
Appears in NSDI’04 1

Hybrid Global-Local Indexing for Efficient
Peer-to-Peer Information Retrieval

Chunqiang Tang and Sandhya Dwarkadas
Computer Science Department, University of Rochester

{sarrmor,sandhya}@cs.rochester.edu

Abstract
Content-based full-text search still remains a partic-

ularly challenging problem in peer-to-peer (P2P) sys-
tems. Traditionally, there have been two index parti-
tioning structures—partitioning based on the document
space or partitioning based on keywords. The former re-
quires search of every node in the system to answer a
query whereas the latter transmits a large amount of data
when processing multi-term queries. In this paper, we
propose eSearch—a P2P keyword search system based
on a novel hybrid indexing structure. In eSearch, each
node is responsible for certain terms. Given a document,
eSearch uses a modern information retrieval algorithm to
select a small number of top (important) terms in the doc-
ument and publishes the complete term list for the docu-
ment to nodes responsible for those top terms. This se-
lective replication of term lists allows a multi-term query
to proceed local to the nodes responsible for query terms.
We also propose automatic query expansion to alleviate
the degradation of quality of search results due to the se-
lective replication, overlay source multicast to reduce the
cost of disseminating term lists, and techniques to bal-
ance term list distribution across nodes.

eSearch is scalable and efficient, and obtains search re-
sults as good as state-of-the-art centralized systems. De-
spite the use of replication, eSearch actually consumes
less bandwidth than systems based on keyword partition-
ing when publishing metadata for a document. During
a retrieval operation, it searches only a small number
of nodes and typically transmits a small amount of data
(3.3KB) that is independent of the size of the corpus and
grows slowly (logarithmically) with the number of nodes
in the system. eSearch’s efficiency comes at a modest
storage cost, 6.8 times that of systems based on keyword
partitioning. This cost can be further reduced by adopt-
ing index compression or pruning techniques.

1 Introduction
Peer-to-Peer (P2P) systems have gained tremendous

interest from both the user and research community in
the past several years. First-generation systems such as

Gnutella and KaZaA are already prevalent, and second-
generation systems such as PAST [32] and CFS [14]
based on Distributed Hash Tables (DHTs) are under seri-
ous development (e.g., the IRIS project [19]). With a gi-
gantic amount of information in these systems, it would
be impossible for users to remember or even know the
place or precise ID of the desired data. The capability to
retrieve documents using content-based full-text search
would greatly improve the usability of these systems.

Although it is possible to build a dedicated search en-
gine to index contents in P2P systems in a way similar to
how Google indexes the Web, a P2P search system built
on top of the same nodes already used in the P2P storage
system is particularly attractive because of its low cost,
ease of deployment, availability, and scalability. In this
paper, we study the challenging problem of building P2P
keyword search systems.

To facilitate the retrieval of documents, a distributed
(not necessarily P2P) search system places information
regarding the occurrence of terms (words or phrases) in
documents in the form of metadata at certain places in
the system. The metadata placement strategy in existing
systems are based on either local or global indexing [42].

In local indexing (see Figure 1 (i)), metadata are par-
titioned based on the document space. The complete
term list of a document is stored on a node. A term list
X → a, c means that document X contains terms a and
c. During a retrieval operation, the query is broadcast to
all nodes. Since a node has the complete term list for
documents that it is responsible for, it can compute the
relevance between the query and its documents without
consulting others. The drawback, however, is that ev-
ery node is involved in processing every query, rendering
systems of this type unscalable. Gnutella and search en-
gines such as AllTheWeb (www.alltheweb.com) [30] are
based on variants of local indexing.

In global indexing (see Figure 1 (ii)), metadata are dis-
tributed based on terms. Each node stores the complete
inverted list of some terms. An inverted list a → X, Z

indicates that term a appears in document X and Z. To
answer a query consisting of multiple terms, the query

Appears in NSDI’04 2

is sent to nodes responsible for those terms. Their in-
verted lists are transmitted over the network so that a join
to identify documents that contain multiple query terms
can be performed. The communication cost for a join
grows proportionally with the length of the inverted lists,
i.e., the size of the corpus. Most recent proposals for P2P
keyword search [16, 20, 28, 39] are based on global in-
dexing, but with enhancements to reduce the communi-
cation cost, for instance, using Bloom filters to summa-
rize the inverted lists or incrementally transmitting the
inverted lists and terminating early if sufficient results
have already been obtained. In the following, we will
simply refer to these systems as Global-P2P systems.

Challenging conventional wisdom that uses either lo-
cal or global indexing, we propose a hybrid indexing
structure to combine their benefits while avoiding their
limitations. The basic tenet of our approach is selec-
tive metadata replication. Like global indexing, hybrid
indexing distributes metadata based on terms (see Fig-
ure 1 (iii)). Each node j is responsible for the inverted list
of some term t. In addition, for each document D in the
inverted list for term t, node j also stores the complete
term list for document D. Given a multi-term query, the
query is sent to nodes responsible for those terms. Each
of these nodes then does a local search without consult-
ing others, since it has the complete term list for doc-
uments in its inverted list. Our system based on hybrid
indexing is called eSearch. It uses a Distributed Hash Ta-
ble (DHT) to map a term to a node where the inverted list
for the term is stored. We chose Chord [38] for eSearch,
but other DHTs such as Pastry, CAN, and Tapestry can
also be used without major changes to our design.

When naively implemented, eSearch’s search effi-
ciency obviously comes at the expense of publishing
more metadata, requiring more communication and stor-
age. We propose several optimizations that reduce com-
munication by up to 97% and storage by up to 90%, com-
pared with a naive hybrid indexing. Below we outline
one important optimization—top term selection.

Each document contains many words. Some of them
are central to ideas described in the document while the
majority are just auxiliary words. Modern statistical in-
formation retrieval (IR) algorithms such as vector space
model (VSM) [33, 36] assign a weight to each term in
a document. Terms central to a document are automati-
cally identified by a heavy weight. In eSearch, we only
publish the term list for a document to nodes responsible
for top (important) terms in that document. Figure 1 (iv)
illustrates this optimization. Document X contains terms
a and c but its term list is only published to computer 3
since only term c is important in X .

This optimization, however, may degrade the quality
of search results. A query on a term that is not among
the top terms of a document cannot find this document.

Y b, c
Computer 2

X a, c
Computer 1

Z a, b, c
Computer 3

a X, Z
Computer 1

c X, Y, Z
Computer 3

b Y, Z
Computer 2

(i)

(ii)

c X, Y, Z
Computer 3

a, b, c
b, c

a, c

a X, Z
Computer 1

a, b, c
a, c

b Y, Z
Computer 2

a, b, c
b, c

(iii)

c X
Computer 3

a, c

a Z
Computer 1

a, b, c

b Y, Z
Computer 2

a, b, c
b, c

(iv)

Figure 1: Comparison of distributed indexing structures.
(i) Gnutella-like local indexing. (ii) Global indexing.
(iii) Hybrid indexing. (iv) Optimized hybrid indexing.
a, b, and c are terms. X, Y, and Z are documents. This
example distributes metadata for three documents (X-Z)
that contain terms from a small vocabulary (a-c) to three
computers (1-3). Term list X → a, c means that docu-
ment X contains term a and c. Inverted list a → X, Z

indicates that term a appears in document X and Z.

Our argument is that, if none of the query terms is among
the top terms for a document, IR algorithms are unlikely
to rank this document among the best matching docu-
ments for this query anyway. Thus, the top search results
for this query are unlikely to be affected by skipping this
document. In Section 3, we quantify the precision degra-
dation due to this optimization. Our results show that
eSearch obtains search quality as good as the centralized
baseline by publishing a document under its top 20 terms.

In order to further reduce the chance of missing
relevant documents, we adopt automatic query expan-
sion [23]. We draw on the observation that, with more
terms in a query, it is more likely that a document rele-
vant to this query is published under at least one of the
query terms. This scheme automatically identifies addi-
tional terms relevant to a query and also searches nodes
responsible for those terms. We also propose an over-
lay source multicast protocol to efficiently disseminate
term lists, and two decentralized techniques to balance
the distribution of term lists across nodes.

We evaluate eSearch through simulations and analy-
sis. The results show that, owing to the optimization
techniques, eSearch is scalable and efficient, and ob-
tains search results as good as the centralized baseline.
Despite the use of metadata replication, eSearch actu-
ally consumes less bandwidth than the Global-P2P sys-
tems when publishing a document. During a retrieval
operation, eSearch typically transmits 3.3KB of data.
These costs are independent of the size of the corpus and
grow slowly (logarithmically) with the number of nodes

Appears in NSDI’04 3

in the system. eSearch’s efficiency comes at a modest
storage cost (6.8 times that of the Global-P2P systems),
which can be further reduced by adopting index com-
pression [43] or pruning [7].

Given the quickly increasing capacity and decreasing
price of disks, we believe trading modest disk space for
communication and precision is a proper design choice
for P2P systems. According to Blake and Rodrigues [2],
in 15 years, disk capacity increased by 8000-fold while
bandwidth for an end user increased by only 50-fold.
Moreover, work in the Farsite project [3] observed that
about 50% of disk space on desktops was not in use.

In this paper, our focus is on designing an indexing
architecture to support efficient P2P search. Under this
architecture, we currently use Okapi [31, 36] (a state-of-
the-art content-based IR algorithm) to rank documents.
In reality, search engines combine many IR techniques
to rank documents. The adoption and evaluation of those
techniques in our architecture is a subject of future work.

The remainder of the paper is organized as follows.
Section 2 provides an overview of eSearch’s system ar-
chitecture. Sections 3 to 5 describe and evaluate individ-
ual pieces of our techniques, including top term selec-
tion and automatic query expansion (Section 3), overlay
source multicast (Section 4), and balancing term list dis-
tribution (Section 5). We analyze eSearch’s system re-
source usage and compare it with Global-P2P systems in
Section 6. Related work is discussed in Section 7. Sec-
tion 8 concludes the paper.

2 System Architecture

Figure 2 depicts eSearch’s system architecture. A
large number of computers are organized into a struc-
tured overlay network (Chord [38]) to offer IR service.
Nodes in the overlay collectively form an eSearch En-
gine. Inside the Engine, nodes have completely homoge-
neous functions. A client (e.g., node X) intending to use
eSearch connects to any Engine node (e.g., node E) to
publish documents or submit queries. Engine nodes are
also user nodes that can initiate document publishing or
a search on behalf of their user.

Among nodes in the P2P system, we intentionally
distinguish server-like Engine nodes that are stable and
have good Internet connectivity from the rest. Exclud-
ing ephemeral nodes from the Engine avoids unnecessary
maintenance operations. Moreover, not even every stable
node needs to be included in the Engine, so long as the
Engine has enough capacity to offer the desired level of
quality of service.

When a new node joins the P2P system, it starts as a
client. After being stable for a threshold time (e.g., 20
minutes) and if the load inside the Engine is high, it joins
the Engine to take over some load, using the protocol

A

B

C

E

D

02 - 1

“ c o mp u t e r ”
“ i n f o r ma t i o n ”

“ n e t w o r k ”

Y

X p u b l i s h a d o c o n
“ i n f o r ma t i o n ”

s e a r c h f o r
d o c s o n

“ n e t w o r k ”

m

Figure 2: System architecture of eSearch.

described in Section 5. Data stored on an Engine node
are replicated on its neighbors. Should a node fail, one
of its neighbors will take over its job seamlessly.

Inside the Engine, nodes are organized into a ring
topology corresponding to an ID space ranging from 0
to 2m − 1 where m = 160. Each node is assigned an ID
drawn from this ID space, and is responsible for the key
range between its ID and the ID of the previous node on
the ring. Each term is hashed into a key in the ID space.
The node whose ID immediately follows the term’s key
is responsible for the term. For instance, node B is re-
sponsible for inverted lists for the term “computer” and
“information”. Lookup for the node responsible for a
given key is done through routing in the overlay. With the
help of additional links not shown in Figure 1, Chord on
average routes a message to its destination in O(log N)
hops, where N is the number of nodes in the overlay.

Document metadata are organized based on the hybrid
indexing structure. To publish a document, a client sends
the document to the Engine node that it connects to. The
Engine node identifies top (important) terms in the doc-
ument and disseminates its term list to nodes responsi-
ble for those top terms, using overlay source multicast to
economize on network bandwidth (see Section 4).

A client X starts a search by submitting a query to
the Engine node E that it connects to, which then uses
overlay routing to forward the query to nodes responsible
for terms in the query. Those nodes do a local search,
identifying a small number of best matching documents,
and return the ID and relevance score (a numerical value
that specifies relevance between a document and a query)
of those documents to node E. Node E gives returned
documents a global rank based on the relevance score
and presents the top documents to client X . To improve
search quality, node E may expand the query with more
relevant terms learned from returned documents, start a
second round of search, and then present the final results
to client X (see Section 3.2).

Appears in NSDI’04 4

To avoid processing the same query repeatedly and
also to alleviate hot spots corresponding to popular
queries, query results are cached for a certain amount
of time at the nodes processing the query and the paths
along which the query is forwarded. If a query arrives at
a node with live cached results, those results are returned
immediately.

3 Top Term Selection and Automatic
Query Expansion

In Section 1, we proposed hybrid indexing for effi-
cient P2P search, by combining the advantages of lo-
cal and global indexing while avoiding their limitations.
Like global indexing, it distributes metadata based on
terms. Like local indexing, it stores the complete term
list for a document on a node. Given a query, it searches
only a small number of nodes and avoids transmitting in-
verted lists over the network, thereby supporting efficient
search. The drawback, however, is that it publishes more
metadata, requiring more storage and potentially more
communication.

Our first optimization is to avoid publishing a docu-
ment under stopwords—words that are too common to
have real effect on differentiating one document from
another, e.g., the word “the”. This simple optimization
results in great savings since a significant portion of a
document’s content could be stopwords. Our second op-
timization is to use vector space model (VSM) [36] to
identify top (important) terms in a document, and only
publish its term list to nodes responsible for those terms.

3.1 Top Term Selection

We first provide an overview of VSM. VSM assigns
a weight to each term in a document or query. Terms
central to a document are automatically identified by a
heavy weight. VSM computes the relevance between a
document D and a query Q as

relevance(D, Q) =
∑

t∈D,Q

dt · qt (1)

where t is a term appearing in both document D and
query Q, dt is term t’s weight in document D, and qt

is term t’s weight in query Q. Documents with the high-
est relevance score are returned as search results. The
weight of a term is decided by several factors, includ-
ing the length of the document, the frequency of the term
in the document, and the frequency of the term in other
documents. Intuitively, if a term appears in a document
with a high frequency, there is a good chance that the
term could be used to differentiate the document from
others. However, if the term also appears in many other
documents, its importance should be penalized.

A myriad of term weighting schemes have been pro-
posed, among which Okapi [31, 36] has been shown to be
particularly effective. For instance, among the eight sys-
tems that achieved the best performance in the TREC-8
ad hoc track [41], five of them were based on Okapi. We
adopt Okapi in eSearch but omit its details here due to
space limitations. Okapi relies on some global statistics
(e.g., the popularity of terms) to compute term weights.
Previous work [17] has shown that statistical IR algo-
rithms can work well with estimated statistics. eSearch
uses a combining tree to sample documents, merge statis-
tics, and disseminate the combined statistics. In the fol-
lowing, we assume the global statistics are known. An
evaluation of eSearch’s sensitivity to the estimated statis-
tics is the subject of ongoing work.

We conduct experiments on volumes 4 & 5 of the
TREC corpus [41] to determine if it is true that some
terms in a document are much more important than oth-
ers. The TREC corpus is a standard benchmark widely
used in the IR community. It comes with a set of care-
fully constructed queries and manually selected relevant
documents for each query, against which one can quan-
titatively evaluate the search quality of a system. It in-
cludes 528,543 documents from the news, magazines,
congressional records, etc. The average length of a doc-
ument is 3,778 bytes.

Cornell’s SMART system [5] implements a frame-
work for VSM. We extend it with an implementation of
Okapi and use it to index the TREC corpus. SMART
comes with a list of 571 stopwords, which is used as is
in our experiments. The SMART stemmer is used with-
out modification to strip word endings (i.e., “book” and
“books” are treated as the same).

For each document, we sort its terms by decreasing
Okapi weight and compute the relative weight of each
term to the biggest term weight in the document. We av-
erage this normalized term weight across all documents,
computing a mean for each term rank, and report these
means in Figure 3 (a). Note that the Y axis is in log
scale. The normalized term weight decreases exponen-
tially as the term rank increases and the weight for the
top 20 terms drops even faster. This confirms our intu-
ition that a small number of terms are much more impor-
tant than others in a document. One analogy is that these
terms are words in the “Keyword” section of a paper, ex-
cept that eSearch extracts them automatically.

3.2 Automatic Query Expansion

Only publishing a document under its top terms may
degrade the quality of search results. A query on a term
that is not among the top terms of a document cannot
find this document. We adopt automatic query expan-
sion [23] (also called automatic relevance feedback) to

Appears in NSDI’04 5

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180 200

N
or

m
al

iz
ed

 te
rm

 w
ei

gh
t

Term rank

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

5 10 15 20 30 40 50 60 all
Published terms

Pr
ec

is
io

n

avg prec (no expansion) avg prec (expansion)
prec@15 (no expansion) prec@15 (expansion)

0

10

20

30

40

50

60

70

5 10 15 20 30 40 50 60 all

Published terms

R
et

ri
ev

ed
 r

el
ev

an
t d

oc
s no expansion

expansion

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0 5 10 15 20 30 40 50 60 70 80
Expansion terms

Pr
ec

is
io

n

prec@5 prec@10 prec@15 avg prec

(a) (b) (c) (d)

Figure 3: (a) Ranked term weight of the TREC corpus, normalized to the biggest term weight in each document. (b)
eSearch’s precision with respect to the number of terms under which a document is published. The performance of the
“all” series is equivalent to that of a centralized system. (c) The average number of retrieved relevant documents for a
query when returning 1,000 documents. (d) eSearch’s precision with respect to the number of expanded query terms.

alleviate this problem. We draw on the observation that,
with more terms in a query, it is more likely that a doc-
ument relevant to this query is published under at least
one of the query terms. This scheme automatically ex-
pands a short query with additional relevant terms. It has
been show as one important technique to improve perfor-
mance in centralized IR systems [36].

We experimented with several query expansion tech-
niques and found that complex ones such as [23] only
marginally improve search quality for the TREC cor-
pus compared with simple ones. For the sake of clarity
we describe below a simple scheme that is degenerated
from [23] but has the same performance.

Given a query, eSearch first uses the hybrid indexing
structure to retrieve a small number f of best matching
documents. We call these documents feedback docu-
ments. For each term in the feedback documents, the
Engine node that starts the search on behalf of a client
computes the average weight of terms in the feedback
documents and chooses k terms that have the biggest av-
erage weight. These terms are assumed to be relevant to
the query and are added into the query. The new query is
then used to retrieve the final set of documents for return.
Recall that VSM assigns a weight for query terms as it
does for document terms (see Equation 1). The weight
for an expanded query term, which is not assigned by
VSM, is its average weight in feedback documents di-
vided by a constant α. Through experiments we found
that f = 10 and α = 16 turned out to work well. Al-
ternatively, one may set α to a very large number to
make the overall ranking equivalent to that without the
expanded query terms, but still search nodes correspond-
ing to expanded terms to reduce the chance of missing
relevant documents.

We illustrate these steps through an example. Suppose
VSM identifies “routing” as the only important term for a
document D. Given a query of “computer network”, eS-
earch first retrieves relevant documents with either “com-
puter” or “network” as one of their important terms. Af-

ter a look at the retrieved documents, eSearch finds that
“routing” seems to be an important common word among
them. It then expands the query as “computer network
routing”, assigning “routing” a relatively smaller weight
than the weight for the original query terms “computer
network”. The new query is then used to retrieve a final
set of documents. This time, it can find document D.

3.3 Experimental Results

We experiment with the TREC corpus to determine
proper parameters for eSearch, including the number of
top terms under which a document is published and the
number of expanded terms for a query. We use the “title”
field of TREC topics 351-450 as queries. On average,
each query consists of 2.4 terms and has 94 manually
identified relevant documents in the corpus. Note that
this identification is subjective and based on user input,
which implies that a document that contains all terms in
a query is not necessarily relevant to the query, and a
document relevant to a query need not contain all terms
in the query.

The metric to quantify the quality of search results is
precision, defined as the number of retrieved relevant
documents divided by the number r of retrieved doc-
uments. For instance, prec@15=0.4 means that, when
returning 15 documents for a query, about 40% of the
returned documents will be evaluated by users as really
relevant to the query. prec@r varies with r. The average
precision for a single topic is the mean of the precision
obtained after each relevant document is retrieved (using
zero as the precision for relevant documents that are not
retrieved). We are particularly interested in high-end pre-
cision (e.g., prec@15) as users usually only view the top
10 search results.

Figure 3 (b) reports eSearch’s precision with respect
to the number of terms under which a document is pub-
lished (shown on the X axis). The “expansion” and “no
expansion” series are with and without query expansion,
respectively. In this experiment, we set the number of

Appears in NSDI’04 6

expanded terms to 30. “All” means that a document is
published under all its terms, whose precision is equal
to that of a centralized IR system. Two observations can
be drawn from this figure. (1) eSearch can approach the
precision of the centralized baseline by publishing a doc-
ument under a small number of selected terms, e.g., top
20 terms. (2) Automatic query expansion improves pre-
cision, particularly when documents are published under
very few top terms.

We next examine the performance when returning a
large number of documents for each query. This is the
case when a user wishes to retrieve as many relevant doc-
uments as possible. Figure 3 (c) reports the average num-
ber of retrieved relevant documents for a query when re-
turning 1,000 documents. Query expansion increases the
number of retrieved relevant documents by 22%. The
performance of the “expansion” series catches up with
that of the centralized baseline earlier than the “no ex-
pansion” series, showing that the use of query expansion
allows eSearch to publish documents under fewer terms
to achieve the performance of centralized systems.

Figure 3 (d) shows the precision with respect to the
number of expanded query terms. In this experiment,
each document is published under its top 20 terms. The
high-end precision is not very sensitive to query expan-
sion. The average precision improves slowly after the
number of expanded terms exceeds 10. Adding more
terms into a query results in searching more nodes. This
figure indicates that the benefit of query expansion can
be reaped with limited overhead in eSearch.

Comparing the “no expansion” series in Figures 3 (b)
and (c), we find that top search results are relatively
insensitive to top term selection whereas the low-rank
search results are affected more severely. Accordingly,
query expansion is most useful for improving low-end
precision but not for high-end precision. This obser-
vation leads to a further optimization. Given a new
query, eSearch first retrieves a small number of docu-
ments without query expansion. If the user is unsatisfied
with the results, eSearch uses these documents as feed-
back documents to expand the query and do a second
round of search to return more documents.

Figures 3 (b) to (d) show that eSearch’s average re-
trieval quality is as good as the centralized baseline.
In Table 1 we try to further understand the difference
for individual queries between eSearch and the baseline.
When documents are published under a few terms, eS-
earch performs badly for a few queries. For instance,
when publishing documents under only their top 5 terms,
there is one query that eSearch finds no relevant docu-
ments for whereas the baseline can find 9 relevant docu-
ments. When the number of selected top terms increases,
eSearch’s performance improves quickly. When publish-
ing documents under their top 20 terms, the worst rela-

difference top 5 terms top 10 terms top 20 terms
d=3 1 0 0
d=2 3 2 0
d=1 5 3 3
d=0 53 73 90
d=-1 15 9 5
d=-2 6 8 0
d=-3 4 3 1
d=-4 3 0 1
d=-5 3 1 0
d=-6 3 0 0
d=-7 3 1 0
d=-8 0 0 0
d=-9 1 0 0

Table 1: Difference in the number of retrieved relevant
documents between eSearch and the centralized base-
line when returning 10 documents for each query. The
columns correspond to eSearch with different configura-
tions (without using query expansion). One entry with
value p in the “d=k” row (e.g., the entry with value 8
in the “d=-2” row) means that, out of the 100 TREC
queries, p queries return k more relevant documents in
eSearch than in the baseline (or return fewer relevant
documents if k<0). For instance, when publishing docu-
ments under their top 10 terms, for 8 queries, eSearch re-
turns 2 fewer relevant documents than the baseline, and
for 73 queries, eSearch performs the same as the base-
line. For some queries, eSearch does better than the base-
line because of the inherent fuzziness in Okapi’s ranking
function (i.e., just focusing on important terms may ac-
tually improve retrieval quality sometimes).

tive performance for eSearch is one query for which eS-
earch retrieves four fewer relevant documents.

3.4 Discussions
Our evaluation so far has assumed that eSearch al-

ways publishes documents under the same number of top
terms. This number can actually be varied from docu-
ment to document. Intuitively, it may be more reasonable
to publish long documents under more terms. Our cur-
rent implementation includes a heuristic that publishes
documents with big term weights under more terms. A
detailed discussion is omitted due to space limitations.

The worst case scenario for eSearch is that a query
is about a term that is not important in any document,
e.g., the phrase “because of”. eSearch cannot return any
result although documents containing this term do ex-
ist. Although this scenario does exist in theory, in prac-
tice, eSearch’s search quality on the widely used TREC
benchmark corpus is as good as the centralized baseline.
To achieve good retrieval quality, the absolute number of
selected top terms may vary from corpus to corpus, but
we expect it to be a small percentage of the total num-
ber of unique terms in a document, as the importance of

Appears in NSDI’04 7

terms in a document decreases quickly (see Figure 3 (a)).
The same trend also holds for several other copora we
tested, including MED, ADI, and CRAN (available in the
SMART package [5]). Moreover, it is always possible to
flood a hard query to every node, degrading eSearch’s
efficiency to Gnutella in really rare cases.

It should be emphasized that eSearch is not tied to
any particular document ranking algorithm. For docu-
ments with cross reference links, link analysis algorithms
such as Google’s PageRank [4] can be incorporated, for
instance, by combining PageRank with VSM to assign
term weights [21] or publishing important Web pages
(identified by PageRank) under more terms.

4 Disseminating Document Metadata

Given a new document, eSearch uses Okapi to iden-
tify its top terms and distributes its term list to nodes re-
sponsible for those terms. Since the same data are sent
to multiple recipients, one natural way to economize on
bandwidth is to multicast the data to the recipients.

Due to a variety of deployment issues, IP multicast
is not widely supported in the Internet. Instead, several
overlay multicast systems have been recently proposed,
e.g., Narada [9]. These systems usually target multime-
dia or content distribution applications, where a multi-
cast session is long. Thus, they can amortize the over-
head for network measurement, multicast tree creation,
adaptation, and destruction, over a long data session.

The scenario for term list dissemination, however, is
quite different. Typically, a document is only several
kilobytes and its term list is even smaller. As a result,
eSearch disseminates data through a large number of ex-
tremely short sessions. Although the absolute saving
from multicast in a single session is small, the aggre-
gate savings over a large number of sessions would be
huge. But this requires protocol overhead for multicast
tree creation and destruction to be very small.

To this end, we propose overlay source multicast to
distribute term lists. It does not use costly messaging
to explicitly construct or destroy the multicast tree. As-
sisted by Internet distance estimation techniques such as
GNP [25], the data source locally computes the structure
of an efficient multicast tree that has itself as the root
and includes all recipients. It builds an application-level
packet with the data to be disseminated as payload and
the structural information of the multicast tree as header,
which specifies the IP addresses of the recipients and the
parent-child relationship among them. It then sends the
packet to the first-level children in the multicast tree. A
recipient of this packet inspects the header to find its chil-
dren in the multicast tree, strips off information for itself
from the header, and forwards the rest of the packet to its
children, and so forth.

In the following, we provide more details on the
method that the data source uses to compute the structure
of the multicast tree. Our method is based on GNP. A
node using GNP measures RTTs to a set of well-known
landmark nodes and computes coordinates from a high-
dimensional Cartesian space for itself. Internet distance
between two nodes is estimated as the Euclidean distance
between their coordinates.

When a node S wishes to send a term list to nodes
responsible for top terms in a document, it performs con-
current DHT lookups to locate all recipients. Each recip-
ient directly replies to node S with its IP address and its
GNP coordinates. After hearing from all recipients, node
S locally builds a fully connected graph (a clique) with
itself and recipients as vertices. It annotates each edge
with estimated Internet distance, i.e., the Euclidean dis-
tance between the coordinates of the two nodes incident
with the edge. In practice, other factors such as band-
width and load could also be considered when assigning
weights to edges. Finally, it runs a minimum spanning
tree algorithm over the graph to find an efficient multi-
cast tree.

The lookup results for recipients’ IP and GNP coordi-
nates are cached and reused for a certain amount of time.
Stale information used before it times out will be de-
tected when a node receives a term list that it should not
be responsible for, which will trigger a recovery mecha-
nism to find the correct recipient.

We use simulations to quantify the savings from over-
lay source multicast. Three data sets are used in our ex-
periments. The first one is derived from a 1,000 node
transit-stub graph generated by GT-ITM [6]. We use
its default edge weight as the link latency. The second
one is derived from NLANR’s one-day RTT measure-
ments among 131 sites scattered in the US [26]. After
filtering out some unreachable sites, we are left with 105
fully connected sites and the latency between each pair
of them. We use the median of one-day measurements
as the end-to-end latency. The third one is an Internet
Autonomous System (AS) snapshot taken by the Route
Views Project [27] on April 28, 2003, with a total of
15,253 AS’es recorded. Since the latency between adja-
cent AS’es is unknown, we assign latency randomly be-
tween 8ms and 12ms. For the GT-ITM and AS data set,
we randomly assign some user nodes to routers or AS’es.
The end-to-end latency between two nodes is computed
as the latency of the shortest path between them.

Figure 4 reports the performance of overlay source
multicast using these data sets. In all experiments, we
use the k-means clustering algorithm to select 15 cen-
ter nodes as landmarks and then use GNP’s technique to
compute node coordinates from a 7-dimensional Carte-
sian space. For each data set, we randomly choose some
nodes (shown on the X axis) as recipients to join the mul-

Appears in NSDI’04 8

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

10 20 30 40 50 60 70 80 90 10
0

Tree nodes

N
or

m
al

iz
ed

 c
os

t GT-ITM (real)

GT-ITM (opt)

NLANR (real)

NLANR (opt)

AS (real)

AS (opt)

Figure 4: Cost of overlay source multicast normalized to
that of using separate unicast to deliver data.

ticast tree. The cost of a multicast tree is the sum of the
cost of all edges. The Y axis is the multicast tree’s cost
normalized to that of using separate unicast to deliver the
term list to recipients. For each data set, the “opt” curve
is the normalized cost of the optimal minimum spanning
tree assuming that the real latency between each pair of
nodes is known. The “real” curve (result of our scheme)
is the normalized cost of the minimum spanning tree con-
structed using estimated Internet distance.

As can be seen from the figure, with 20 nodes in the
tree, multicast reduces the communication cost by up to
72%. In all cases, the performance of the “real” curve ap-
proaches that of the “opt” curve, indicating that GNP es-
timates Internet distance with reasonable precision. The
performance gap between the “opt” and “real” curve for
the NLANR data set widens as the number of tree nodes
increases. This is because GNP is not very accurate at
estimating short distances. Some of NLANR’s monitor-
ing sites are very close to each other, particular at the east
coast. This data set has many RTTs under 10ms. With
more nodes added to the multicast tree, there is a bigger
chance that some of them are very close to each other.
Accordingly, GNP’s estimation error increases and the
resulting minimum spanning tree is less optimal.

5 Balancing Term List Distribution

One problem not addressed in previous studies on P2P
keyword search [16, 20, 28, 39] is the balance of meta-
data distribution across nodes. Because popularity of
terms varies dramatically, nodes responsible for popu-
lar terms will store much more data than others. A
traditional approach to balance load in DHTs is virtual
server [38], where a physical node functions as several
virtual nodes to join the P2P network. As a result, the
number of routing neighbors that a physical node moni-
tors increases proportionally. More importantly, we find
that virtual server is incapable of balancing load when
the length of inverted lists varies dramatically.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Node percentage

L
oa

d
pe

rc
en

ta
ge

baseline

vs (2)
split (2)

split (10)
vs (10)

Figure 5: Comparison of load balancing techniques us-
ing equal-size objects. “baseline” is the basic Chord
without virtual server. “vs (k)” is a Chord with k virtual
nodes running on each physical node. “split (k)” is our
technique where a new node performs k random lookups
and splits the overloaded node.

Our solution is a combination of two techniques. First,
we slightly modify Chord’s node join protocol. A new
node performs lookups for several random keys. Among
nodes responsible for these keys, it chooses one that
stores the largest amount of data and takes over some
of its data. Second, each term is hashed into a key range
rather than a single key. For an unpopular term, its key
range is mapped to a single node. For a popular term,
its key range may be partitioned among multiple nodes,
which collectively store the inverted list for this term.
Our experiments show that these two techniques can ef-
fectively balance the load even if the length of inverted
lists varies dramatically. In addition, they avoid the extra
maintenance overhead that virtual server introduces.

5.1 Node Join Protocol

In Chord, a new node performs a lookup for a ran-
dom key Kr and splits the key range of the node n that
is responsible for this key. Originally, node n is respon-
sible for key range [Kb

n, Ke
n]. After the split, the new

node and node n are responsible for key ranges [Kb
n, Kr]

and [Kr + 1, Ke
n], respectively. With virtual server, the

new node functions as several virtual nodes. Each virtual
node executes this join protocol once.

Instead of splitting the key range of a random node,
our technique seeks to split the key range of an over-
loaded node. In eSearch, a new node performs lookups
for k random keys. Among nodes responsible for these
keys, it chooses one that stores the largest amount of data
to split. If nodes have heterogeneous storage capacity, it
chooses the one that has the highest relative load to split.

Figure 5 compares the load balancing techniques. In
this experiment, we distribute one million equal-size ob-
jects to a 10,000-node Chord. Nodes are sorted in de-
creasing order according to the number of objects they

Appears in NSDI’04 9

 1

 10

 100

 1000

 10000

 0 20000 40000 60000 80000 100000

L
en

gt
h

of
 in

ve
rt

ed
 li

st

Sorted terms

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 20000 40000 60000 80000 100000

L
en

gt
h

of
 in

ve
rt

ed
 li

st

Sorted terms

(a) (b)

Figure 6: Length distribution of the TREC corpus’s in-
verted lists when documents are published under (a) top
20 terms, or (b) all terms.

store. The X-axis shows the percentage of the total num-
ber of nodes in the system for which the Y -axis gives the
percentage of objects hosted by the corresponding nodes.
“baseline” is the basic Chord without virtual server. “vs
(k)” is a Chord with k virtual nodes running on each
physical node. “split (k)” is our technique in which a
new node performs k random lookups and splits the over-
loaded node. The closer the graph is to being linear, the
more evenly distributed the load. This figure shows that
our technique balances load better than virtual server,
particularly when k is small. Note that this benefit is
achieved without virtual server’s maintenance overhead.

5.2 Distributing Load for a Single Term

As the popularity of terms varies dramatically, the
length of inverted lists also does. Figure 6 plots the
length distribution of TREC’s inverted lists when doc-
uments are published under top 20 terms or all terms. In
the following, we will simply refer to them as the “top 20
terms” load or the “all terms” load. Note that the Y axis
is in log scale, and the numbers in Figure 6 (b) are larger
than that in Figure 6 (a) by two orders of magnitude. The
length distribution is skewed for both cases, particularly
for the “all terms” load. Only publishing documents un-
der the top 20 terms greatly reduces the length of long
inverted lists corresponding to popular terms since they
are actually not important in many documents they ap-
pear in.

Because of this variation in the length of inverted lists,
the load balancing techniques in Section 5.1 cannot work
well on their own. Our complementary technique is to
hash each term t into a key range [Kb

t , K
e
t] rather than

a single key. The key range of an unpopular term is
mapped to a single node whereas the key range of a pop-
ular term may be mapped to multiple nodes, which col-
lectively store the inverted list of this term.

Chord uses 160-bit keys. We partition keys into two
parts: 140 high-order bits and 20 low-order bits. Given a
document D, we first identify its top terms. For each top
term t, we generate a key Kt for it. The high-order bits

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Node percentage

L
oa

d
pe

rc
en

ta
ge

split

split+scatter

baseline
vs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Node percentage

L
oa

d
pe

rc
en

ta
ge

split+scatter
split

vs

baseline

(a) (b)

Figure 7: Comparison of load balancing schemes using
(a) the “top 20 terms” load, or (b) the “all terms” load.

Kh
t of key Kt are the high-order bits of the SHA-1 hash-

ing [24] of the term’s text. Let Kb
t = 220Kh

t . The low-
order bits of Kt are generated randomly. We then store
document D’s term list on the node that is responsible
for key Kt. As a result, the term lists for documents that
have term t as one of their important terms will be stored
in key range [Kb

t , Kb
t +220−1]. If this key range is par-

titioned among multiple nodes, then the inverted list for
term t is partitioned among these nodes automatically.

The search process needs a change. A query con-
taining term t is first routed to the node responsible for
key Kb

t and then forwarded along Chord’s ring until it
reaches the node responsible for key Kb

t +220-1. All
nodes in this range participate in processing this query
since they hold part of the inverted list for term t.

The node join protocol is also changed slightly. When
a new node arrives, it obtains a random document
(through any means) and randomly chooses k terms that
are not stopwords from the document. For each chosen
term t, it uses the process described above to compute a
key Kt for it. Among nodes responsible for these gen-
erated keys, it chooses one that stores the largest amount
of data to split. The reason why we use random terms
from a random document to generate the bootstrapping
keys is to force the distribution of these keys to follow
the inverted list distribution such that long inverted lists
are split with a higher probability.

No other change to Chord is needed. Importantly,
there is no specific node that maintains a list of nodes
that store the inverted list of a given term, i.e., our tech-
nique is completely decentralized. Any node joining the
partition of a term can fail independently. Node failure is
handled by Chord’s default protocol.

While the above describes the node join protocol in
order to balance load in the presence of active joins, a
similar protocol may be used by stable nodes to periodi-
cally redistribute load in the absence of joins. We do not
implement or evaluate this optimization in this paper.

5.3 Experimental Results

Figure 7 compares the load balancing techniques. The
“baseline”, “vs’, and “split” curves are the same as those

Appears in NSDI’04 10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Node percentage

L
oa

d
pe

rc
en

ta
ge

1250
2500
5000
10000
20000

0
1
2
3
4
5
6
7
8
9

1250 2500 5000 10000 20000
Nodes in the system

R
ou

tin
g

ho
ps

all terms
top terms
baseline

1

10

100

1000

10000

1250 2500 5000 10000 20000
Nodes in the system

Pa
rt

iti
on

ed
 te

rm
s

all terms
top 20 terms

1

10

100

1000

1250 2500 5000 10000 20000
Nodes in the system

all terms
top 20 terms

N
od

es
 th

at
 p

ar
tit

io
n

th
e

lo
ng

es
t i

nv
er

te
d

lis
t

(a) (b) (c) (d)

Figure 8: Scalability of our load balancing technique (“split+scatter”). (a) Metadata distribution. (b) Average routing
hops. (c) Number of partitioned terms. (d) Number of nodes that partition the longest inverted list.

in Figure 5. “split+scatter” is our complete load balanc-
ing scheme, mapping a term into a key range and split-
ting overloaded nodes. For virtual server (“vs”), each
physical node functions as 10 virtual nodes. For our
techniques (“split’ and “split+scatter”), a new node se-
lects an overloaded node from 10 random nodes to split.
We distribute the “top 20 terms” load and the “all terms”
load to a 10,000-node Chord, respectively. Although the
“all terms” load is not how eSearch actually works, we
choose it to represent a scenario where the length dis-
tribution of eSearch’s inverted lists becomes extremely
skewed because, for instance, term lists for a gigantic
number of documents are stored in eSearch.

In Figure 7, the load for the “baseline” is unbalanced,
due to the large variation in length of inverted lists.
For the “all terms” load, 1% of the nodes store 21.5%
of the term lists. Virtual server improves the situation
marginally—for the “all terms” load, 1% of the nodes
still store 20.3% of the term lists. Splitting overloaded
nodes (“split”) performs better than virtual server (“vs”)
but only our complete technique (“split+scatter”) is able
to balance the load when the inverted lists are extremely
skewed, owing to its ability to partition the inverted list
of a single term among multiple nodes.

The rest of our experiments evaluate the scalability
of “split+scatter”, using the “all terms” load and vary-
ing the number of nodes in the system from 1,250 to
20,000. The load distribution is reported in Figure 8 (a).
The curves overlap, indicating that “split+scatter” scales
well with the system size. Figure 8 (b) shows the aver-
age routing hops in Chord with different configurations.
“baseline” is the default Chord. The other two curves
are “split+scatter” with different loads. All curves over-
lap, indicating that our modifications to Chord do not ad-
versely affect Chord’s routing performance.

Figure 8 (c) reports the number of terms whose in-
verted lists are stored on more than one node. Note that
both the X axis and the Y axis are in log scale. As
the number of nodes increases, the number of partitioned
terms increases proportionally. The curve for the “top 20
terms” load grows faster. Because its inverted lists are
not extremely skewed, more added nodes are devoted to

partition unpartitioned terms, whereas in the “all terms”
load added nodes are mainly used to repetitively partition
terms with extremely long inverted lists. Figure 8 (d)
reports the number of nodes that collectively host the
longest inverted list. As the number of nodes increases,
this inverted list is partitioned among more nodes pro-
portionally. The partition in the “all terms” load is higher
than that in the “top 20 terms” load because the inverted
list in the “all terms” load is much longer.

Overall, our load balance technique scales well with
the system size. It balances term list distribution well
under different system sizes and does not affect Chord’s
routing performance. As the system size increases, long
inverted lists are automatically partitioned among more
nodes. Since it works for two quite different loads (par-
ticularly the extreme “all terms” load), we expect it to
also scale well with the corpus size.

6 Analysis of System Resource Usage

In this section, we analyze eSearch’s system resource
usage when publishing metadata for a document or pro-
cessing a query, and compare it with P2P systems based
on global indexing (so-called Global-P2P systems) [16,
20, 28, 39]. We don’t claim the default values used in the
analysis are representative for all situations. Instead, we
just want to give a flavor of eSearch’s resource usage.

6.1 Publishing a Document

eSearch executes a two-phase protocol to publish a
document. In the first phase, it uses DHT routing to
locate the nodes responsible for top terms in the docu-
ment and obtain their IP address and GNP coordinates.
In the second phase, it uses overlay source multicast to
deliver the document. The cost for the first phase could
be avoided if the needed information has already been
cached locally. We assume that this cache is disabled in
the following analysis.

Data transmitted to locate the recipients are Bl = nt ∗
h ∗ ml = 10, 400 bytes, where nt=20 is the number of
top terms, h=8 is the average number of routing hops in

Appears in NSDI’04 11

a 20,000-node Chord 1, ml=65 is the size of the message
(including 40-byte TCP/IP headers, 1-byte identifier that
specifies the type of the message, 4-byte IP address of
the data source, and a 20-byte DHT key). Data replied
from the recipients are Br = nt∗mr=1,220 bytes, where
mr=61 is the size of the reply message (including 28-
byte UDP/IP headers 2, 1-byte message identifier, 4-byte
recipient IP address, and 28-byte GNP coordinates in a 7-
dimensional Cartesian space). The total data transmitted
in the first phase is Bl + Br=11,620 bytes.

In the second phase, there are two options for the con-
tent to be multicast to the recipients. The data source
can build the term list for the document and multicast the
term list. Alternatively, the data source can multicast the
document itself, leaving it to the recipients to build the
term list. The first method is more efficient in that a term
list is smaller than a document, but the second method al-
lows more flexible retrieval. With document text in hand,
eSearch can search exact matches for quoted text, pro-
vide sentence context for matching terms, and support
a “cached documents” feature similar to that in Google.
We opt for multicasting the document itself.

Using statistics from the TREC corpus, we assume
that the average document length is 3,778 bytes and it
can be compressed to 1,350 bytes (a 2 to 4 text com-
pression ratio is typical for bzip2). The UDP/IP head-
ers, message identifier, and structural information of the
multicast tree add 150 bytes to the multicast message,
resulting in a 1,500-byte packet. Based on the simu-
lation results in Section 4, we conservatively estimate
that multicast can save bandwidth by 55%. Thus it con-
sumes 20*1500*0.45=13,500 bytes bandwidth to mul-
ticast a document to 20 recipients. The total (phase
one and phase two) cost for publishing a document is
11620+13500=25,120 bytes.

Next, we calculate the bandwidth consumption to dis-
tribute metadata for a document in a Global-P2P system.
Although these systems [16, 20, 28, 39] did not propose
using stopword removal, we add in this step. It signifi-
cantly reduces the size of the metadata since as much as
50% of a document’s content is stopwords. According
to the TREC corpus, each document on average contains
153 unique terms after stemming and stopword removal.
The metadata for a term in a document includes the term
ID, the document ID, and a 1-byte attribute specifying,
for instance, the frequency of the term in the document.
(If this information needs more than one byte, approx-
imating it with a 256-level value would provide suffi-
cient precision.) The term ID is a DHT key of 20 bytes.

1The actual delay stretch in a proximity-aware overlay [18] may be
smaller than the hop counts. This effect is discussed later.

2Throughout the analysis, we assume that communication between
routing neighbors uses pre-established TCP connections whereas short
communication between non-neighboring nodes uses UDP.

We assume the document ID is 8 bytes, including the
IP address of the node that stores the document, the port
number through which to establish a connection with that
node, and a 2-byte document number that differentiates
documents on that node.

In a Global-P2P system, data transmitted to publish a
document are B = na ∗ h ∗ m = 80, 784 bytes, where
na=153 is the number of terms in the document, h=8 is
the routing hops in Chord, m=66 is the size of the mes-
sage (including 40-byte TCP/IP headers, 1-byte message
identifier, 16-byte term ID, 8-byte document ID, and 1-
byte attribute). This bandwidth consumption is 3.2 times
that of eSearch. This inefficiency is due to routing high-
overhead small packets in the overlay network. Suppose
the overhead of overlay routing can be reduced from h=8
to approximately h=2 by introducing proximity neigh-
bor selection into Chord [18]. Then a Global-P2P system
consumes 20,196 bytes bandwidth to publish a document
whereas eSearch consumes 17,320 bytes bandwidth.

Global-P2P systems send a large number of small
messages to publish a document. eSearch, in contrast,
sends a small number of large messages (the whole doc-
ument). If the inefficiency of processing a large number
of small messages in routers and end hosts is counted
in, savings in eSearch would be even more significant.
Moreover, eSearch distributes the actual document, al-
lowing more flexible retrieval.

6.2 Processing a Query
When a user intends to retrieve a small number of

best matching documents, by default, query expansion is
not used in eSearch (please refer to discussion in Sec-
tion 3.3). The bandwidth cost to process a query is
Bq = nq ∗ h ∗ mq + nq ∗ md = 3, 335 bytes, where
nq = 5 is the number of nodes responsible for the query
terms, h = 8 is the routing hops in the Chord, mq = 61 is
the size of the query message (including 40-byte TCP/IP
headers, 1-byte message identifier, and 20-byte query
text), and md = 28 + 1 + 15 ∗ (8 + 2) = 179 is the size
of the search results (including 28-byte UDP/IP headers,
1-byte message identifier, and 8-byte ID and 2-byte rel-
evance score for 15 matching documents). Both query
and publishing costs are independent of the size of the
corpus and grow slowly (logarithmically) with the num-
ber of nodes in the system. In contrast, a local indexing
system sends a query to every node in the system whereas
the cost to process multi-term queries in a global index-
ing system grows with the size of the corpus.

Occasionally, the user is not satisfied with the search
results and requests a feedback process to retrieve a
larger number of documents using query expansion. The
node that started the search first collects the metadata of
feedback documents in order to select terms to be added
into the query. The bandwidth cost is Bc = nf ∗ mf =

Appears in NSDI’04 12

10, 000 bytes, where nf = 10 is the number of feedback
documents and mf = 1, 000 bytes is the cost to retrieve
metadata for one feedback document. It then starts a sec-
ond round of search using the expanded query. The anal-
ysis of bandwidth consumption is similar to that in the
first round, Bq = nq∗h∗mq +nq∗md = 315, 510 bytes,
except that it searches 30 nodes (nq = 30) and each node
returns 1,000 documents (md = 28+1+1000∗(8+2) =
10, 029). In total, the feedback round consumes 325,510
bytes bandwidth, the majority of which is due to return-
ing a large number of documents.

6.3 Storage Cost

The term list for a document is replicated about 20
times in eSearch, but its storage cost is not 20 times
that of the Global-P2P systems, as explained below. To
speed up query processing, each eSearch node locally
builds inverted lists for documents that it holds term lists
for. It also maintains a table that maps a document’s 8-
byte global ID into a 2-byte local ID. Although further
compression is possible [43], we assume that 3 bytes
are used for each (non-stopword) term in a document,
2 bytes for the local document ID, and 1 byte for an
attribute (e.g., the frequency of the term in the docu-
ment). The total cost to store metadata for a document
in eSearch (including the cost for the mapping table) is
20*(8+2+153*(2+1))=9,380 bytes, assuming each doc-
ument has 153 terms after stemming and stopword re-
moval. Since storing full document text is an additional
feature, we do not count it in the comparison.

Global-P2P systems need at least 9 bytes for a term in
a document, 8 bytes for the global document ID and 1
byte for the attribute. The total storage cost for a docu-
ment’s metadata is 153*(8+1)=1,377 bytes. In these sys-
tems, information for terms in a document is distributed
on different nodes. They cannot benefit from the tech-
nique that maps a document’s long global ID into a short
local ID since the size of one entry of the mapping table
already exceeds the size of the information for a term and
is not reused sufficiently to justify the cost.

The storage space consumed by eSearch is 6.8 times
that of the Global-P2P systems. The benefit is its low
search cost. According to Blake and Rodrigues [2], disk
capacity has increased 160 times faster than the network
bandwidth for an end user. Therefore, we believe trading
modest disk space for communication and precision is a
proper design choice for P2P systems. We also plan to
adopt index compression [43] and pruning [7] to further
reduce storage consumption.

7 Related Work
Compared with our P2P architecture, distributed IR

systems such as GlOSS [17] uses a hierarchy of meta-

databases to summarize contents of other databases.
During a search, the summary is referenced to choose
databases that may contain most relevant documents. We
use semantic information produced by VSM to guide
term list replication. Carmel et al. [7] used similar in-
formation to guide index pruning in a centralized site.

Below, we classify recently proposed P2P search sys-
tems into three categories according to the type of net-
work in which they operate.

Search in Distributed Hash Table Systems

Global indexing based P2P keyword search systems built
on top of DHTs are most relevant to eSearch. To answer
multi-term queries, these systems must transmit inverted
lists over the network to perform a join. Several tech-
niques have been proposed to reduce this cost.

In KSS [16], the system precomputes and stores re-
sults for all possible queries consisting of up to a certain
number of terms. The number of possible queries unfor-
tunately grows exponentially with the number of terms
in the vocabulary. Reynolds and Vahdat [28] adopted a
technique developed in the database community to per-
form the join more efficiently. This technique transmits
the Bloom filter of inverted lists instead of the inverted
lists themselves. Suel et al. [39] adopted Fagin’s algo-
rithm to compute the top-k results without transmitting
the entire inverted lists. This algorithm transmits the in-
verted lists incrementally and terminates early if suffi-
cient results have already been obtained. Li et al. [20]
suggested combining several techniques to reduce the
cost of a distributed join, including caching, Bloom filter,
document clustering, etc.

These approaches are orthogonal to our efforts in eS-
earch. Our hybrid indexing architecture intends to com-
pletely eliminate the cost for distributed join. A quanti-
tative comparison of the search cost between them and
eSearch would be an interesting subject of future work.
Even with various optimizations, we still expect their
cost to grow with the corpus size, perhaps at a rate slower
than that of a basic global indexing system.

Search in Unstructured Peer-to-Peer Networks

Centralized indexing systems such as Napster suffer
from a single point of failure and bottlenecks at the index
server. Flooding-based techniques such as Gnutella send
a query to every node in the system, consuming huge
amounts of network bandwidth and CPU cycles. To re-
duce the search cost, heuristic-based approaches try to
direct a search to only a fraction of the node population.

Rhea and Kubiatowicz [29] described a method in
which each node uses Bloom filters to summarize its
neighbors’ content. A query is only forwarded to neigh-

Appears in NSDI’04 13

bors that may have relevant documents with a high prob-
ability. PlanetP [13] uses Bloom filters to summarize
content on each node and floods the summary to the en-
tire system. Crespo and Garcia-Molina [12] introduced
the notion of Routing Indices that give a promising “di-
rection” toward relevant documents.

Replication has also been explored to improve search
efficiency. FastTrack [15] designates high-bandwidth
nodes as super-nodes. Each super-node replicates the in-
dices of several other nodes. Cohen et al. [11] found that
setting the number of object replicas to the square root of
the searching rate for an object minimizes the expected
search size on successful queries.

Lv et al. [22] found that random walk and expanding-
ring search are more efficient than flooding. Chawathe
et al. [8] combined several techniques, including random
walk, topology adaption, replication, and flow control, to
improve Gnutella.

Search in Networks with Semantic Locality

Schwartz [35] described a method that organizes nodes
with similar content into a group. A search starts with
random walk but proceeds more deterministically once
it hits in a group with matching content. SETS [1] ar-
ranges nodes into a topic-segmented overlay topology
where links connect nodes with similar content. Moti-
vated by research in data mining, Cohen et al. [10] used
guide-rules to organize nodes satisfying certain predi-
cates into an associative network. Sripanidkulchai et
al. [37] extended an existing P2P network by linking a
node to other nodes that satisfied previous queries.

Unlike the above systems, pSearch [40] is a P2P IR
system that employs statistically derived conceptual in-
dices instead of keywords for retrieval. pSearch uses la-
tent semantic indexing (LSI) to guide content placement
in a Content-Addressable Network (CAN) such that doc-
uments relevant to a query are likely be colocated on a
small number of nodes. During a search, both pSearch
and eSearch transmit a small amount of data and search a
small number of nodes, but eSearch is relatively more ef-
ficient if compared quantitatively. In pSearch, the prob-
lem of efficiently deriving the conceptual representation
for a large corpus is also very challenging. pSearch’s in-
frastructure, however, supports content-based retrieval of
multimedia data such as image or music files.

8 Conclusion

In this paper, we proposed a new architecture for P2P
information retrieval, along with various optimization
techniques to improve system efficiency and the quality
of search results. We made the following contributions:

• Challenging conventional wisdom that uses either
local or global indexing, we proposed hybrid index-
ing that employs selective term list replication to
combine the benefits of local and global indexing
while avoiding their limitations.

• We used semantic information provided by modern
IR algorithms to guide the replication. The term
list of a document is only replicated on nodes corre-
sponding to important terms in the document.

• We adopted automatic query expansion in a P2P en-
vironment to alleviate precision degradation intro-
duced by selective replication.

• We devised a novel overlay source multicast proto-
col that has very low protocol overhead in order to
reduce term list dissemination cost.

• We introduced two techniques to balance term list
distribution to a greater degree than is achiev-
able using existing load balancing techniques while
avoiding their maintenance overhead.

We have quantified the efficiency of eSearch (in terms
of bandwidth consumption and storage cost) and the
quality of its search results by experimenting with one
of the largest benchmark corpora available in the public
domain. Our results show that the combination of our
proposed techniques results in a system that is scalable
and efficient, and achieves search results as good as a
centralized baseline that uses Okapi.

Our future work includes studying eSearch’s sensi-
tivity to the global statistics produced from samples,
incorporating a P2P implementation [34] of Google’s
PageRank algorithm, and implementing index compres-
sion [43] and pruning [7] to reduce storage consumption.
We also plan to experiment with a large HTML corpus
crawled from the Web.

Acknowledgments
This work is related to the pSearch project [40] that

Chunqiang Tang worked on during his internship at HP
Labs in year 2002. We thank Mallik Mahalingam and
Zhichen Xu for their contributions in the pSearch project;
Gautam Altekar, Wenrui Zhao, the anonymous review-
ers, and our shepherd Robert Morris for their valu-
able feedback; and Liudvikas Bukys and James Roche
for their support in maintaining the experimental plat-
form. This work was supported in part by NSF grants
CCR-9988361, CCR-0219848, ECS-0225413, and EIA-
0080124; by DARPA/ITO under AFRL contract F29601-
00-K-0182; by the U.S. Dept. of Energy Office of Iner-
tial Confinement Fusion under Cooperative Agreement
No. DE-FC03-92SF19460; and by equipment or finan-
cial grants from Compaq, IBM, Intel, and Sun.

Appears in NSDI’04 14

References

[1] M. Bawa, G. S. Manku, and P. Raghavan. SETS: Search
Enhanced by Topic Segmentation. In SIGIR’03, 2003.

[2] C. Blake and R. Rodrigues. High Availability, Scalable
Storage, Dynamic Peer Networks: Pick Two. In Ho-
tOS’03, May 2003.

[3] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer.
Feasibility of a Serverless Distributed File System De-
ployed on an Existing Set of Desktop PCs. In SIGMET-
RICS’00, 2000.

[4] S. Brin and L. Page. The Anatomy of a Large-Scale Hy-
pertextual Web Search Engine. Computer Networks and
ISDN Systems, 30(1–7):107–117, 1998.

[5] C. Buckley. Implementation of the SMART infor-
mation retrieval system. Technical Report TR85-686,
Department of Computer Science, Cornell University,
Ithaca, NY 14853, May 1985. Source code available at
ftp://ftp.cs.cornell.edu/pub/smart.

[6] K. Calvert, M. Doar, and E. W. Zegura. Modeling Internet
Topology. IEEE Communications Magazine, June 1997.

[7] D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovicl,
Y. S. Marrek, and A. Scoffer. Static Index Pruning for
Information Retrieval Systems. In SIGIR’01, 2001.

[8] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making Gnutella-like P2P Systems Scalable.
In SIGCOMM’03, 2003.

[9] Y. Chu, S. G. Rao, and H. Zhang. A Case for End System
Multicast. In SIGMETRICS’00, 2000.

[10] E. Cohen, A. Fiat, and H. Kaplan. Associative Search in
Peer to Peer Networks: Harnessing Latent Semantics. In
INFOCOM’03, April 2003.

[11] E. Cohen and S. Shenker. Replication Strategies in Un-
structured Peer-to-Peer Networks. In SIGCOMM’02,
2002.

[12] A. Crespo and H. Garcı́a-Molina. Routing Indices for
Peer-to-peer Systems. In ICDCS’02, July 2002.

[13] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D.
Nguyen. PlanetP: Using Gossiping to Build Content
Addressable Peer-to-Peer Information Sharing Commu-
nities. In the 12th IEEE International Symposium on
High Performance Distributed Computing (HPDC’03),
June 2003.

[14] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
SOSP’01, October 2001.

[15] FastTrack Peer-to-Peer technology company, 2001.
http://www.fasttrack.nu.

[16] O. D. Gnawali. A Keyword Set Search System for Peer-
to-Peer Networks. Master’s thesis, Massachusetts Insti-
tute of Technology, June 2002.

[17] L. Gravano, H. Garcı́a-Molina, and A. Tomasic. GlOSS:
text-source discovery over the Internet. ACM Transac-
tions on Database Systems, 24(2), 1999.

[18] K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Rat-
nasamy, S. Shenker, and I. Stoica. The Impact of DHT
Routing Geometry on Resilience and Proximity. In SIG-
COMM’03, August 2003.

[19] IRIS. http://www.project-iris.net.

[20] J. Li, B. T. Loo, J. Hellerstein, F. Kaashoek, D. R. Karger,
and R. Morris. On the Feasibility of Peer-to-Peer Web
Indexing and Search. In IPTPS’03, February 2003.

[21] X. Long and T. Suel. Optimized Query Execution in
Large Search Engines with Global Page Ordering. In
VLDB’03, 2003.

[22] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and Replication in Unstructured Peer-to-Peer Networks.
In ICS’02, June 2002.

[23] M. Mitra, A. Singhal, and C. Buckley. Improving Auto-
matic Query Expansion. In SIGIR’98, 1998.

[24] National Institute of Standards and Technology. Secure
Hash Standard, FIPS 180-1, April 1995.

[25] T. S. E. Ng and H. Zhang. Predicting Internet Network
Distance with Coordinates-Based Approaches. In INFO-
COM’02, 2002.

[26] NLANR. http://watt.nlanr.net/.
[27] Oregon Route Views Project. http://routeviews.org.
[28] P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Key-

word Searching. In Middleware’03, June 2003.
[29] S. Rhea and J. Kubiatowicz. Probabilistic Location and

Routing. In INFOCOM’02, 2002.
[30] K. M. Risvik and R. Michelsen. Search Engines and Web

Dynamics. Computer Networks, 39(3):289–302, 2002.
[31] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-

Beaulieu, and M. Gatford. Okapi at TREC-3. In TREC-3,
1994.

[32] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In SOSP’01, 2001.

[33] G. Salton, A. Wong, and C. Yang. A Vector Space Model
for Information Retrieval. Journal for the American So-
ciety for Information Retrieval, 18(11):613–620, 1975.

[34] K. Sankaralingam, S. Sethumadhavan, and J. C. Browne.
Distributed Pagerank for P2P Systems. In the 12th
IEEE International Symposium on High Performance
Distributed Computing (HPDC’03), June 2003.

[35] M. Schwartz. A Scalable, Non-Hierarchical Resource
Discovery Mechanism Based on Probabilistic Protocols.
Technical Report TR CU-CS-474-90, University of Col-
orado, 1990.

[36] A. Singhal. Modern Information Retrieval: A Brief
Overview. IEEE Data Engineering Bulletin, 24(4):35–
43, 2001.

[37] K. Sripanidkulchai, B. Maggs, and H. Zhang. Enabling
Efficient Content Location and Retrieval in Peer-to-Peer
Systems by Exploiting Locality in Interests. ACM SIG-
COMM Computer Communication Review, 32(1), Jan-
uary 2001.

[38] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM’01, 2001.

[39] T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Khar-
razi, X. Long, and K. Shanmugasunderam. ODISSEA:
A Peer-to-Peer Architecture for Scalable Web Search and
Information Retrieval. In WebDB’03, June 2003.

[40] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-Peer Informa-
tion Retrieval Using Self-Organizing Semantic Overlay
Networks. In SIGCOMM’03, 2003.

[41] Text Retrieval Conference (TREC). http://trec.nist.gov.

Appears in NSDI’04 15

[42] A. Tomasic and H. Garcia-Molina. Query Processing and
Inverted Indices in Shared-Nothing Document Informa-
tion Retrieval Systems. VLDB Journal, 2(3):243–275,
1993.

[43] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gi-
gabytes: Compressing and Indexing Documents and Im-
ages. Morgan Kaufmann, second edition, 1999.

