performed. Second, we need to know which peer to redirect the request

3



to. Finally, there is a need to manage the information, as it may not be easy to locate peers that

can provide the same data.

In the ISO-PEER strategy, a peer delegates several other peers (amongst the large number

of peers accessing it) as intermediate peers, and channels requests of access to these intermediate

peers. We refer to these intermediate peers as iso-peers, as each of these peers is fetching the data

on behalf of other peers and is in essence providing data as the original data provider. The ISO-

PEER strategy shares the first two issues facing the REDIRECT strategy: the need for a criterion

on when redirection should be performed, and the need to know which peer to send the request

to. Similarly in both strategies, the data-providing peer reduces the number of peers accessing it

simultaneously. In this way, both strategies reduce the workload of the data-providing peer and

thus improve its performance. The ISO-PEER strategy, however faces one issue less - it does not

require a peer to manage information about data providers. For this reason we will focus on the

ISO-PEER strategy in this paper. Let us consider the following example:

Figure 2: Multiple peers accessing a popular data source.

In Figure 2, we have n peers each issuing continuous queries to a popular peer. The peer quickly

becomes a bottleneck, since it has to handle multiple query requests from multiple peers and send

individual responses to each of them. We conduct a preliminary study to validate this example. In

this simple experiment, we created a total of 100 peers (varies from 10 to 100). Each peer submits

50 queries on runtime to CQS. In the first set of experiment, we use a single stream provider and

record the average response time of peers (see Figure 3(a)).

In the second set of experiments, we use the data stream reallocation strategy in which a

primary data source delegates stream to n number of intermediary peers, i.e., iso-peers. Queries

are submitted to these peers in a random manner. Figure 3(b) shows that the response time

improves significantly. This is expected as each peer is doing less computation. Thus, we can

clearly see the benefits of the data stream reallocation strategy.

4



0

10

20

30

40

50

10 50 100

R
es

po
ns

e 
ti

m
e 

(m
s)

Number of peers

Single data source

(a) Response time vs.
peers.

0

10

20

30

40

50

0 1 2 3 4 5

R
es

po
ns

e 
ti

m
e 

(m
s)

iso-peers

100 Peers

(b) Response time vs. iso-
peers.

Figure 3: Benefits of stream reallocation.

2.2 Resource sharing strategies

P2P technology facilitates the sharing of data and computing resources. Thus, we believe it can

enhance the reliability and performance of a distributed CQS. Figure 4(a) illustrates a scenario

where several “selfish” peers do not share the processing of continuous queries with their neighbors,

and choose to process them by themselves.

On the other hand, in Figure 4(b), each peer does not handle the entire CQ processing of its

own query; instead, it shares the processing workload with other peers in its neighborhood. The

advantage that “sharing” peers have over selfish peers is obvious: each peer helps one another by

processing the data for others. In the figure, we have Peer 1 processing data stream A that is also

required by Peer 2. Peer 1 will only forward the data to Peer 2 when the data passes the filtering

criteria defined by Peer 2. Similarly, Peer 2, which is processing stream B, will only forward data

to Peer 1 and 3 if the data passes the filtering criteria defined by these peers.

(a) Selfish
Peers.

(b) Sharing
Peers.

Figure 4: Peers’ Relation.

5



We shall defer the discussion on a formal definition of similar queries and how each peer can

detect similar queries to a later section.

2.3 Heterogeneous operating environment of Peers

In a heterogeneous operating environment, peers can reside on a limited resource device such as a

PDA, as well as on a desktop or notebook. The basic idea is to allow peers that are “weaker” than

its neighboring peers to ask buddy peers for “help” to process either the entire query or a fragment

of the original continuous query.

2.4 Frequent connection/disconnection of peers

Before leaving this section, let us look at an example that motiviates the concept of pervasive CQ.

Consider a traveler T visiting Country X, who wish to stay apprised of information such as the

trading volumes of financial markets with a volume greater than certain threshold. T requests the

peer software running on his PDA to perform the following simple continuous query:

SELECT stock.symbol, stock.volume_traded

FROM nyse.stream

WHERE stock.symbol = ’ORA’ or ’SUN’ AND stock.volume_traded > 1000

AT every interval of 10 minutes

STORE only top 5 volumes

When T boards the plane, his PDA is disconnected from the network of peers. However, before

disconnecting, his peer software asks for “help” to perform the query amongst the buddy peers.

When he arrives in Country X, he powers up his PDA and immediately, the buddy peers provide

him (rather his PDA) with the information he requested. Two interesting characteristics observe

in this query which its support are absent from the existing CQS implementation. First, the results

need to be stored and must be downloaded to his PDA when it is connected to the network. Second,

even when online, he might only wish to see the recent movement financial activities, e.g., STORE

only top 5 volumes, rather than interrupted by every update.

We refer to this class of continuous queries that are processed by a peer on behalf of another

peer, and retrieved at a later time period as pervasive continuous queries. In a later section, we

show how such queries can be supported.

6



3 CQ-Buddy: A Distributed CQS Using Peer Technology

In this section, we shall present CQ-Buddy, a distributed CQS that employs P2P technology ex-

tensively. We shall first look at the CQ-Buddy network and the architecture of a CQ-Buddy node.

Then, we shall present the strategies for sharing computation and queries among peers.

3.1 CQ-Buddy Network

Figure 5: Overview of CQ-Buddy Network.

CQ-Buddy is a P2P-enabled distributed CQS. The network consists of two kinds of peers.

First, peers with CQ processing capabilities but which do not provide data streams to other peers.

Second, peers with CQ processing capabilities and which provide data streams to other peers. We

refer to the former as CQC (CQ consumer, e.g., Peer 1 and Peer 2 in Figure 5) and the latter as

CQD (CQ data stream provider, e.g., Peer 3 to Peer 6 in Figure 5).

All incoming queries that are submitted by the user are first optimized by the CQC internally,

e.g., forming them into grouped similar queries. Following that, the CQC submits the queries or

grouped queries to the CQD, to see whether there are other peers (i.e. CQ-Buddies) who can help

in the processing. This hypothetical model is practical especially in a P2P environment, where

some peers are more reliable and stable than the others, e.g., workstations as compared to PDAs,

and dedicated network lines as compared to modem dial-ups. In such pairs, the ”weaker” peer acts

as the CQC instead of the CQD.

In our model, a continuous query server (CQS) consists of two components: optimization (i.e.

grouping of similar queries), and evaluation. The CQC essentially performs the role of the first

part, while the CQD can be viewed as a CQS. The difference between the two is that the CQD

is more stable, and does not typically disconnect. Each CQC can act as an intermediate node for

7



other peers, and also be consuming data provided by the CQD.

For illustration, Figure 5 shows a CQ-Buddy network with several heterogeneous peers, includ-

ing a handheld device (Peer 1), laptop (Peer 6), PCs and a server-type peer. Assume Peer 1 and

Peer 2 are CQC, Peer 3 and Peer 5 are the original CQS (we assume there exist some existing

and permanent CQS) and the rest are CQD. An incoming query Q2 = select * from nyse.stream

where Stock.symbol =’MSN’ or Stock.symbol = ’ORA’ is submitted to Peer 2. Since Peer 2 is a

CQC, it is unable to process the incoming query on its own. Hence, a Msg X = Who can handle

query select * from nyse.stream where Stock.symbol = X? will be sent out to the peers’ network.

Note that the objective is to locate peers which currently handle similar process (i.e., monitoring

data source nyse.stream with projection attributes Stock.symbol), so no exact match of projection

attributes is necessary. When a CQD receives a request, it may either handle the query if it has

the similar queries running in its local process pool, or drop the message otherwise. Msg X keeps

on propagating to neighboring peers and the live time is controlled by TTL (Time-to-Live). TTL

indicates the maximum number of hops the message can be passed on before it expires, and this is

used to avoid flooding the network. There is also a mechanism for breaking the message loops: each

peer keeps a queue of the recent messages and rejects the ones that have been processed before.

CQDs which are able to handle the query (i.e. able to merge the incoming query into the existing

process group) will send an acknowledgement directly to Peer 2 with its identity, BPID 1. Peer 2

keeps the BPIDs, which may be used for further reference, e.g., to remove the query.

Peer 2 has no advance knowledge of the number of CQDs that will respond. Instead, it relies

on a predefined threshold (e.g., stop when 2 CQDs return results or when timeout sets in). In the

case of an empty result, the query will be sent to the original CQS, e.g., Peer 3 and Peer 5. A

new process will be created in the process pool of Peer 3 and Peer 5 since there are no similar

queries that are currently running. Note that although Peer 3 and Peer 5 can always process the

incoming query (either merge it into the existing local process pool for similar queries, or create a

new process to handle it), that option will only be taken last in order to avoid building up a single

data source bottleneck.

Consider another query Q1 that is defined as Q1 = select * from nyse.stream where Stock.symbol

=’MSN’ or Stock.symbol = ’ORA’ STORE = 30 minutes. It is similar to Q2 but with the additional

parameter “STORE”. This indicates that Q1 is a pervasive query and the peer which handles the

query will help to store the result for the past 30 minutes. Peer 1 submits the pervasive query, Q1,

to Peer 2 and disconnects after receiving an acknowledgment from Peer 2 (denoted by dash line).
1CQ-Buddy is built on top of BestPeer [12], BPID is a global identity used in BestPeer to uniquely identify

different peers and their respective location in the dynamic network.

8



Peer 2 handles the query if it is a normal query in the manner as described previously. However, it

has the additional task of helping Peer 1 to store the results and return the results to Peer 1 when

Peer 1 reconnects. In the next section, we describe in detail the components of our architecture,

and present how similar queries among peers are handled.

3.2 Architecture of a Peer Node

Figure 6: Architecture of a peer.

Figure 6 depicts the architecture of an autonomous peer in CQ-Buddy. CQ-Buddy is an extension

of the BestPeer platform that provides low-level P2P facilities, e.g., communication, and search

mechanism. The core of a peer in CQ-Buddy is the CQ-Manager that accepts user queries through

a user interface and then invokes the underlying execution engine. Each query is optimized by the

Query/Group optimizer, where it is integrated into a group of queries if it is similar to them. In the

case of the CQC, an incoming query will first be optimized internally as described in the previous

section. The queries or grouped queries will then be used as input for the P2P search engine to

locate the CQD that can handle the queries. Note that the Data Manager module may not be

operational in a CQC, since it simply consumes data provided by CQD or acts as an intermediate

node for other peers. The data manager in a CQD monitors data sources in the local disk. The

data source can be a flat file or any other data output from sensors. It is responsible for notifying

the CQ-Manager of any modification of data. There are two possible actions when changes are

detected. First, CQ-Manager invokes the execution engine to evaluate the installed continuous

queries. Second, the CQ-Manager pushes the changed data to intermediate peers. In the following,

we describe the mechanism for sharing similar queries among peers.

9



3.3 Sharing computation amongst similar queries

3.3.1 Similar queries among peers

In the literature on continuous query systems (CQS) [9, 1, 19], one of the most frequently tackled

issues is the need to handle a large number of queries effectively and efficiently. Of the large

number of continuous queries issued by users, many of the queries are similar, and by detecting

these similarities, the queries can be processed collectively. Since the computation is shared, the

resources allocated to process the queries can be significantly reduced. However, it must be noted

that most of the existing work focuses on the sharing of computation in a single CQS.

Let us now consider a large network of peers, where each peer has continuous query-processing

capabilities. There are more opportunities for the sharing of computation for similar queries

amongst the peers. Let us first define similar queries as follows:

Definition 1 Let us denote a selection predicate, predj, as Colj ◦j Xj where ◦j denotes an op-

eration in the set {≤,≥, �=, =}, Colj denotes a field name, Xj denotes a constant expression, and

1 ≤ j ≤ n, where n is the number of selection predicates specified in a single query. Then, two

selection predicates, pred1 and pred2 are similar if and only if

1. Col1 = Col2 and ◦1 = ◦2

Definition 2 A query Qi, consists of a set of selection predicates Si, a set of projection attributes

Pi, and a set of data sources Di. Let si denote the total number of selection predicates specified in

Si, di denote the number of data sources referenced in Di, and pi denote the number of projection

attributes in Pi.

Definition 2.1 Given two queries, Q1 and Q2, the predicate similarity between Q1 and Q2 is de-

fined as:

PredSim(Q1, Q2) = s / max(s1, s2), where s is defined as the number of predicates in S1 that

are similar to the predicates in S2

Definition 2.2 Given two queries, Q1 and Q2, the similarity between the projections attributes in

Q1 and Q2 is defined as:

ProjSim(Q1, Q2) = p / max(p1,p2), where p is the number of projection attributes in P1 that

are the same as the projection attributes in P2.

10



Definition 2.3 Given two queries, Q1 and Q2, the similarity between the data sources in Q1 and

Q2 is defined as:

DSSim(Q1, Q2) = d / max(d1,d2), where d is the number of data sources in D1 that is the same

as the data sources in D2.

Example I: Given two queries Q1 and Q2 as follows:

Q1: select * from R where R.a = 5 and R.b = 3

Q2: select * from R where R.a = 3 and R.c = 2 and R.b = 4

PredSim(Q1, Q2) = 2 / 3

Example II: Given two queries Q1 and Q2 as follows:

Q1: select * from R where R.a = 5 and R.b = 3

Q2: select * from R where R.a = 3 and R.b = 4

PredSim(Q1, Q2) = 2 / 2 = 1

Definition 3 A query Qi, consists of a set of selection predicates Si, a set of projection attributes

Pi, and a set of data sources Di. Given two queries, Q1 and Q2, the query similarity between Q1

and Q2 is defined as:

QuerySim(Q1, Q2) = (PredSim(Q1, Q2) + ProjSim(Q1, Q2) + DSSim(Q1, Q2))/3

When QuerySim(Q1, Q2) = 1, the queries are similar to one another.

When QuerySim(Q1, Q2) = 0, the queries are not similar to one another.

When 0 < QuerySim(Q1, Q2) < 1, the queries are potentially similar to one another.

3.3.2 Query subsumption

When a newly introduced query is similar (by the above definition) to one of the queries in the

existing pool of running queries, they can be processed collectively. Let us consider the following

three queries. Suppose Query 1 is a newly introduced query, whereas Query 2 and Query 3 are

queries that are in the existing pool of running queries. We can see that these three queries can be

collectively processed, instead of processing them separately.

Query 1:

SELECT stock.symbol, stock.volume_traded FROM nyse.stream

11



WHERE stock.symbol = ’ABC’ or stock.symbol = ’CDE’

Query 2:

SELECT stock.symbol, stock.traded_price FROM nyse.stream

WHERE stock.symbol = ’EFG’

Query 3:

SELECT stock.symbol, stock.high FROM nyse.stream

WHERE stock.symbol = ’CDE’

Each of the three query results can be re-written as a subset of the following query, Q: where X =

{’ABC’, ’CDE’, ’EFG’}

Query Q:

SELECT stock.symbol, stock.volume_traded, stock.traded_price, stock.high

FROM nyse.stream

WHERE stock.symbol = X

Queries 1, 2 and 3 are potentially similar queries that share the same data source. In addition, a

superset of projection and selection attributes (as shown in Query Q) can be defined to cover the

projection and selection attributes needed by the three queries.

3.3.3 Strategies for processing similar queries

When a peer receives a new continuous query for processing, it first determines whether the con-

tinuous query is similar to any of the queries running in its existing pool. The similarity between

a newly arrived continuous query and all the running queries is computed. If the newly arrived

query is similar to one of the existing running queries, it will be added onto the existing query. If

the newly arrived query is similar to none of the existing running queries, the peer can choose from

two strategies.

In the first strategy, which we refer to as SELF-HELP, the peer initiates a new processing task

to handle this new query itself. In this manner, the peer behaves exactly like a single CQS. In the

second strategy, which we refer to as BUDDY-HELP, the peer asks its buddy peers for “help” in

processing the query. The buddy peers then process the query on behalf of the peer, and provide

12



the peer with the results of the continuous query. In Section 4, we perform an extensive study on

the effectiveness of these two proposed strategies.

3.4 CQD selection policy

When a CQD is over-loaded, it will pass a list of delegated CQDs to the requester (CQC). From

the list, the CQC makes a selection and submits queries to the selected CQD. It should be obvious

that the selection process is crucial to the processing performance of a CQ. Each CQD may be

different in terms of their processing power and resources, which would influence the performance

of CQ query processing. Let assumes given a list of m CQD candidates, two naiive solutions can be

employed. First Random policy, in which the probability for selecting any CQD is equal to 1/m.

Second, Round Robin policy, works on a rotating basis in that one CQDi is selected and used to

process queries, then moves to the back of the list; the next CQD1+i is selected, then it moves to

the end of the list; and so on, until CQDm is selected. This works in a looping fashion. However,

these policies have never taking into consideration of giving preference to those CQD with the least

amount of congestion or workload.

We propose a CQD admission and selection algorithm, called Adaptive-L, based on a randomized

resource allocation technique called lottery scheduling [20] and taking into consideration of current

load and the processing power of a CQD ahead of the submission of CQ query. The pseudo code

for the Adaptive-L is presented in Algorithm 1.

Adaptive-L receives a candidate list ω = (Ooid1 , Ooid2 , ..., Ooidl
) as its input. The CQD which

offers to process the query is denoted as object Ooid in the list ω. For each Ooid in ω, a short

ping query will be sent to it. The ping query response time τ will be captured (Ref:1). In order

to compute the ticket volume v(O), τ will be used for function computeVolume as in Ref:2, which

is a normalization mapping of the response time into a internal scale. If Ooid exists in the local

cache, the volume will be combined by getting the mean value of the new volume value and cache

volume value. Finally, generateToken step of Ref:3 is a random function that generates a token in

the range of total sum of ticket volume. This is used to determine which corresponding Ooid will

be selected as the final candidate.

3.5 Pervasive continuous queries processing

When the client (scenario: using a PDA) issues a pervasive continuous query, he indicates how long

the data will be stored. He may request to store the data for the past X minutes. The data stored

by the buddy is constantly refreshed, and thus kept up-to-date. The motivation for introducing

13



a new class of pervasive continuous query is to allow devices such as PDAs to be able to issue a

query, go to sleep (to conserve energy), or disconnect (such as when the user is travelling from one

geographical location to another). Pervasive continuous queries provide users with the convenience

of switching on their device again after being disconnected for a period of time, and finding at that

point in the time the data that they have requested for earlier.

Algorithm 1: Adaptive-L(ω)
Data : a candidate list ω = (Ooid1 , Ooid2 , ..., Ooidl

) of response CQDs whose are able to
process the query.

Result : A selected Ooidx object.
begin

nω ←− ∅, τ ←− 0
for i←− Ooidi ∈ ω do

1 τ = roundTrip(Ooidi)
Let T (v, O) be a ticket with volume v for an object O
Let v(O) be the ticket volume for the object O
Let vc(O) be the ticket volume for the object O that might be found in local cache

2 v(Ooidi) = ticketV olume(τ)
if vc(Ooidi) �= nil then

newV olume = (v(Ooidi) + vc(Ooidi))/2
else

newV olume = v(Ooidi)

nω[i]←− new T (newV olume, Ooidi)

nω ←− sorted nω in ascending T.v order
aω ←− ∅, av ←− 0
foreach element e of the nω do

av ←− av ∪ e.v
aω[i] = new T (av, e.O)

3 token = generateToken(aω[last])
next←− 0
while token ≤ aω[next].v do next + +
return aω[next].O

end

4 A Performance Study

4.1 Cost Model

Let us denote a CQC as P . In addition, Freq(q) is the denotation of the average frequency in which

the CQC submits queries to a CQD, D (which is itself, a peer too). Assume n queries (Q1,...Qn)

and each of the query takes E processing time in order to fulfill the request, i.e., submitting and

14



Parameter Value Comments
TR R 3.68891 KB/sec Average transfer rate between remote peers (WAN)
TR D 4675.945 KB/sec Average transfer rate from the disk
AMT R 1.2975 sec/mes Average time per message between remote peers (WAN)
ICT R 3.68 sec/con Average time to initiate a remote connection (WAN)

Table 1: Parameters derived from the prototype

processing in CQD. Let t be a result tuples and size(t) defines the tuple size. The network cost N

for transferring t from peer D to peer P is:

N(t, D → P ) = Cn(D → P ) +
size(t)

Tr(D → P )
, (1)

where Cn(D → P ) is the cost of establishing a connection between the two peers and Tr(P → D)

is the transfer rate between D and P . Hence, the processing cost, c(p), for peer p, is defined as:

c(p) =
i=n∑

i=1

[Freq(qi)× (Ei + N (t, D → Pi))] (2)

The c(p) defines the traditional centralized approach for processing incoming data stream re-

quests. Suppose D delegates a stream to a set of peers as intermediate peers. It then redirects

requests to these intermediate peers instead. The cost of peer p will be defined as c′(p). The number

of requests will decrease when more requests are redirected to newly delegated nodes 2. Now, by

delegating the processing load to intermediate peers, the value of m < n, and hence c′(p) < c(p).

c′(p) =
i=m∑

i=1

[Freq(qi)× (Ei + N (t, D → Pi))] (3)

Overall, the total cost of the CQC will be determined by Ccq where the costly CQD is always the

bottleneck of the system (i.e., each peer is autonomous and work in parallel). Obviously, in an

environment with a single CQD, n = 1, hence itself becomes the bottleneck.

Ccq = max
i=1...n

[
c′(pi)

]
(4)

4.2 Experiment Setup

CQ-Buddy is built based on the BestPeer [12] architecture. For a more realistic simulation, we

employ real-life parameters (see Table 1, which were also used in [8]). These parameters are

subsequently used by a simulator to evaluate the behavior of CQ-Buddy.

Recall Definition 3, the similarity of two queries Q1 and Q2 is defined by QuerySim(Q1, Q2) ∈
{0, 1}. In our experiments, we introduce a parameter, called degree of overlap, which is denoted

2since redirection is a simple process, we assume it incurs zero cost in our model

15



as α ∈ {0, 1}. The parameter α is the probability value used to determine whether the incoming

queries are similar with existing queries in the local queries pool. When α = 0, there is no overlap

between the incoming query and existing running queries, and all queries are different. When

α = 1, each incoming query is similar to one of the running queries.

4.2.1 Data sets

We run our experiments against two different data sets, R and S. Each relation consists of 10,000

tuples, and we assume every join query in our experiments is a one-to-one, (i.e., each tuple in one

relation finds a corresponding matching tuple in the other relation) binary join. The size of each

tuple is about 1K bytes and the data values are uniformly distributed. However, 20% of the data

region is considered hot region following the 80-20 rule. Relation S never changes throughout the

whole experiment process; it stands for static relations, such as company profile, staff profile, etc.

Relation R is a dynamic data source where the data is modified frequently, e.g., the stock market.

It consists of a unique Identity and a Change Ratio (define the value change over two subsequent

sessions).The Change Ratio follows a normal distribution with a mean value of 0 and standard

deviation of 1.0. We note that a hot region need not be having a high Change Ratio, and vice

versa, e.g., high trading volume in stock may not always cause high variations of trading price and

vice versa. We denote by Modified Ratio the percentage of tuples being modified at any given time.

We set Modified Ratio as 10%; 80% of the modified data comes from the hot region3. Queries

computation are directly against the data changes. This is a fair assumption since both methods

(i.e., existing method and our proposed methods) are working on the same dataset and we are only

interested in the relative performance gain.

4.2.2 Query

In our experiments, we use three types of queries to represent the possible queries that users may

submit to a CQS. We categorize queries into Simple Selection Query, Range Selection Query and

Join Query.

Simple Selection Query:

Example: Notify me when Intel stock price changes

Range Selection Query:

Example: Notify me all the stocks whose price changed more than 5%

3This assumption is logical; since a region is hot, it will be modified more frequent than others

16



Join Query:

Example: Notify me of all stocks whose price changed more than 5%

and their related company profile.

Note: Assuming stock info and company profile stored in different relation.

Simple Selection Query is a group of queries that have the same expression signature on the equal

selection predicate on Identity. Range Selection Query is a group of queries that have the same

expression signature on range selection predicate on Change Ratio.Join Query is a class of queries

that contain expression signature for both selection and join operators. Selection operators are

pushed down under join operators.

(a) Centralized
CQS.

(b) CQ-Buddy
without SR.

(c) CQ-Buddy
with SR.

Figure 7: System configurations with can-shape represent data source provider. Dashed arrow lines
represent data stream flow, and solid lines local similar queries optimization.

4.3 Experimental Results

In this section, we report the results of our evaluations on a wide range of configurations.

4.3.1 CQ-Buddy vs. Traditional CQS

In the first experiment, we compare the performance of existing CQS with CQ-Buddy. Existing

CQS can generally be classified into two types. In the first type of CQS, queries are shared (grouped

sharing)[1, 19] techniques. In the second type of CQS, queries are not shared. [9]. We refer to the

former CQS as GroupCQ and the latter as TraditionalCQ. In addition, we note that there are two

configurations for CQ-Buddy; CQ-Buddy that employs data stream reallocation (SR) strategy and

CQ-Buddy without SR strategy (see Figure 7(c) and Figure 7(b)).

17



We employ the network topology as shown in Figure 7(a) for GroupCQ and TraditionalCQ

setup, where there is only one data stream provider and a large number of autonomous CQ peers.

Similarly for CQ-Buddy w/o SR, there is only one data stream provider in the network. In contrast

to these configurations, data steams are reallocated to 10% of the delegated peers in the CQ-Buddy

configuration. For example, if there are 100 peers requesting stream from CQD, SR strategy will

randomly choose 10 of the peers as intermediate stream peers.

Each CQ peer consists of 10 basic queries, and another query set consisting of 50 queries

following the 80-20 rule (i.e., 80% of the queries access a hot region representing 20% of the entire

data stream) is introduced into the system at runtime. Queries are submitted to the CQD. As in

existing single CQS, a new incoming query is checked to determine whether it can be shared with

one of the basic queries. If the incoming queries cannot be shared, they are processed separately

from the existing queries. Hence, we control this property with α = 0.4. However, since there is

no query-sharing for the TraditionalCQ system, we turn this feature off for TraditionalCQ in the

experiments. If there are more than one CQD, i.e., CQ-Buddy, the Random (refer Section 3.4)

CQD selection policy will be used, where each CQD has a fair chance of being selected.

We vary the number of peers that request stream from CQD from 100 to 1000 peers. Three

types of queries are introduced in the experiments: Simple Selection Query, Range Selection Query

and Join Query. Figure 8 shows the results of the experiments.

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800 900 1000

C
os

t (
C

cq
)

Peers

TraditionalCQ
GroupCQ

CQ-Buddy w/o SR
CQ-Buddy

(a) Evaluation on vary number of
peers.

(b) Cost Ccq for different query types on 1000 peers.

Figure 8: The effects of number of request peers and query types on different CQS.

From Figure 8(a), we observe that TraditionalCQ is the worst compared to other CQS. This is

18



expected since there is no sharing of similar queries. Hence, each of the incoming query generates

a new independent process and bundles the system. On the other hand, in a GroupCQ system,

similar queries can be grouped together to share computational power. CQ-Buddy w/o SR behaves

like a GroupCQ system since both of them only consider one data stream provider. However, unlike

GroupCQ system which is autonomous and where all queries grouping and sharing strategy are

based on its local decision, CQ-Buddy w/o SR is able to share queries among peers and reduce

the number of queries involved in the CQD. This is reflected in the graph where CQ-Buddy w/o

SR outperforms GroupCQ system. However, since there is only one single CQD, it eventually

becomes a bottleneck. CQ-Buddy, which employs the SR strategy, can significantly reduce the load

on CQD to provide lower cost, Ccq, compared to other CQS. Figure 8(b) shows the Ccq based on

different queries. From the results, we can observe that through sharing queries among peers and

data stream reallocation, there is significant performance improvement. The gain is more obvious

for join queries than selection queries because join queries are computationally more expensive

than selection queries. CQ-Buddy performed the best in all the three different query types. This is

because CQ-Buddy employs internal query sharing, external query sharing and stream reallocation,

and these reduce the computation needed for each query and eliminate the bottleneck.

4.3.2 Evaluation of Stream Reallocation Strategy

When a peer is overloaded, stream reallocation proves to be an efficient technique for reducing the

load at the data stream provider, thus achieving load balancing among the peers. However, one

interesting issue needs to be addressed; “what is the optimal number of peers that should be used

for stream reallocation?”. If this is set too high, it may waste resources without any significant

performance gain. On the other hand, if it is set too low, issues relating to overloading may

still exist. In most systems, it may be easy to collect statistics on the average number of peers’

connection and queries that are submitted. We hypothesize this in the experiment, and make use

of a control parameter, Freq. Freq is an integer number indicating the average number of queries

that would be submitted by a peer in a second. In addition, we introduce the following metric,

Cost Saving Ratio, to measure the results. The Cost Saving Ratio is defined as:

Cost Saving Ratio = wcost−cost(p)
wcost

where wcost is the cost of answering the query in the worst case, and cost(p) is the cost of answering

the similar query with p number of peer stream reallocation. For the worst case scenario, we assume

one single CQD handling all stream request (Figure 7(a)) and no queries sharing either internally

or externally (i.e., among peers).

19



In the following experiments, we will make use of configurations similar to the previous exper-

iments. At any time, there will be 100 peers in the queue that are waiting to be processed. In

Figure 9(a), we vary the percentage of stream delegation peers from 1% up to 50% (“0” means that

there is no stream reallocation, and all streams originate from a single CQD). We compare the Ccq

for different types of queries. The Freq is set to 100, i.e., each peer will submit 100 queries to the

CQD. From Figure 9(a), when the percentages of delegated peers increase, the cost for processing

(a) Cost for different query vs delegation peers (%). (b) Cost saving ratio vs. delegation peers (%).

Figure 9: Load vs. number of delegation peers.

queries decreases accordingly. This is because the load has been distributed among intermediate

peers. The performance gain can be observed for all the three different types of queries. However,

we observe that when more than 10% of the peers play the role of intermediate peers, the perfor-

mance gain is not as significant. For example, when we increase the percentages of intermediate

peers from 10% to 20%; Join Query gains less than 4% of cost saving, and Simple Selection Query

gains only another 0.01% of cost saving. The reason is that the load of each peer decreases when

more peers are delegated for doing similar processing. There will come a stage when increasing

the number of delegated peers will not be feasible since each of them may be under-loaded, and

the performance gain will not be significant. Based on the observation, we hypothesize that 10%

of delegated peers are enough to achieve an optimum, whereby increasing the number of delegated

node will not lead to further significant performance improvement.

In order to verify this hypothesis, we increase the Freq from 10 to 100, which can be seen as

increasing the load for a CQD. The results are presented in Figure 9(b). We evaluate the Cost

Saving Ratio, which compares the percentage of stream delegation peers. In addition, we consider

join queries, as it is the most computationally expensive queries amongst the three types of queries

which we considered earlier. From the result, we observe that the cost saving will be minimum

when more than 10% delegation peers are used.

20



4.3.3 Evaluation of Stream Selection Policy

The next experiment evaluates the performance of the Random, Round Robin and Adaptive-L

stream selection strategies. From the result of Experiment 4.3.1, CQ-Buddy has been shown to be

a promising technique. Thus far, we have assumed that all peers have equivalent processing power

and equivalent resources. However, this may not hold in practice. In this experiment, we introduce

a “CPU” parameter where CPU ∈ {0, 1}. This parameter is indicative of the computing power

range of a peer. Based on the zipfian distribution with θ = 0.4, the highest range computing power

is around 10 times of the lowest range. First, we fix the query type to Join Query and vary the

number of peers from 100 to 1000. As in the previous experiment, each peer introduces 50 queries

on runtime and 10% of intermediate stream providers exist in the network. The results are shown

in Figure 10.

0

500

1000

1500

2000

2500

3000

3500

0 500 1000

C
os

t (
C

cq
)

Peers

Random
Round_Robin

Adaptive-L

(a) Cost Ccq vs peers. (b) Cost Ccq vs. stream selection policies.

Figure 10: Effect of different stream selection policy in heterogeneous peers environment.

As shown in Figure 10(a), we note that when the number of peers involved in the system

increases, the Ccq to complete each set of queries from a peer also increases. The cost increase is

almost linear for all three approaches since the load increases when more peers submit their queries.

The Random policy is the worst among the three policies because in an environment with a large

number of medium/low range peers, the probability that a medium/low range peer being selected

is the highest. On the other hand, the Round Robin policy ensures that the most powerful range

peers are selected at a fixed rate. However, it cannot avoid low range peers being selected as in the

Random policy. This is the reason Adaptive-L outperforms Random and Round Robin since it is

aware of the capabilities of each peer, and can make a precise selection of peers with the highest

21



capabilities and lowest load.

More interesting is Figure 10(b) where we fix the number of peers at 1000, and evaluate different

query types on selection policies. Again, Adaptive-L outperforms the other two approaches. In

addition, we note that Adaptive-L is not sensitive to the different type of queries.

5 Related Works

Continuous queries (CQ) are used extensively as a useful tool for the monitoring of updated infor-

mation. CQ is a persistent query that notifies the user when the source of data changes or becomes

available. The concept of continuous queries was first introduced by Terry et al. [18] who imple-

mented timer-based continuous queries over append-only database. The approach is too restricted,

i.e., it is confined to append-only systems and disallows deletions and modifications. Hence it is

not adaptable to dynamic environments such as those found in a distributed or P2P context.

There has been considerable research done in continuous queries processing. More recently,

there are several CQ systems developed or proposed for monitoring and delivering information on

the Internet. OpenCQ [9] employs an SQL like query language and runs on top of a distributed

information mediation system that integrates heterogeneous data sources. The NiagaraCQ system

[1] and Xyleme system allow the monitoring of XML documents found on the web. In addition,

both CACQ [10] and AdaptiveCQ [19] take note of the need for adaptivity and propose techniques

based on the eddies mechanism to facilitate adaptive continuous query processing.

All the systems mentioned above are fundamentally different from CQ-Buddy in several ways.

First, most of these existing systems utilize a centralized approach in which the server performs the

processing and treat the clients as simply receiving and presenting the information to the end-user.

This is typical of a client-server approach. For example NiagaraCQ and TriggerMan [6] explore the

similarity among large number of queries and use group optimization to achieve system scalability.

Client nodes are treated as simple input/output with very limited participation, i.e., the client

sends a CQ query to the CQ server, and waits for results. This contradicts with the P2P principle

of information sharing and wastage of potential resources available at the clients’ end. CQ-Buddy

on the hand, explores the potentials of each participant in the network based on P2P technologies.

The requirements of our system match the characteristics of the P2P technology perfectly. In a

pure P2P environment there are no global services, resource or schema control. P2P systems, like

Napster [11], Gnutella [4] , ICQ [7] and SETIHome provide for content sharing, communication and

sharing of computational power. An evaluation of P2P systems can be found in [21]. These systems,

they are limited to transferring content at the object level and cannot support the execution of

22



complex queries across multiple sources, nor use intermediate results in order to answer consecutive

queries.

Recently, the peer-to-peer (P2P) computing model has been increasingly deployed for a wide va-

riety of applications in the area of database management, including data mining, replica placement,

resource trading, data management and file sharing (see [14, 15]). Piazza [5] is the first system to

deal with database management issues in P2P systems. It provides a scheme for the indexing of

views, mechanisms for distributing an index in P2P network and the exploitation of materialized

views. Bernstein et al. [16] propose the Local Relational Model (LRM) to solve data management

issues in P2P environment. Each peer in the P2P network consists of a local relational database,

with a set of acquaintances that define the network topology. For each acquaintance link, domain

relations define translation rules between data items, and coordination formulas define semantic

dependencies between the two databases. PeerDB [13] is a P2P-based system for distributed data

management and sharing. It supports share data without a shared global schema by employed

Information Retrieval based approach. These systems focus mainly on data placement and man-

agement problems, and are fundamentally different from CQ-Buddy, as CQ-Buddy is focused on

data stream optimization in the P2P network.

CQ-Buddy builds on and extends BestPeer [12] for CQ applications. Briefly, BestPeer is a

generic P2P system designed to serve as a platform to develop P2P applications easily and efficiently.

It has the following features: (i) it employs mobile agents; (ii) it shares data at a finer granularity

as well as computational power; (iii) it can dynamically reconfigure the BestPeer network so that

a node is always directly connected to peers that provide the best service; (iv) It employs a set of

location independent global name lookup (LIGLO) servers to uniquely recognize nodes whose IP

addresses may change as a result of frequent disconnection and reconnection.

6 Conclusion

In this paper, we have presented a novel distributed system that processes continuous queries using

Peer-to-Peer technology, called CQ-Buddy. We have shown that CQ-Buddy is able to provide

significant performance gains by sharing continuous queries with other peers in an efficient and

effective manner. The system is fully distributed and highly scalable as there is no single-point

failure and single-source bottleneck. CQ-Buddy network is dynamic and it does not require any

specific structure. It also does not require any predictable pattern of participation from the peers.

Peers in the CQ-Buddy network also turn their heterogeneity to their advantage, so that “weaker”

peers such as PDAs and other mobile devices are helped by “stronger” peers for complex queries

23



processing.

As shown in the experiment evaluation, CQ-Buddy achieves significant performance gains with

respect to traditional CQ systems. This is accomplished by (i) two-phase query optimization

techniques that share queries internally and externally; (ii) the reallocation of single data stream

to a number of intermediate peers in order to eliminate the single source bottleneck; and (iii) the

stream selection policy which makes precise selections based on the current load and capabilities

of peers.

Acknowledgements

We would like to thank Beng Chin Ooi, Kian Lee Tan and Ao Ying Zhou for their insight and

discussions on the project, and their comments on the paper. The project was in part supported

by the NSTB/MOE research grant RP960668.

References

[1] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable continuous query system for

internet databases. In ACM SIGMOD Intl. Conf. on Management of Data, pages 379–390, 2000.

[2] M. Cherniack, M. Franklin, and S. Zdonik. Expressing user profiles for data recharging. In In IEEE

Personal Communications, pages 6–13, 2001.

[3] Freenet Home Page. http://freenet.sourceforge.com/.

[4] Gnutella Development Home Page. http://gnutella.wego.com/.

[5] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What can databases do for peer-to-peer? In

WebDB Workshop on Databases and the Web, 2001.

[6] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha, S. Parthasarathy, J. B. Park, and

A. Vernon. Scalable trigger processing. In Intl. Conf. on Data Engineering (ICDE), pages 266–275,

1999.

[7] ICQ Home Page. http://www.icq.com/.

[8] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias., and K. L. Tan. An adaptive peer-to-peer network for

distributed caching of olap results. In ACM SIGMOD Intl. Conf. on Management of Data, pages 25–36,

2002.

24



[9] L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven information delivery.

In IEEE Knowledge and Data Engineering, Special Issue on Web Technology, volume 11, No.4, pages

610–628, 1999.

[10] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive continuous queries over

streams. In ACM SIGMOD Intl. Conf. on Management of Data, pages 49–60, Madison, USA, 2002.

[11] Napster Home Page. http://www.napster.com/.

[12] W.S. Ng, B.C. Ooi, and K.L. Tan. Bestpeer: A self-configurable peer-to-peer system. In Intl. Conf. on

Data Engineering (Poster) (ICDE), page 272, 2002.

[13] W.S. Ng, B.C. Ooi, K.L. Tan, and A.Y. Zhou. Peerdb: A p2p-based system for distributed data sharing.

In Intl. Conf. on Data Engineering (ICDE), 2003.

[14] International Workshop on P2P Systems. http://www.cs.rice.edu/Conferences/IPTPS02/. 2002.

[15] B.C. Ooi, K.L. Tan, H.J. Lu, and A.Y. Zhou. P2p: Harnessing and riding on peers. In The 19th

National Conference on Data Bases, August 2002.

[16] A. B. Philip, G. Fausto, K. Anastasios, M. John, S. Luciano, and Z. Ilya. Data management for

peer-to-peer computing: A vision. In WebDB Workshop on Databases and the Web, 2002.

[17] A. Rowstron and P. Druschel. Past: A large scale persistent peer-to-peer storage utility. In Workshop

on Hot Topics in Operating Systems (HotOS), November 2001.

[18] D. Terry, D. Holdberg, D. Nichols, and B. Oki. Continuous queries over append-only database. In ACM

SIGMOD Intl. Conf. on Management of Data, pages 321–330, 1992.

[19] W. H. Tok and S. Bressan. Efficient and adaptive processing of multiple continuous queries. In Intl.

Conf. on Extending Database Technology (EDBT), pages 25–27, Prague, Italy, 2002.

[20] C.A. Waldspurger and W.E. Weihl. Lottery scheduling: Flexible proportional-share resource manage-

ment. In First Symposium on Operating Systems Design and Implementation, pages 1–11, 1994.

[21] B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-peer systems. In Intl. Conf. on Very Large

Data Bases (VLDB), pages 561–570, 2001.

25


