
PeerDB: A P2P-based System for Distributed Data Sharing

Wee Siong Ng1 Beng Chin Ooi1 Kian-Lee Tan1 Aoying Zhou2

1Dept Computer Science 2Dept Computer Science and Engineering
National University of Singapore Fudan University

3 Science Drive 2, Singapore 117543 Shanghai, China, 200433

Abstract

In this paper, we present the design and evalu-
ation of PeerDB, a peer-to-peer (P2P) distributed
data sharing system. PeerDB distinguishes itself
from existing P2P systems in several ways. First,
it is a full-fledge data management system that sup-
ports fine-grain content-based searching. Second, it
facilitates sharing of data without shared schema.
Third, it combines the power of mobile agents into
P2P systems to perform operations at peers’ sites.
Fourth, PeerDB network is self-configurable, i.e., a
node can dynamically optimize the set of peers that
it can communicate directly with based on some op-
timization criterion. By keeping peers that provide
most information or services in close proximity (i.e,
direct communication), the network bandwidth can
be better utilized and system performance can be op-
timized. We implemented and evaluated PeerDB on
a cluster of 32 Pentium II PCs. Our experimental re-
sults show that PeerDB can effectively exploit P2P
technologies for distributed data sharing.

1 Introduction

Peer-to-peer (P2P) technology, also called peer
computing, is an emerging paradigm that is now
viewed as a potential technology that could re-
architect distributed architectures (e.g., the Internet).
In a P2P distributed system, a large number of nodes
(e.g., PCs connected to the Internet) can potentially
be pooled together to share their resources, informa-
tion and services. These nodes, which can both con-
sume as well as provide data and/or services, may
join and leave the P2P network at any time, result-
ing in a truly dynamic and ad-hoc environment. The
distributed nature of such a design provides exciting
opportunities for new killer applications to be devel-
oped.

Many domain specific P2P systems have already
been deployed [19], e.g., Freenet [7], Gnutella
[8], Napster [17], ICQ [11], Seti@home [20] and
LOCKSS [15]. However, most of these P2P sys-
tems are limited in several ways. First, they provide
only file level sharing (i.e., sharing of the entirety of
a file) and lack object/data management capabilities
and support for content-based search. Unlike exist-
ing work on distributed data management, data may
be shared without predefined schema! Second, they
are limited in extensibility and flexibility. As such,
there is no easy and rapid ways to extend their appli-
cations quickly to fulfill new users needs. Third, a
node’s peers are typically statically defined.

In this paper, we present PeerDB, a P2P-based
system for distributed data sharing. PeerDB has sev-
eral distinguishing features. First, each participat-
ing node is a full fledge object management sys-
tem that supports content-based search. Second, in
PeerDB, users can share data without a shared global
schema. Third, PeerDB adopts mobile agents to as-
sist in query processing. Since agents can perform
operations at the peers’ sites, the network bandwidth
is better utilized. More importantly, agents can be
coded to perform a wide variety of tasks, making
it easy to extend the capabilities of a PeerDB node.
For example, an agent may further manipulate the
data retrieved from a node to ship back only sum-
marized data, or filter away uninterested objects. Fi-
nally, PeerDB supports mechanisms to dynamically
keep promising (or best) peers in close proximity
based on some criterion. For example, peers that are
most frequently accessed are directly communicable
while nodes that are less frequently accessed can be
reached through peers. This significantly reduces the
response time to queries.

We implemented PeerDB, a prototype P2P dis-
tributed object management system that incorporates
all the above features. To evaluate PeerDB, we pro-
pose a systematic methodology for evaluating P2P
systems. Our methodology considers both efficiency

1



and effectiveness (quality of answers) of P2P sys-
tems. We conducted our experiments on a cluster of
32 Pentium II PCs. Our experimental results show
the effectiveness of PeerDB for distributed data shar-
ing.

The rest of this paper is organized as follows.
In the next section, we discuss what a P2P dis-
tributed data management system is. Section 3 gives
a quick overview of BestPeer, a P2P platform in
which PeerDB is based upon. In Section 4, we
present the PeerDB design and its features. Section 5
presents an extensive experimental study to evaluate
PeerDB. In Section 6, we review some related works,
and finally, we conclude in Section 7 with directions
for future work.

2 P2P Distributed Data Management:
What is it?

As noted in the introduction, practically all exist-
ing P2P systems are designed to support sharing of
data at a coarse granularity (e.g., files, documents).
In this section, we first distinguish between P2P sys-
tems and distributed database systems. We then “de-
fine” P2P distributed data management by looking at
three examples (due to space constraints) of how P2P
technology can be employed for distributed database
applications. This will also serve to motivate the
need for database technology in P2P systems.

2.1 P2P vs Distributed Database Systems

There are several features that distinguish P2P
systems from distributed database systems (DDBS).

1. In P2P systems, nodes can join and leave the
network anytime. In DDBS, nodes are added to
and removed from the network in a controlled
manner, i.e., when there is a need for growth or
retirement.

2. In P2P systems, there is usually no predeter-
mined (global) schema among nodes. Queries
are largely based on keywords. There are sev-
eral reasons for this. First, most of the cur-
rent applications do not require a fixed schema.
(Napster is one exception where data is shared
with a fixed schema, the one that describes mu-
sic files.) Second, as nodes can join and leave
the network at anytime, a fixed schema does
not reflect the actual information that may be
available at a single time. In DDBS, nodes are
typically stable and have some knowledge of a
shared schema.

3. In P2P systems, nodes may not contain the
complete data. Further, nodes may not be con-
nected. Thus, answers to queries are typically
incomplete. By “completeness”, we mean all
answers that satisfy a query. In DDBS, one ex-
pects and can actually retrieve the complete set
of answers.

4. In P2P systems, content location is typically by
“word-of-mouth”, i.e., a node routes its query
to its neighboring nodes, and so on. In DDBS,
the exact location to direct the query is typically
known.

Based on the above points, we do not consider
data integration systems to be P2P distributed data
management systems (even if each node has the ca-
pabilities to act as middleware and server).

2.2 P2P Distributed Data Management Sys-
tems Applications

Instead of formalizing the concept of P2P dis-
tributed data management systems, we show with
sample applications on what such systems may be
like.

Health Care

In a hospital, each specialist has a group of pa-
tients that are solely under his care. While some
patient data are stored in a centralized server of the
hospital (e.g., name, address, etc), other data (e.g.,
X-rays, prescription, allergy to drugs, history, reac-
tion to drugs, etc) are typically managed by the spe-
cialist on his personal PC. For most of these patients,
the specialist is willing to share their data, but there
are always some cases that he is unwilling to share
for different reasons (e.g., part of his research pro-
gram on a new drug, etc). By making the sharable
patient data available to other specialists, it allows
them to look for other patients who may have sim-
ilar symptoms as their own patients, and hence can
help them in making better decisions on the treat-
ment (e.g., drugs to prescribe, reactions to look out
for, etc).

Here, we can deploy a P2P distributed manage-
ment system: (1) any specialist can join/leave the
network; (2) the answers need not be complete (i.e.,
missing data from some specialists is not critical),
(3) nodes have to search for content as in P2P sys-
tems, (4) the schema defined by each specialist may
be different, (5) there is a need for data management,
and (6) each specialist has something to share and is
also interested in others’ data.



Genomic Data

The discovery of new proteins necessitates com-
plex analysis in order to determine their functions
and classifications. The main technique that sci-
entists use in determining this information has two
phases. The first phase involves searching known
protein databases for proteins that “match” the un-
known protein. The second phase involves analyzing
the functions and classifications of the similar pro-
teins in an attempt to infer commonalities with the
new protein. While there are several known servers
on genomic data (e.g., GenBank, SWISS-PROT and
EMBL), there are many more data that are produced
each day in the many laboratories all over the world.
These scientists create their own local databases of
their newly discovered proteins and results, and are
willing to share their findings to the world! Clearly,
this is an application for P2P distributed data man-
agement systems for the same reasons as the health
care application.

Data Caching

In the above two examples, each participant is ac-
tively involved in the process of consuming and sup-
plying data. P2P distributed data management can
also be deployed in passive nodes: nodes that are
used to share resources (storage or computational
power) on data that they may or may not be inter-
ested. Caching results from earlier queries is one
such example - a node may have issued a query to
some server (e.g., a data warehouse), the results of
the query can be cached on the node (or some other
neighboring nodes). In this way, another node that
requests for data that overlap the query result can
potentially obtain partial answers quickly from this
node, and the remainder from the original server.
This also lightens the load on the original server.
Indeed, Kalnis et. al. have shown how distributed
caching can be deployed in P2P environments to
speed up OLAP queries [12].

3 BestPeer: An Adaptive Platform for
P2P Applications

PeerDB is a database application that is imple-
mented on top of BestPeer [1, 18]. We shall briefly
review the features of BestPeer in this section.

BestPeer is a generic P2P system designed to
serve as a platform on which P2P applications can
be developed easily and efficiently. The network
consists of two types of entities: a large number of
computers (nodes), and a relatively fewer number of
location independent global names lookup (LIGLO)

servers. Each participating node runs the BestPeer
(Java-based) software and will be able to commu-
nicate or share resources with any other nodes (i.e.,
peers) in the BestPeer network.

BestPeer has several features that distinguish it-
self from existing P2P systems. First, BestPeer inte-
grates two powerful technologies: mobile agents and
P2P technologies. While P2P technology provides
resource sharing capabilities amongst nodes, mobile
agents technology further extends the functionalities.
In particular, since agents can carry both code and
data, they can effectively perform any kind of func-
tions. With mobile agents, BestPeer not only pro-
vides files and raw data, it also provides processed
information (e.g., summaries). Mobile agents can
also be dispatched to collect information (e.g., what
files/content are sharable, statistics, etc.) on the en-
tire BestPeer network.

Second, BestPeer not only facilitates a finer gran-
ularity of data sharing where partial content of a file
may be shared, it also shares computational power.
The requester sends his/her request for a file together
with an algorithm (executable code) that operates on
the file. In other words, the requester performs the
filtering task at the provider’s end! Third, a node in
the BestPeer network can dynamically reconfigure
itself by keeping peers that benefit it most (subject to
individual node’s definition of ‘most benefit’).

Finally, BestPeer introduces a Location-
Independent Global Names Lookup Server (LIGLO)
to provide each node with a unique global identity.
In this way, nodes that may have different IP address
can be “recognized” as a single unique entity.
LIGLO is a node that has a fixed IP and running
Location-Independent Global Names Lookup Server
software. It provides two main functions: generates
a BestPeer Global Identity (BPID) for a peer and
maintains peer’s current status, such as the current
IP address and whether the peer is currently online
or offline (if this information is available).

Due to the security risks posed by such a poten-
tially powerful platform, the basic BestPeer platform
provides a secure access to a node’s computing re-
sources. Each node comprises two types of data, pri-
vate data and sharable data. Nodes can only access
data that are sharable. This is enforced by a secu-
rity policy that restricts applications to user-specified
locations established during platform initialization.
Communications between nodes have also been pro-
vided with 128 bit encryption to protect the sensitive
data from being eavesdropped and viewed as they
travel through the BestPeer network.



4 Peering Up for Distributed Data
Sharing

In this section, we will present PeerDB, a pro-
totype P2P-based system for distributed data shar-
ing. PeerDB’s P2P-enabling technologies are pro-
vided by BestPeer [1, 18]. However, it extended
BestPeer in the following ways. First, data in each
node is managed by a database system. In other
words, PeerDB is a network of database-enabled
nodes. Second, data can be shared without a global
schema. Third, query processing is assisted by mo-
bile agents. Fourth, each node can reconfigure itself
based on some optimization criterion from the an-
swers returned. We shall discuss these features here.

4.1 Architecture of a PeerDB Node

Figure 1 illustrates the internals of a PeerDB
node. There are essentially four components that
are loosely integrated. The first component is a data
management system that facilitates storage, manipu-
lation and retrieval of the data at the node. We have
used the MySQL [2] which is a popular Open Source
Database as our storage server. Thus, the system can
be used on its own as a stand alone DBMS outside of
PeerDB. We note that the interface of the data man-
agement system is essentially an SQL query facility.
For each relation that is created, the associated meta-
data (schema, keywords, etc) are stored in a Local
Dictionary. There is also an Export Dictionary that
reflects the meta-data of objects that are sharable to
other nodes. Thus, only objects that are exported can
be accessed by other nodes in the network. We note
that the meta-data associated with the Export Dictio-
nary is a subset of those found in the Local Dictio-
nary, and the distinction here is a logical one (as the
actual implementation minimizes redundancy). We
shall defer the discussion on how the Export Dictio-
nary will be used, and the details on the meta-data
when we addressed the query processing strategy.

The second component is a database agent system
called DBAgent. DBAgent provides the environ-
ment for mobile agents to operate on. Each PeerDB
node has a master agent that manages the query of
the user. In particular, it will clone and dispatch
worker agents to neighboring nodes, receive answers
and present them to the user. It also monitors the
statistics and manages the network reconfiguration
policies.

The third component is a cache manager. We
shall defer the discussion of the cache manager to
a later subsection. Here, it suffices for us to know
that we are dealing with caching remote data in sec-
ondary storage, and the cache manager determines

the caching/replacement policy.
The last component is the user interface. This

provides a user-friendly environment for user to sub-
mit their queries, to maintain their sharable objects,
and to insert/delete objects. In particular, users
search for data using SQL-like queries.

Interface

User

Object 
Management 
System

Export Dictionary

Local Dictionary

DBAgent

Query

DBAgent
DBAgent

PeerDB node

PeerDB
Node PeerDB

Node

Cache Manager

Figure 1. PeerDB node architecture

4.2 Sharing Data Without Shared Schema

One of the main objectives of PeerDB is to allow
users to manage their (private and sharable) data us-
ing a database management system (DBMS). How-
ever, as noted, there is no predetermined and uni-
form schema that nodes share. Unless users interact
with one another somehow, we can expect data to
be defined differently by different users even if they
may have interests in data from a common domain.
For example, in naming a relation, a genome scien-
tist may call his set of protein database by the pro-
tein name (e.g, kinases, annexin) while another may
name them after the species (e.g, mouse, human, ze-
brafish). Similarly, at the attribute level, one scientist
may call the length of sequences as length while
another will use the term len. A more complicated
problem would be for one to create a single “uni-
versal” schema, while another may “normalize” his
database to multiple tables. Thus, it is difficult to lo-
cate data if the traditional method of exact matching
of relation names/attributes is used.

To address this issue, we adopt an Information
Retrieval (IR) [4] based approach. For each relation
that is created by the user, meta-data are maintained
for each relation name and attributes. These are es-
sentially keywords provided by the users upon cre-
ation of the table, and serve as a kind of synony-
mous names. (One can think of this as a minia-
ture thesaurus.) Continuing with our examples, for
a table of Kinases proteins, while the relation name
may be Kinases, the keyword protein will be
useful during searching. Similarly, two users defin-
ing length of a sequence as len and length re-



spectively are likely to have the common keyword
length. In this way, potentially relevant data can
be determined using the following relation-matching
strategy:

• Consider a query (R, A, C) where R is the set
of relations A is the set of target attributes, and
C is the set of conditions. (This corresponds to
a simple SPJ query in SQL.) Let V denote all
attributes that appear in A and C.

• R is searched against keywords for relation
names; and V is searched against keywords for
attribute names. Note that this search involves
looking for matching keywords of R against
keywords for other relations; the same holds for
attributes. The result of this search process will
be a list of relations whose relation name key-
words match R (or their keywords) and/or at-
tribute keywords match attribute names in V (or
their keywords).

• Given a query Q of the form (R, A, C) and a re-
lation D with attributes T , the degree in which
D matches Q can be computed as follows:

Match(Q,D) =
(wtr∗r)+

(
wta∗ N

match

(A∪C,T )

)

wtr+(wta∗N(A∪C))

where wtr and wta are weights assigned to re-
flect the importance of matching relation and at-
tribute names respectively. r takes value of 1 or
0; r is 1 if and only if D and R share some
common matching keywords, otherwise, r is 0.

N
match

(A ∪ C, T ) refers to the total number of

matching keywords between attributes involved
in Q and those of D. N(A ∪ C) indicates the
total number of distinct keywords for attributes
in Q. The set of relations that potentially con-
tain answers to Q are those that have scores
above a certain threshold value.

With the above strategy to locate matching relations,
we note that we can share data without explicit shar-
ing of schema. This flexibility is also an important
distinction between PeerDB and existing distributed
DBMS. Note that the relations and meta-data will be
returned to the user first, who will then decide the
data that is of interests (see the next section on query
processing strategies).

We illustrate the strategy with an example.
Suppose we have four peers that share genomic
data. Peer P1 defines a relation Kinases(SeqID,
length, proteinSeq). Peer P2 defines a relation
Protein(SeqNo, len, sequence). Peer P3 defines
two relations ProteinKLen(ID, seqLength) and Pro-
teinKSeq(ID, sequence). Peer P4 defines a relation

Protein(name, char). Figure 2 shows the keywords
defined for these relations by the various peers. Sup-
pose the user at peer P1 (he knows his own schema
but not the schema of other peers) issues the fol-
lowing query to look for kinases sequences that are
longer than 30 base pairs:

SELECT SeqId, proteinSeq
FROM Kinases
WHERE length > 30;

Now, since one of the keyword for Kinases (rela-
tion name) is protein, and protein is also a key-
word for P2’s relation Protein and P3’s rela-
tions ProteinKLen and ProteinKSeq, these
relations match the query relation. Similarly, we
find that the attributes SeqID, proteinSeq and
length all have matching keywords in P2 and P3.
For P3, we note that the query may have to be turned
into a join query when evaluated there. For P4, we
only have a match in relation name but not in the at-
tributes. Thus, P4 will be ranked lower than P2 and
P3. Semantically, we note that P2’s data are not actu-
ally those that P1 is interested in (since they are not
Kinases data). As such, it is important to have the
meta-data and additional information returned to the
users before fetching the data.

Peer Names Keywords

P1 Kinases protein, human
SeqID key, identifier, ID
length length

proteinSeq sequence, protein sequence
Protein protein, annexin, zebrafish

P2 SeqNo number, identifier
len length

sequence sequence
ProteinKLen protein, kinases, length

ID number, identifier
P3 seqLength length

ProteinKSeq protein, sequence
ID number, identifier

sequence sequence
Protein protein, kinases, annexin, . . .

P4 name name
char characteristics, features, functions

Figure 2. Keywords for the rela-
tions/attributes names.

4.3 Agent Assisted Query Processing

In PeerDB, we adopt a two-phase query process-
ing strategy. In the first phase, the relation match-
ing strategy is applied to locate potential relations.



These relations are then returned to the query node
for two purposes. First, it allows the user to select the
more relevant relations. This is to minimize infor-
mation overload when data may be syntactically the
same (having the same keywords) but semantically
different. Moreover, this can minimize transmitting
data that are not useful to the user, and hence better
utilize the network bandwidth. Second, it allows the
node to update its statistics to facilitate future search
process. Phase two begins after the user has selected
the desired relations. In phase two, the queries will
be directed to the nodes containing the selected rela-
tions, and the answers are finally returned.

PeerDB’s query processing is completely assisted
by agents. In fact, it is the agents that are sent out
to the peers, and it is the agent that interacts with the
DBMS. Moreover, a query may be rewritten into an-
other form by the DBAgent (e.g., a query on a single
relation may be rewritten into a join query involv-
ing multiple relations). To elaborate on the query
processing strategy, we shall distinguish two types
of queries: local query and remote query. A query
is local to a node if it is initiated there, and remote
otherwise.

4.3.1 Processing Local Query

When a user issues a query (SQL-like selection
query), a master agent will be created to oversee the
evaluation of the query. The following operations
are performed by the agent:

Phase I

• The agent “parses” the query to extract the list
of relations and attributes names.

• The relation matching strategy is applied on the
local dictionary. Promising relations can then
be returned to the user immediately.

• At the same time, the master agent will clone
relation matching agents and dispatch them to
all neighbors of the node. Besides the query,
the agent also carries with it two other informa-
tion: (a) IP address of the node that initiates the
query; (b) TTL (Time-to-live). The former is
needed to allow remote nodes to return answers
directly to the query node. The latter indicates
the lifetime of an agent. This allows the process
of cloning and forwarding to keep on going un-
til the agent lifetime is expired.

• The master agent will wait for the answers (re-
lations schema) from remote nodes. Upon re-
ceiving any answers, they will be returned to
the users for selection.

• For peers that return multiple relations, we
return the individual relations (if their scores
on the number of matching keywords ex-
ceed the threshold) as well as combinations
of relations that are related (e.g., has a key-
foreign key relationship). Referring to our
earlier example, P3 will produce three an-
swers: proteinKLen, proteinKSeq, and
proteinKLen �� proteinKSeq.

Phase II

• For each relation selected by the user, the mas-
ter agent will clone a data retrieval agent. for
that relation. One of the first tasks of the agent
is to reformulate the query so that it matches
the relation name and attributes at the target
node. Clearly, it is possible that some attributes
may be dropped because the target relation has
no such matching attributes. For combination
of relations, the data retrieval agent will also
rewrite the orginal query into a join query in-
volving the combination of relations.

• If the target relations are found locally, the
worker agent will submit a reformulated SQL
query to the DBMS to retrieve the data. The
data is then returned to the agent, formulated
for output and returned to the user.

• If the target relations are on a remote node, then
the worker agent will be dispatched with the
query node’s IP address. Answers will be re-
turned directly from the remote host to the mas-
ter agent who will then formulate and return the
answers to the user.

We note that the two phases are only logical. In fact,
as soon as relations are returned, they are shown to
the user, and the user can start selecting relations;
and as soon as a relation (or combination of rela-
tions) is selected, the agent is sent out to retrieve the
data. In this way, answers are returned progressively
(without long waiting time). Moreover, users could
be viewing answers (data) while there may be other
agents still searching the PeerDB network for candi-
date relations.

4.3.2 Processing Remote Query

As mentioned, essentially, for a remote query, it is
an agent that arrives at the node.

Phase I: Relation matching agent

• If the agent has not visited the node previously,
the TTL value is reduced by one.



• The agent will search the export dictionary.
Promising relations are then returned to the
query node at the IP address provided by the
agent.

• If TTL > 0, the agent will clone more rela-
tion matching agents and dispatch them to the
neighbors of the current node; otherwise, the
agent will be dropped.

Phase II: Data Retrieval Agent

• The agent will formulate an SQL query and
submit it to the DBMS.

• Once the answers are retrieved, they are re-
turned to the query node directly. If the re-
trieved data need to be further processed before
being returned, then the agent will perform the
task (with the code that it carries along) and re-
turn the summarized data.

• The agent may then be dropped.

4.4 Monitoring Statistics

One of the tasks of the master agent is to perform
the reconfiguration of the network based on a recon-
figuration policy selected by the user. The master
agent monitors two types of statistics. The first is the
relation information obtained from the first phase of
the query processing strategy. In particular, the key-
words of selected relations may be “exchanged” to
update the meta-data. The second is the number of
answer objects obtained from the selected relations.
This can be used to determine the nodes to be con-
nected directly.

PeerDB also extended BestPeer with a tempo-
ral locality based reconfiguration policy that favors
nodes that have most recently provided answers. It
uses the notion of stack distance to measure the tem-
poral locality. The idea works as follow. Consider a
stack that stores all the peers that return results. For
each peer that returns answers, move the peer to the
top of the stack, and push the existing peers down.
The temporal locality of a peer is thus determined by
its depth in the stack. The top k peers in the stack are
retained as the k directly connected peers, where k is
a system parameter that can be set by the node.

4.5 Cache Management

PeerDB supports caching of answers returned
from remote nodes in order to reduce the response
time for subsequent answers. For every relation that
the user retrieved (in phase II of the query process-
ing strategy), we cache the answers. Caching raises

Figure 3. PeerDB interface.

many complicated issues. We looked at three of
them here. First, the cached copy may be outdated.
To handle this, PeerDB only keeps the answers for
a fixed period of time, after which the cache is in-
validated. Second, since storage space is limited, we
adopt a LRU replacement policy: whenever we run
out of disk space, we replace the cache that is least
recently used. Finally, in a P2P environment, many
PeerDB nodes may be caching the same data. As
such, a search may give rise to multiple “copies” of
the same data. While this is a semantic issue that is to
be left to the user, we attempt to minimize the effort
as follows. For each cached relation, We also main-
tain the information on the BPID of the source node
(recall that each node has a unique identifier BPID
provided by BestPeer technology). When a node is
not the source of a relation, its response to a search
will also include the BPID of the source node. All
relations, except one, with the same keywords from
the same source node will be pruned away during
phase I of query processing.

5 A Performance Study

We implemented the PeerDB software with the
features discussed in the previous sections. Any
node that installs the PeerDB software and registers
with a predetermined set of LIGLO servers can par-
ticipate in the PeerDB network. Figure 3 shows the
PeerDB interface - window 1 shows the query in-
terface, window 2 displays the results of matching
schemas, and window 3 displays the answer tuples
from a selected relation.

In this section, we report an extensive perfor-
mance study conducted to evaluate PeerDB. We
study PeerDB in two aspects. The first studies its
relation matching strategy, and the second looks at



the performance of PeerDB.

5.1 On Relation Matching Strategy

In this section, we present the experimental re-
sults of PeerDB in the search for matching relations
in P2P environment without a global schema.

We generated a large number of relations as fol-
lows. First, we created a set of semantically equiva-
lent categories, C. In each category, we have c key-
words which are assumed to represent the same se-
mantic meaning, i.e., any two keywords refer to the
same meaning. Next, we created a set of relations,
and each relation is assigned 2-5 keywords (since
users are not expected to enter too many keywords)
selected randomly from an arbitrary category picked
from C. Each relation has a number of attributes, and
each attribute is also assigned 2-5 keywords picked
randomly from an assigned category from C.

The following query form has been used in our
experiment.

SELECT attribute_X
FROM relation_i
WHERE attribute_Y = value_1

and attribute_Z > value_2;

We use the standard precision and recall measures
as the performance metrics. Precision measures the
purity of search results, or how well a search avoids
returning results that are not relevant; recall refers
to completeness of retrieval of relevant items. We
consider a relation to be relevant to the query if more
than k keywords from the relation names match. In
our study, we have set k to be 2. This set forms the
basis for the computation of precision and recall.

For each relation that is examined, we compute its
matching score. We varied the threshold value from
0.1 to 0.9. For all the results returned, we compute
its precision and recall. The results are shown in Ta-
ble 1.

Threshold Precision Recall

0.1 0.33 0.85
0.3 0.36 0.78
0.5 0.50 0.57
0.7 1.00 0.28
0.9 1.00 0.21

Table 1. Precision and recall for varying
threshold values.

As shown in Table 1, when the threshold value is
large, the precision is high as most of the relevant

relations can be identified. In fact, in this experi-
ment, we have 100% precision when threshold is 0.7
and above. However, recall is low because of the
large number of irrelevant relations that share some
common keywords. These results are consistent with
typical IR search results, showing that the proposed
strategy is effective.

5.2 On PeerDB Performance

To evaluate PeerDB’s performance, we conducted
different sets of experiments. We first compare
PeerDB against the Client/Server (CS) Architecture.
The basic difference between the two models is that
in a P2P model the interacting processes can be a
client, server or both while in a CS model one pro-
cess assumes the role of a service provider while the
other assumes the role of a service consumer. Our
CS model has some flavors of P2P in that a node
can be both a client and a server. However, like CS
model, the server must return its result to the client -
as such the results must be returned along the query
path. We study two versions of PeerDB - a static
PeerDB where the reconfigurable feature is turned
off, and a dynamic PeerDB with the reconfiguration
feature turned on. We compare both schemes with
the CS architecture. This allows us to see the benefits
of the reconfiguration scheme. We shall denote these
two schemes as PDMS and PDMR respectively. We
also compare PeerDB with pure message-passing
based protocol and agent-based protocol. The objec-
tive in this experiment is to show the cost and effect
of using agents in PeerDB. Before we look at the
experiments and findings, we shall propose an eval-
uation methodology for P2P-based systems.

5.2.1 Evaluation Methodology

Any system has to be evaluated based on its effi-
ciency and effectiveness. The former deals with the
performance issue, while the latter deals with the
quality of the answers. Unlike existing distributed
systems, there is no clear criteria on how P2P sys-
tems should be evaluated. Like Internet search en-
gine, the answers to queries depend on the peers that
are searched, which may not include every peer in
the P2P network. In addition, every query may in-
volve different peers (since peers change over time)!

For purpose of evaluation, a controlled environ-
ment is necessary. We propose that the following
three scenarios be evaluated. First, different schemes
should be evaluated based on a fixed set of nodes.
This can be useful for a set of nodes that exploit P2P
technology to facilitate collaboration, i.e., it is essen-
tially a traditional distributed environment where all
nodes participate in answering a query. Here, we can



study how different P2P protocols or reconfiguration
strategies perform.

Second, in a P2P network, the rate at which an-
swers are returned are important. This is because the
users have no idea of which peers will be providing
the answers to his/her queries, and how many peers
will be searched. A long initial waiting time is not
likely to be acceptable to the users.

Third, the quality and quantity of the answers re-
turned are important measures too. A node may re-
turn answers quickly, but it may return only very few
answers or answers that are not very relevant to the
query. While quality is based on the semantics of the
query, quantity of answers is easy to obtain and use
as a performance metrics.

5.2.2 Experimental Setup

The experimental environment consists of 32 PCs
with Intel Pentium 200MHz processor and 64M of
RAM, and all the PCs are running on WinNT4.0
operating system. The physical network layout is
shown in Figure 4.

Figure 4. Experimental environment.

There are a total of 10,000 objects, each of which
is 10 KB. These data are randomly assigned to
nodes, such that each node holds 1,000 objects.

In practice, we expect users to be interested in
part of the entire datasets only. There will always be
some data that are of no interests to them, and will
never be accessed by them. For example, in the case
of Napster, while there are always classical music
being shared, some user who prefers contemporary
music may just dislike them totally. In our experi-
ments, we try to model this by dividing the queries of
each user as follows: (a) x% of queries are directed
at ‘hot’ data in the entire dataset. These hot data
are also frequently accessed by other users; (b) y%
of queries are directed at z% of the cold data. This
model the case that individual user may have their
own taste on cold data. (c) the remaining queries

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
om

pl
et

io
n 

T
im

e 
(m

s)

Storage Ratio

PeerDB
CS

Figure 5. Effect of storage capacity.

are directed at the remaining cold data. As default,
we set x to be 80%, y to be 15%, and z to be 20%.
Moreover, 20% of the data are hot, and 80% of them
are cold.

The experiments were conducted when the ma-
chines and the network were fully dedicated. More-
over, each node is “warmed up” to fill out its local
storage before we start to collect results on the ex-
periments. The results presented correspond to the
average of at least three different executions. The
variance across different executions was not signifi-
cant.

5.2.3 Effect of Storage Capacity on Caching

In the first set of experiments, we compare PeerDB
with the CS architecture by varying the storage ca-
pacity of each peer. We define the storage ratio to be
the size of the storage size of a node to the size of the
objects stored at the central server. Figure 5 shows
the effect of storage ratio on the response time. First,
we observe that as the storage ratio increases, both
methods’ response time decreases. This is expected
as more objects can be found in local and neighbor-
ing peers. This also clearly illustrates the benefits
of sharing storage resources. Second, we note that
PeerDB outperforms the CS model. This is expected
as the CS model requires the answers to be returned
via the search path.

5.2.4 PeerDB vs CS

In this experiment, we first evaluate the performance
of PDMS, PDMR and CS on the rate at which an-
swers are returned. The number of nodes is fixed at



60000

64000

68000

72000

76000

80000

84000

0 4 8 12 16 20 24 28 32

C
om

pl
et

io
n 

tim
e 

(m
s)

Number of peers completed

PDMS
PDMR

CS

Figure 6. Rate of returning answers.

32. A search query is issued four times, and the aver-
age time at which nodes respond are noted. Figure 6
shows the results of the experiment. In the figure, the
point (K, T) indicates that K nodes have responded
after T time units. We note that it is possible that
under different schemes, different nodes respond at
different time and with different answers. We shall
defer this discussion to the next experiment.

As shown in the figure, PDMR is still the best
scheme, outperforming PDMS by virtue of its abil-
ity to reconfigure the network. It is able to reach out
to more promising nodes directly - after each query,
PDMR will reconfigure itself so that the next query
can be directed to the more promising nodes first.
We note that, except for the first few nodes, CS re-
turns answers much slower than PDMR/PDMS - as
it only returns answers along the path that the query
has been transmitted.

Having a fast initial response time is not good
enough. It is possible that nodes that return answers
first provide very few answers. For the earlier ex-
periments that study the initial response time, we
also keep track of the number of answers that are
provided by each node. Figure 7(a) shows a plot
of the result. As shown, it is clear that CS returns
the first few answers much faster than PDMS and
PDMR. This is expected since the first few directly
connected nodes that receive the query can return
their answers immediately. For PDMS/PDMR, the
overhead of the code-shipping strategy results in a
longer initial response time performance. However,
as more answers are returned, PDMS/PDMR are su-
perior over CS, demonstrating the superiority of P2P
technologies over traditional CS models. We also

note that PDMR is generally better than PDMS. In
Figure 7(b), we can further confirm the effective-
ness of PDMS/PDMR over CS. By the time PDMS
and PDMR have received all the answers (100%),
CS has only returned about 40% of the answers. As
observed earlier, PDMR can generate more answers
quickly by virtue of its ability to keep more relevant
peers “closer”.

5.2.5 Benefits of Agent-based Querying

In this experiment, we would like to study how much
can be gained by using an agent-assisted query pro-
cessing strategy. Here, we assume that the query re-
quires some functions that is not supported by the
DBMS. As such, the operation cannot be pushed
down to the DBMS. Instead, the data have to be first
retrieved, and the operation performed on the data
before the answers to the query can be obtained.

In this experiment we show the cost and effect
of using pure message passing protocol and agent
based protocol in P2P environment. Here, we as-
sume the query requires only one remote access. The
whole process is divided into three phases: sending
message (message-passing protocol) or agent (agent-
based protocol) to remote host, remote host pro-
cesses the request, and remote host returns the result
to the originator. The answer size is set to be 0.1%
of the whole data set. The difference between mes-
sage based and agent-based protocol is that message-
based protocol is a data-shipping strategy, i.e., re-
mote data are transferred to the query node to be
processed there. On the other hand, an agent-based
protocol is a code-shipping strategy that carries the
processing code to the remote site and performs re-
mote execution. Only answers produced by the agent
will be returned. The total response time including
the cost of data transfer, i.e., message, code and data,
and processing time. In Figure 8, we observe that the
completion time of the message-based protocol in-
creases exponentially when the data size increased.
The overhead of the data-shipping results in a longer
response time performance. As a result, when the
number of data to be transferred across the network
increases, the mobile agent-based protocol is supe-
rior.

Most of the network applications (client-server
based or P2P based) require more than one com-
munication with another node in order to complete
each transaction. Therefore, in this experiment, we
looked into the messages overhead in pure message-
based protocol vs. agent-based protocol. In this ex-
periment, multiple remote executions are required in
order to answer a query Essentially, the query re-
quests for multiple objects from a remote site; how-
ever, the query only knows the object to retrieve after



60000

64000

68000

72000

76000

80000

84000

0 60 120 180 240 300 360 420 480 540 600

T
im

e 
to

 o
bt

ai
n 

an
sw

er
s 

(m
s)

Number of answers

PDMS
PDMR

CS

(a) First search query. (b) % answers returned.

Figure 7. Number of answers returned.

the earlier requests are completed. Thus, we have a
chain of queries and computations. In our test, each
of the object requested will cause 5MB of data trans-
fer across the network.

0

70000

140000

210000

280000

350000

420000

490000

560000

630000

700000

10 20 30 40 50 60 70 80 90 100

C
om

pl
et

io
n 

T
im

e 
(m

s)

Data Size (MB)

Message-Based Protocol
Agent-Based Protocol

Figure 8. Completion time vs. data size

The result on multiple-communication transac-
tion is shown in Figure 9. Clearly, the agent-based
approach is superior. Under the message-passing
protocol, the query is transmitted, and the data is re-
turned to the node to be processed on the node. This
has to be done before subsequent operations can be
issued. On the other hand, in the mobile agent ap-
proach, all operations can be performed at remote
node once the code is transmitted. Once the agent is
constructed at the remote site, thy can interact with

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

B
yt

es
 T

ra
ns

fe
re

d 
(M

B
)

Number of Query

Message-Based Protocol
Agent-Based Protocol

Figure 9. Communication overhead.

the remote node directly until the final result is ob-
tained. Therefore, it optimizes the network resources
and bandwidth.

6 Related Works

Agent-based systems have been studied in the lit-
erature [16, 5, 13, 14]. However, these technologies
provide support for agent collaboration and com-
munication but lack support for peer-to-peer tech-
nology. Development of P2P applications based on
these platforms would require a longer development
effort, which would be costly.

As mentioned, P2P technologies have been de-
ployed in many applications [17, 8, 7, 6, 21, 18].



However, these systems provide coarse granularity
of sharing without capabilities for DBMS supoort.
In addition, they cannot be easily extended to meet
users changing needs. Moreover, their network are
statically defined and there is a lack of support for
multi-granularity data access.

More recently, the database community has begun
to exploit P2P technologies for database applications
[9, 10, 12, 22]. In [9], data placement issues were ad-
dressed. In [22], the class of “hybrid” P2P systems
where some functionality is still centralized is stud-
ied. In particular, an analytical model to describe
the system performance is developed, and validated
against actual hybrid P2P systems. Different archi-
tectures such as chained architecture, full replication
architecture, hash architecture and unchained archi-
tecture were compared. In [12], caching of OLAP
queries is addressed in the context of a P2P network.
Halevy et. al. address the issue of schema mediation
and proposes a language for mediating between peer
schemas [10].

7 Conclusion

In this paper, we have presented a P2P-based dis-
tributed data sharing system called PeerDB. PeerDB
has several nice features. First, it employs a data
management system. Moreover, it facilitates data
sharing without predetermined shared schema. Sec-
ond, because its query processing capabilities is as-
sisted by mobile agents, it provides easy extensibil-
ity to existing systems. Third, it provides a mech-
anism to reconfigure a node’s peers based on some
optimization criterion. Our extensive experimental
studies show that PeerDB is a promising system for
distributed processing. We plan to extend this work
in two directions. First, we plan to make a node
more intelligent by allowing it to determine at run-
time which strategy to adopt - code-shipping or data-
shipping. Second, we have focused on looking for
“similar” schema. More recently, keyword-based
search engine for relational databases has been de-
veloped [3]. We plan to see how such features can
be integrated to facilitate keyword-based search in
PeerDB.

Acknowledgements

Wee-Siong Ng and Kian-Lee Tan are par-
tially supported by the NSTB/MOE research grant
RP960668. We would also like to thank two mem-
bers of The BestPeer Project, Yingguang Li and
Ming Zhang, for their contributions to PeerDB’s im-
plementation.

References

[1] Bestpeer. In http://xena1.ddns.comp.nus.edu.sg/p2p/.
[2] MySql Home Page. In http://www.mysql.com/.
[3] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer:

A system for keyword-based search over relational
databases. In Proceedings of the 18th International
Conference on Data Engineering, San Jose, CA,
April 2002.

[4] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern
Information Retrieval. ACM Press/Addison-Wesley,
1999.

[5] A. Castillo, M. Kawaguchi, N. Paciorek, and
D. Wong. Concordia as enabling technology for co-
operative information gathering. In Proceedings of
the 31th Annual Hawaii International Conference on
System Sciences 1998 (HICSS31), 1998.

[6] R. Dingledine, D. Molnar, and M. J. Freedman. The
free haven project: Distributed anonymous storage
service. In Proceedings of the Workshop on Design
Issues in Anonymity and Unobservability, 2000.

[7] Freenet Home Page. http://freenet.sourceforge.com/.
[8] Gnutella Development Home Page.

http://gnutella.wego.com/.
[9] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Su-

ciu. What can databases do for peer-to-peer. In
WebDB, 2001.

[10] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov.
Schema mediation in peer data management systems.
In Proceedings of the 19th International Conference
on Data Engineering, Bangalore, India, March 2003.

[11] ICQ Home Page. http://www.icq.com/.
[12] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and

K. L. Tan. An adaptive peer-to-peer network for dis-
tributed caching of olap results. In ACM SIGMOD
2002, pages 25–36, Madison , Wisconsin, USA,
2002.

[13] G. Karjoth, D. Lange, and M. Oshima. A security
model for aglets. IEEE Internet Computing, 1(4),
1997.

[14] N. Karnik and A. Tripathi. Agent server architecture
for the ajanta mbile-agent systems. In International
Conference on Parallel and Distributed Processing
Techniques and Applications, 1998.

[15] LOCKSS Home Page. http://lockss.stanford.edu/.
[16] Mitsubishi Electric. Concordia: An infrastructure for

collaborating mobile agents. In Proceedings of the
1st International Workshop on Mobile Agents (MA
’97), April 1997.

[17] Napster Home Page. http://www.napster.com/.
[18] W. S. Ng, B. C. Ooi, and K. L. Tan. Bestpeer: A self-

configurable peer-to-peer system. In Proceedings of
the 18th International Conference on Data Engineer-
ing, page 272, San Jose, CA, April 2002 (Poster Pa-
per).

[19] A. Oram, editor. Peer-to-Peer : Harnessing the
Power of Disruptive Technologies. O’Reilly & As-
sociates, 2001.

[20] SETI@home Home Page.
http://setiathome.ssl.berkely.edu/.

[21] M. Waldman and L. Publius. A robust, tamper-
evident, censorship-resistant, web publishing sys-
tem. In Proceedings of the 9th USENIX Security
Symposium, pages 59–72, 2000.

[22] B. Yang and H. Garcia-Molina. Comparing hybrid
peer-to-peer systems. In VLDB’2001, 2001.


