
On Scaling Latent Semantic Indexing for
Large Peer-to-Peer Systems ∗

Chunqiang Tang
Dept. of Computer Science

University of Rochester
Rochester, NY 14627-0226

sarrmor@cs.rochester.edu

Sandhya Dwarkadas
Dept. of Computer Science

University of Rochester
Rochester, NY 14627-0226

sandhya@cs.rochester.edu

Zhichen Xu
Yahoo! Inc.

701 First Avenue
Sunnyvale, CA 94089

zhichen@yahoo-inc.com

ABSTRACT
The exponential growth of data demands scalable infrastructures
capable of indexing and searching rich content such as text, music,
and images. A promising direction is to combine information re-
trieval with peer-to-peer technology for scalability, fault-tolerance,
and low administration cost. One pioneering work along this di-
rection is pSearch [32, 33]. pSearch places documents onto a peer-
to-peer overlay network according to semantic vectors produced
using Latent Semantic Indexing (LSI). The search cost for a query
is reduced since documents related to the query are likely to be
co-located on a small number of nodes. Unfortunately, because of
its reliance on LSI, pSearch also inherits the limitations of LSI.
(1) When the corpus is large and heterogeneous, LSI’s retrieval
quality is inferior to methods such as Okapi. (2) The Singular Value
Decomposition (SVD) used in LSI is unscalable in terms of both
memory consumption and computation time.

This paper addresses the above limitations of LSI and makes the
following contributions. (1) To reduce the cost of SVD, we reduce
the size of its input matrix through document clustering and term
selection. Our method retains the retrieval quality of LSI but is
several orders of magnitude more efficient. (2) Through extensive
experimentation, we found that proper normalization of semantic
vectors for terms and documents improves recall by 76%. (3) To
further improve retrieval quality, we use low-dimensional subvec-
tors of semantic vectors to cluster documents in the overlay and
then use Okapi to guide the search and document selection.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering, Search Process
General Terms
Algorithms, Performance, Experimentation
Keywords
Latent Semantic Indexing, Dimensionality Reduction, Peer-to-Peer IR

∗Work in this paper was done at the University of Rochester.
Chunqiang and Sandhya were supported in part by NSF grants
CCR-9988361, CCR-0219848, ECS-0225413, and EIA-0080124;
by DARPA/ITO under AFRL contract F29601-00-K-0182; by the
U.S. Dept. of Energy Office of Inertial Confinement Fusion under
Cooperative Agreement No. DE-FC03-92SF19460; and by equip-
ment or financial grants from Compaq, IBM, Intel, and Sun.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’04, July 25–29, 2004, Sheffield, South Yorkshire, UK.
Copyright 2004 ACM 1-58113-881-4/04/0007 ...$5.00.

1. INTRODUCTION
According to a recent report [24], the unique information added

each year exceeds 1018 bytes and is estimated to grow exponen-
tially. This trend calls for equally scalable infrastructures capa-
ble of indexing and searching rich content such as text, music, and
images. Meanwhile, Peer-to-Peer (P2P) systems [20] are gaining
popularity quickly due to their scalability, fault-tolerance, and self-
organizing nature, raising hope for building large-scale information
retrieval (IR) systems at a low cost.

Building a P2P IR system, however, still remains particularly
challenging. The fundamental problem that makes search in ex-
isting P2P systems (e.g., Gnutella) difficult is that, with respect to
semantics, documents are randomly populated. Given a query, the
system has to search a large number of nodes to find some relevant
documents, rendering the system unscalable. To address this prob-
lem, we proposed pSearch [32, 33]. pSearch organizes nodes into
an application-level overlay network and populates documents in
the network according to document semantics derived from Latent
Semantic Indexing (LSI) [3, 8]. The distance (e.g., routing hops)
between two documents in the network is proportional to their dis-
similarity in semantics. The search cost for a query is therefore re-
duced since documents related to the query are likely to be concen-
trated on a small number of nodes. Our initial results have shown
the great promise of this approach [32]. pSearch can efficiently
approximate a centralized implementation of LSI.

Unfortunately, our recent extensive experimentation with LSI re-
veals some limitations of LSI itself, which may also cripple pSearch’s
efficiency and efficacy because of its reliance on LSI. (1) When the
corpus is large and heterogeneous, LSI’s retrieval quality is inferior
to methods such as Okapi [27]. (2) The Singular Value Decomposi-
tion (SVD) that LSI uses to derive low-dimensional representations
(i.e., semantic vectors) of documents is not scalable in terms of both
memory consumption and computation time.

In this paper, we propose techniques to address these limitations
of LSI and show their use in the pSearch framework.

• To improve the efficiency of LSI, we propose an algorithm
we call eLSI (efficient LSI) to reduce the size of the input ma-
trix for SVD while retaining the matrix’s important content.
We partition documents into clusters and use the centroids
of the clusters as “representative” documents. We further re-
duce the dimensionality of the centroid vectors by filtering
out elements corresponding to low-weight terms. The result-
ing matrix, which has short centroid vectors as columns, is
several orders of magnitude smaller than the original matrix.
Finally we apply SVD to this matrix to derive the basis of
the semantic space. Experiments show that eLSI retains the
retrieval quality of LSI but is several orders of magnitude

more efficient. It outperforms four major fast dimensionality
reduction methods [6, 9, 15, 23] in retrieval quality.

• We conducted extensive experiments with LSI using a large
corpus and found that proper normalization of semantic vec-
tors for terms and documents improve recall by 76% com-
pared with the standard LSI that strictly follows SVD.

• Without sufficient dimensions, LSI cannot accurately rank
documents for large corpora and is therefore noticeably in-
ferior to Okapi. Unlike works that use LSI to improve re-
trieval quality, we use LSI as an implicit document clustering
method that can work with low-dimensional data. 1 We use
low-dimensional subvectors of semantic vectors to implic-
itly cluster documents in an overlay, which helps reduce the
search space. We then use Okapi to guide the search process
and document selection.

It should be emphasized that our contributions are beyond their
use in pSearch, since the problems we address are common to many
other systems. (1) Deriving low-dimensional representation for
high-dimensional data is a common theme for many fields. Ex-
isting methods such as Principal Component Analysis (PCA) and
LSI are not scalable. eLSI is efficient and produces high-quality
low-dimensional data. Therefore it can be used in many systems to
replace PCA or LSI. (2) The proper configuration we found for LSI
should be of general interest to the LSI community. (3) Existing
LSI implementations compare the semantic vector of a query with
that of every document. Dumais noticed the inefficiency of this
method and commented that no known technique can effectively
reduce the search space for high-dimensional data [10]. The funda-
mentals of our techniques, despite the fact that they were originally
developed for P2P systems, can also be applied to centralized sys-
tems to reduce the search space.

This paper addresses the challenge of using LSI in pSearch. One
can also build a P2P IR system around our document clustering idea
without using LSI, by partitioning documents into clusters and as-
signing them to different nodes. Given a query, it searches only
nodes whose centroids are the closest to the query. Since nearest
neighbor search in a high-dimensional space is prohibitive, this ap-
proach cannot employ a distributed search strategy as pSearch does.
In a naive implementation, each node would need to know the IP
and centroid of all other nodes. However, it is important for nodes
in a dynamic P2P system to maintain only a small amount of global
information to be scalable. It is a subject of future work to pursue
this approach and address this challenges.

The remainder of the paper is organized as follows. Section 2
gives an overview of the pSearch system. Sections 3 and 4 describe
and evaluate techniques to improve LSI’s retrieval quality and ef-
ficiency, respectively. Section 5 puts all these techniques together
and evaluates the complete pSearch system. Related work is dis-
cussed in Section 6. Section 7 concludes the paper.

2. SYSTEM OVERVIEW
To set the stage for our discussion, we first present an overview

of the pSearch system (see [32] for details). In pSearch, a large
number of nodes are organized into an application-level overlay
network to offer IR service. Nodes in the overlay collectively form
a pSearch Engine. Inside the Engine, nodes have completely ho-
mogeneous functions. A client intending to use pSearch connects
to any Engine node to publish document indices or submit queries.
1Working with low-dimensional data is essential. Due to the curse
of dimensionality [35], for a high-dimensional space implemented
in a decentralized environment, the system has to search a large
number of nodes to answer queries.

Figure 1 shows an example of how the system works. Node A

publishes a document to node B inside the Engine. B builds the in-
dex for the document and routes the index in the overlay. The index
is finally stored on node F based on its semantics. When a query
is submitted to node E, the query is routed to node C based on the
semantics of the query. C then takes the responsibility for finding
relevant documents and returning them to E. In this example, C

may return the index published by A and stored on F .
pSearch uses a CAN [25] to organize Engine nodes into an over-

lay and uses an extension of LSI to answer queries. We call this
algorithm pLSI. In the following, we first give some background
and then present the pLSI algorithm.

2.1 Vector Space Model (VSM)
In VSM [28], a term-document matrix A = (aij) ∈ Rt×d is

formed to represent a collection of d documents containing words
from a vocabulary of t terms. Each column vector aj (1 ≤ j ≤ d)
corresponds to a document j. Weight aij represents the importance
of term i in document j. The weights are usually computed from
variants of TFIDF [3]. For instance, the ltc [7] term weighting
scheme computes aij as follows,

bij = [log(fij) + 1] · log(
d

Di

) (1)

aij =
bij

√

∑t

x=1 b2
xj

(2)

where fij is the frequency of term i in document j and Di is the
number of documents that contain term i. Normalization in Equa-
tion 2 ensures that document vector aj is of unit length. Queries are
represented as vectors in a similar fashion. The similarity between
two vectors is measured as their inner product. When vectors are
normalized (as they are in ltc), the inner product is the same as the
cosine of the angle between the vectors.

2.2 Latent Semantic Indexing (LSI)
Literal matching schemes suffer from synonyms and noise in

documents. LSI overcomes these problems by using statistically
derived concepts instead of terms for retrieval. It uses truncated
Singular Value Decomposition (SVD) [12] to transform a high-
dimensional document vector into a lower-dimensional semantic
vector, by projecting the former into a semantic subspace.

Suppose the rank of the term-document matrix A is r. SVD
decomposes A into the product of three matrices,

A = UΣV
T (3)

where U = (u1, . . . , ur) ∈ Rt×r , Σ = diag(σ1, . . . , σr) ∈
Rr×r , and V = (v1, . . . , vr) ∈ Rd×r . V T is the transpose of
V . σi’s are A’s singular values, σ1 ≥ σ2 ≥ . . . ≥ σr . U and V are
column-orthonormal. LSI approximates A with a rank-k matrix

Ak = UkΣkV
T

k (4)

by omitting all but the k largest singular values, where
Uk = (u1, . . . , uk), Σk = diag(σ1, . . . , σk), Vk = (v1, . . . , vk).

Row i of Uk ∈ Rt×k is the representation of term i in the k-
dimensional semantic space. A document (or query) vector q ∈
Rt×1 can be folded into the k-dimensional semantic space using
Equation 5 or 6 [23]. The difference is whether to scale the vector
by the inverse of the singular values. Similar to VSM, the similarity
between semantic vectors is measured as their inner product.

q̂ = U
T
k q (5)

q̂ = Σ−1
k U

T
k q (6)

G

A

F

D
B

C
E

p S e a r c h En g i n e

d o c u m e n t i n d e xq u e r y

0.4
0.1

0.5 - 1
0- 0.5E

B
0- 0.5
0.5 - 1

A
0- 0.5
0- 0.5

D
0.7 5 - 1
0.5 - 1

C
0.5 - 0.7 5
0.5 - 1

zone coordinates

ob j ect k ey0

1

1

doc
document index

q u e r y
12

333

4

s ea r ch r eg ion f or th e q uer y

4

(a) (b) (c)

Figure 1: (a) Overview of the pSearch system. (b) A 2-dimensional CAN. (c) pLSI in a 2-dimensional CAN.

2.3 Content-Addressable Network (CAN)
Recent P2P overlay networks such as CAN [25] offer an

administration-free and fault-tolerant storage space. The basic func-
tionality these systems provide is a distributed hash table (DHT)
that maps “keys” to “objects”. CAN partitions a d-dimensional
Cartesian space into zones and assigns each zone to a node. Two
nodes are routing neighbors in the overlay if their zones overlap in
all but one dimension along which they abut each other. An object
key is a point in the Cartesian space and the object is stored at the
node whose zone contains the point. Locating an object is reduced
to routing to the node that hosts the object.

An example CAN is shown in Figure 1(b). There are five nodes
A-E in the overlay. Each node owns a zone in the Cartesian space.
Initially C owns the entire zone at the upper-right corner. When
D joins, the zone owned by C splits and part of the zone is given
to D. When D wishes to retrieve the object with key (0.4, 0.1), it
sends the request to E and E forwards the request to A.

2.4 The pLSI Algorithm
Both LSI and CAN employ a Cartesian space. The pLSI algo-

rithm splices them together to build pSearch. It sets the dimension-
ality of a CAN to be equal to that of LSI’s semantic space (k). The
index for a document is stored in the CAN using its semantic vector
as the key. The effect is that indices stored close in the overlay are
also close in semantics.

Figure 1(c) illustrates the basic steps of pLSI.
1. When receiving a new document, the Engine node derives its

semantic vector using LSI and uses the semantic vector as
the key to store its index in the CAN.

2. When receiving a query, the Engine node derives its semantic
vector and routes the query in the CAN using the semantic
vector as the key.

3. Upon reaching the destination, the query is flooded to nodes
within a small radius r.

4. Nodes that receive the query do a local search and return ref-
erences of the best matching documents to the query initiator.

Since indices of documents similar to the query (above a certain
threshold) can be stored only within this radius r and we do an
exhaustive search within this area, in theory, pLSI can achieve the
same precision as LSI. Ideally, the search region should be small
such that only a small number of nodes are involved in a search.

In practice, we do not know the boundary of the search region in
advance. The search starts from the node whose zone contains the
query point and gradually explores its neighboring nodes, guided
by our content-directed search algorithm [32]. Each node sam-
ples content stored on its neighbors and uses the samples to decide
which node to search next. It prefers searching nodes whose in-
dices, judging from the samples, have high similarity to the query.
The search is terminated when no better document is found on the
most recently searched T nodes, where T is a tunable threshold.

LSI uses a k=50∼350 dimensional space for small corpora. Due
to the curse of dimensionality [35], the size of the search region
in Figure 1(c) grows quickly as the dimensionality of the space in-
creases, meaning pSearch needs to search a large number of nodes
to answer queries. Moreover, there is a dimensionality mismatch
between CAN and LSI. The “real” dimensionality of a CAN can-
not be higher than l = O(log(n)), where n is the number of nodes
in the system, l � k. Our rolling-index algorithm [32] addresses
both problems. Intuitively, it partitions a k-dimensional seman-
tic vector into multiple disjoint l-dimensional subvectors, and uses
the subvectors as DHT keys to guide index placement and query
routing. For instance, for a k-dimensional vector (v1, v2, · · · , vk),
(v1, v2, · · · , vl) is the first subvector, (vl+1, vl+2, · · · , v2l) is the
second one, and so forth. Given a document, we store its index
at p places in the CAN using its first p subvectors as DHT keys.
For convenience, we simply say subvectors with the same starting
offset belong to the same plane and l is the dimensionality of each
plane. Conceptually, the index for a document is stored on p dif-
ferent planes. During a search, we execute the pLSI algorithm in
Figure 1(c) p times. Each time it uses a different subvector of the
query to guide the search on a different plane. The final search re-
sults are a combination of the results from different planes. Our
previous evaluations [32] show that pLSI can approximate LSI us-
ing a small number of planes, typically p = 4.

Generally, two similar subvectors cannot ensure their full vectors
are also similar, but we find that this probability is significantly
higher for semantic vectors than for random vectors, because of
the significance of the low-dimensional elements of semantic vec-
tors and the correlation among the elements. We demonstrate this
through experiments with the TREC corpus (see Section 3.1 for de-
tails of our experiments). We first retrieve 15 documents for each
TREC 7&8 query based on the similarity of the 300-dimensional
semantic vectors. The results form set A. On each plane, we then
retrieve e · 15 documents for a query solely based on the similarity
of the l-dimensional subvectors. Here, e is a constant multiplica-
tion factor. The results for the first four planes form set B. The “sv”
series in Figure 2 are the average accuracy of set B with respect to
set A, where accuracy = |A∩B|

|A|
. When l = 25 and e = 128, B

is only 1.3% of the entire corpus, but it already covers 90% of the
documents in set A. We also conduct the same experiment using

0
0.2
0.4
0.6
0.8

1

16 32 64 12
8

25
6

51
2

10
24

Multiplication factor e

A
cc

ur
ac

y sv (l=35)
sv (l=25)
sv (l=15)
rand (l=35)
rand (l=25)
rand (l=15)

Figure 2: Using subvectors to search nearest neighbors.

0
5

10
15
20
25
30
35
40

baseline norm
doc

norm
term

norm
bothR

et
ri

ev
ed

 r
el

ev
an

t d
oc

s

no scale scale

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

0 0.2 0.4 0.6 0.8 1
Recall

Pr
ec

is
io

n

norm both
norm term
norm doc
baseline

0
2
4
6
8

10
12
14

baseline norm
doc

norm
term

norm
bothR

et
ri

ev
ed

 r
el

ev
an

t d
oc

s

no scale scale

(a) (b) (c)

Figure 3: Comparison of different configurations for LSI. (a) Retrieved relevant documents for TREC. (b) Precision-recall for TREC.
(c) Retrieved relevant documents for Medlars.

random vectors as documents and queries, and report the results as
the “rand” series in Figure 2. This figure shows that, to some ex-
tent, similar semantic subvectors imply similar full semantic vec-
tors, thanks to the features of semantic vectors.

A technique to balance index distribution across nodes is de-
scribed in [32]. To derive the semantic vector for a document, En-
gine nodes need some global data, e.g., IDF and the basis of the
semantic space (Uk). See technical report [33] for the method that
aggregates and distributes these global data through a tree.

3. IMPROVING RETRIEVAL QUALITY
When the corpus is large and heterogeneous, LSI’s retrieval qual-

ity is inferior to methods such as Okapi [27]. In this section, we
describe techniques to improve LSI’s retrieval quality.

3.1 Choosing a Proper LSI Configuration
Although the use of SVD is common among LSI implementa-

tions, we have seen proposals [4, 5, 8, 14] that differ in the manner
in which the output of SVD is used, depending on

1. term normalization—whether to normalize rows of Uk (se-
mantic vectors for terms) to unit length before using them in
Equation 5 or 6 to project document or query vectors;

2. document normalization—whether to normalize the projected
vectors (q̂ in Equation 5 or 6) to unit length before using in-
ner product to compute the similarity (i.e., the choice of using
inner product or cosine as the similarity metric); and

3. the choice of using Equation 5 or 6 to project vectors.

There are a total of eight different variants of LSI depending on
these choices. In analysis [23], LSI is usually treated as a pro-
cess that uses a low-rank matrix to approximate a high-rank ma-
trix while introducing the smallest error. The “standard” LSI that
follows from this analysis should do neither term normalization
nor document normalization and use Equation 6 to project vectors.
Since the “standard” LSI is most widely used, we refer to it as
the “baseline”. Some systems in the literature have also used the
“non-standard” variants. To the best of our knowledge, no study
systematically evaluated these fundamental choices for LSI. Below
we will show these choices dramatically affect LSI’s performance.

To evaluate these choices, we extended the SMART system [7]
with an LSI implementation, using SVDPACK [30] to compute
SVD of large sparse matrices. The SMART stopword list and stem-
mer are used as is. The corpus we use is the disk 4 and 5 from
TREC [34], excluding the Congressional Record. It consists of
528,543 documents with a total size of 2GB. Since real queries are
usually short, we use the title field of topics 351-450 as queries. A
query on average contains 2.4 terms and has 94 relevant documents.

We experimented with various term weighting schemes to gener-
ate the input term-document matrix for SVD, including Okapi [27],
pivoted normalization [29], and those built in SMART. Although
Okapi and pivoted normalization have good performance when used
standalone, using them as a pre-processing step for LSI does not
improve performance. The reason is that they use document length
as one important factor in weighting, but it is hard to assign a length
to short queries that can work with the equations in Okapi or piv-
oted normalization. We found that the ltc term weighting in Equa-
tions 1 and 2 works well with LSI for several corpora. We use ltc
to generate the input term-document matrix for SVD.

Due to memory limitations, we select only 15% of the TREC
corpus to construct a 83,098-term by 79,316-document matrix as
the input for SVD, which projects vectors into a 300-dimensional
space. The SVD computation consumes 1.7GB memory and takes
57 minutes to complete on a 2GHz Pentium 4 machine. We use LSI
to retrieve 1,000 documents for each query and report the average
number of retrieved relevant documents for a query in Figure 3(a).
Figure 3(b) plots the precision-recall curve. 2 “no scale” uses Equa-
tion 5 to project vectors whereas “scale” uses Equation 6. “norm
term” normalizes each row of Uk. “norm doc” normalizes seman-
tic vector q̂ in Equation 5 or 6 before computing similarity. “norm
both” does both normalizations.

Normalizing semantic vectors of terms or documents significantly
improves precision and recall. Combined together, they return 76%
more relevant documents compared with the baseline that does no
normalization. (In pSearch, we are more interested in LSI’s re-
call since we use Okapi to rerank documents afterward. See Sec-
tion 3.2.) The baseline, unfortunately, is widely used in most LSI
implementations since it is what directly follows from SVD.

As pointed out in [14], normalizing semantic vectors for terms
improves performance by emphasizing rare terms. Despite the com-
pensation from the IDF component in Equation 1, rare terms tend
to have a small norm after truncated SVD because their semantics
are usually captured by high-dimensional elements that are trun-
cated away. Consequently, rare terms contribute little to the final
similarity score to differentiate documents. The benefit of normal-
izing document vectors again after SVD (the first normalization in
Equation 2 is before SVD) corroborates the long-lasting belief that
cosine is a robust measure for similarity.

We also conduct the same experiment with the Medlars corpus
(available in the SMART package [7]), which has 1,033 documents
and 30 queries. Documents and queries are projected into a 50-

2Precision is defined as the number of retrieved relevant documents
divided by the number of retrieved documents. Recall is defined as
the number of retrieved relevant documents divided by the total
number of relevant documents in the corpus. A precision-recall
curve shows the precision at a given recall level.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 0.2 0.4 0.6 0.8 1
Recall

Pr
ec

is
io

n
Okapi
LSI+Okapi
ltc
LSI

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
Recall

Pr
ec

is
io

n

LSI
Okapi
ltc

0
0.1
0.2
0.3
0.4
0.5

p@15 p@10 p@5

Pr
ec

is
io

n

LSI ltc LSI+Okapi Okapi

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10

C
D

F
of

 q
ue

ri
es

LSI
LSI+Okapi
Okapi

Relevant docs among top 10 retrieved docs
(a) (b) (c) (d)

Figure 4: Comparison of different retrieval algorithms. (a) Precision-recall for TREC. (b) Precision-recall for Medlars. (c) High-end
precision for TREC. (d) Cumulative distribution of queries as a function of retrieved relevant documents (using TREC).

dimensional semantic space. We retrieve 15 documents for each
query and report the average number of retrieved relevant docu-
ments in Figure 3(c). Unlike that for TREC, LSI’s performance for
Medlars varies marginally with different configurations. We con-
jecture that the performance difference between Figure 3(a) and (c)
is because a 50-dimensional space is sufficient for the small, homo-
geneous Medlars corpus whereas a 300-dimensional space is insuf-
ficient for the large, heterogeneous TREC corpus. Another experi-
ment corroborates this conjecture. When using only an insufficient
15-dimensional space for Medlars, “norm both” outperforms the
baseline by 30%, which is consistent with the trend for TREC. This
experiment demonstrates the importance of using large, heteroge-
neous corpora in evaluations.

In summary, normalization is beneficial if the dimensions of the
semantic space are insufficient in capturing the fine structure of the
corpus, which is true for most large corpora. We choose “norm
both” with Equation 5 as the configuration for LSI. There is no
performance difference between using Equation 5 and 6. We opt
for Equation 5 since it directly follows from the analysis [23].

3.2 Combining LSI with Okapi
Okapi [27] consistently achieved the best performance in TREC’s

ad hoc track. Figure 4(a) and (b) compares the precision-recall of
several retrieval algorithms 3, using TREC and Medlars, respec-
tively. (LSI+Okapi is our method to be described later.) LSI per-
forms well for the small Medlars corpus, which is consistent with
the results in previous work [8]. For the much larger TREC cor-
pus, however, Okapi performs dramatically better than LSI. LSI’s
poor performance with large, heterogeneous corpora has also been
reported elsewhere [14]. This experiment, again, emphasizes the
importance of using large corpora in evaluations.

There are several reasons for LSI’s inferior performance. First,
LSI does not explicitly exploit document length in ranking, which
has been shown to be important by Okapi and pivoted normaliza-
tion [29]. There is no simple solution for this. Our experience
shows that simply using Okapi or pivoted normalization to generate
the input term-document matrix for SVD leads to even worse per-
formance because of their asymmetric weights for document terms
and query terms. Second, a 300-dimensional semantic space is in-
sufficient for TREC. LSI’s performance can be improved by in-
creasing dimensionality (see results in Figure 5(a)), but this will
increase the cost of SVD. More importantly, in a decentralized
environment, pLSI only exploits information in low-dimensional
subvectors to guide index placement and query routing (see Sec-
tion 2.4). Increasing dimensionality is therefore not helpful for us.

SVD sorts elements in semantic vectors by decreasing impor-
tance. The low dimensions of the semantic space capture the major

3Although automatic query expansion can improve performance
(e.g., boosting Okapi’s average precision from 0.221 to 0.273), it is
not used in any experiment in this paper, because we want to study
the effect of dimensionality reduction independently.

structure of the corpus, but it still needs the fine structure captured
by the high dimensions to rank documents. In other words, regard-
less of the optimal dimensionality for LSI to achieve the best re-
trieval quality, low-dimensional subvectors can approximately clus-
ter related documents in the P2P network. Without sufficient di-
mensions, LSI simply cannot rank documents properly.

Based on this observation, we make two important modifications
to pLSI. First, on a searched node, we use Okapi instead of LSI to
select documents. Second, we use Okapi to guide the exploration
of the search region in Figure 1(c). In content-directed search, we
use Okapi instead of LSI to compute the similarity between the
sampled documents and the query, which is used to decide which
node to search next. We call this method “LSI+Okapi”.

We first evaluate if LSI+Okapi can work in a centralized imple-
mentation. Figure 4(c) compares the high-end precision (i.e., the
precision when retrieving a small number of documents) for differ-
ent methods. P@i is the precision when retrieving i documents for
a query. The configuration for LSI+Okapi is as follows. We use a 4-
plane pLSI. Each plane is of 25 dimensions. That is, pLSI uses only
the first 100 dimensions of the semantic space. Each plane retrieves
1,000 documents for a query based on subvectors on that plane. 4

Four planes in total return 4,000 documents. Finally, we use Okapi
to rank the returned 4,000 documents. Figure 4(c) shows that, with
proper ranking, the top documents retrieved by low-dimensional
subvectors are almost as good as Okapi.

Figure 4(d) plots the cumulative distribution of the 100 queries
as a function of the returned relevant documents when retrieving 10
documents. LSI, LSI+Okapi, and Okapi find no relevant document
for 39, 18, and 11 queries, respectively. The distribution of the
retrieval quality of LSI+Okapi closely follows that of Okapi.

The precision-recall for LSI+Okapi is reported in Figure 4(a).
The high-end precision of LSI+Okapi approaches that of Okapi,
but the low-end precision (i.e., the precision when retrieving a large
number of documents) still lags behind. The low-end precision can
be improved by allowing each plane to return more candidate doc-
uments for Okapi to rank, but this would increase the search cost.
Currently our focus is on high-end precision since a significant per-
centage of users only view the top search results. We leave improv-
ing low-end precision as a subject of future work.

4. IMPROVING THE EFFICIENCY OF LSI
In Section 3, we described techniques to improve the retrieval

quality of pLSI to approach that of Okapi. In this section, we ad-
dress another problem that limits LSI’s scalability—the high com-
putation cost associated with SVD.

Traditionally, LSI uses a term-document matrix as the input for
SVD to compute the basis of the semantic space. For a sparse ma-
trix A ∈ Rt×d with about c nonzero elements per column, the
4In a decentralized implementation, each plane does not actually
return all 1,000 documents since content-directed search [32] auto-
matically avoids searching documents with low similarity score.

time complexity of SVD is O(t ·d ·c) [22]. We propose the follow-
ing to reduce this cost. We partition documents into clusters and
use the centroids of the clusters as “representative” documents. We
further reduce the dimensionality of the centroid vectors by filter-
ing out elements corresponding to low-weight terms. The resulting
matrix, which has short centroid vectors as columns, is several or-
ders of magnitude smaller than the original term-document matrix.
Finally, we apply SVD to this matrix to derive the basis of the se-
mantic space. We call this algorithm eLSI (efficient LSI). eLSI re-
duces the cost for SVD but introduces the extra clustering step. We
believe clustering algorithms are much more scalable than SVD.

4.1 The eLSI Algorithm
Our eLSI algorithm efficiently derives good low-dimensional rep-

resentation for documents. It consists of the following steps.
1. Partition documents into clusters and compute a centroid for

each cluster.
2. Reduce the dimensionality of the centroids by keeping only

elements whose aggregate weight across centroids is suffi-
ciently large.

3. Project the dimensionality-reduced centroids into a
k-dimensional semantic space using SVD.

4. Project terms into the semantic space according to the usage
of terms in the centroids and the k-dimensional representa-
tion of centroids.

5. Finally, project documents into the semantic space according
to the usage of terms in the documents and the k-dimensional
representation of terms.

Intuitively, we use document clustering and term selection to
come up with a small matrix that captures important content of the
original term-document matrix. We then apply SVD to this small
matrix to derive low-dimensional representation for the centroids,
followed by a chain of actions, centroids → terms → documents,
to derive low-dimensional representation for terms and documents.

Each column of the original term-document matrix corresponds
to a document. One natural way to reduce the number of columns
is to replace multiple columns corresponding to a cluster of similar
documents with a single vector that represents the centroid of this
cluster. Centroids are landmark structures in the document space. If
we find a good projection that maps centroids to a low-dimensional
semantic space while retaining the distance among them, it is likely
that this projection also keeps the distance among documents. We
use a hierarchical version of spherical k-means [9] to cluster docu-
ments. Details are omitted due to space limitation.

Denote the centroid matrix obtained through clustering as

C = [c1 c2 · · · cs] ∈ Rt×s (7)

where s is the number of document clusters, t is the number of
terms, and cj is the centroid vector for cluster j. The centroid v̂

of a set of vectors vi (1 ≤ i ≤ n) is defined as v̂ = 1
n

∑n

i=1 vi.
Element cij indicates the importance of term i in centroid j. The
aggregate weight of a term i across centroids is wi =

∑s

j=1 cij .
We select a subset of e rows from matrix C to construct a row-
reduced matrix C̃ ∈ Re×s. The x-th row of C is kept in C̃ if
term x appears in more than one centroid and is among the top e

terms with the largest aggregate weight. The rationale behind term
selection is that terms with big aggregate weight are representative
in expressing the relationship among centroids.

Similar to the use of document clustering to reduce the columns
of the term-document matrix, one can use term clustering to reduce
the rows of matrix C. We prefer term selection since it is more
efficient and works well in practice. Alternatively, one can also

use Random Projection [11] to reduce the dimensionality of the
centroid vectors. See Section 4.2 for more details.

After document clustering and term selection, matrix C̃ is sev-
eral orders of magnitude smaller than the original term-document
matrix. For the TREC corpus, the complete term-document matrix
has 408,653 rows and 528,155 columns. The matrix C̃ we use for
the TREC corpus, on the other hand, has less than 2,000 rows and
2,000 columns. We apply SVD to C̃, computing components cor-
responding to C̃’s k largest singular values (see Equation 8 and 9).
This can be done efficiently because of the limited size of C̃.

C̃ = UΣV
T (8)

C̃k = UkΣkV
T

k (9)

Vk ∈ Rs×k is the representation of the centroids in the k-dimensional
semantic space. Equation 10 projects terms into the semantic space
using Vk. Recall that each row of C corresponds to a term.

B = CVk ∈ Rt×k
. (10)

As discussed in Section 3.1, we normalize each row of B to unit
length to emphasize rare terms, resulting in a new matrix B̃. Fi-
nally, Equation 11 and 12 project a document (or query) vector q

into the semantic space and normalize it to unit length.

q̄ = B̃
T
q (11)

q̂ =
q̄

||q̄||2
∈ Rk×1 (12)

4.2 Other Dimensionality Reduction Methods
In this section, we summarize four fast dimensionality reduction

methods. We will compare them with eLSI in Section 4.3.
The first algorithm, Random Projection (RP) [11], projects a t-

dimensional document (or query) vector q into a k-dimensional
subspace using a random matrix P ∈ Rt×k whose columns have
unit length (see Equation 13). Here t is the number of terms and k

is the dimensionality of the target semantic space, k � t. Despite
its simplicity, previous work has shown that RP was reasonably ac-
curate in reducing dimensionality for text data [6].

q̄ = P
T
q (13)

The first step of all other algorithms partitions documents into k

clusters, where k is the dimensionality of the target semantic space.
(Note that eLSI partitions documents into s clusters, s � k.) De-
note G = [g1 g2 · · · gk] ∈ Rt×k as the centroid matrix, where gj

is the centroid vector for cluster j.
The second algorithm, Concept Indexing (CI), is introduced by

Karypis and Han [15]. Given a vector q, CI uses Equation 14 to
project it into the subspace spanned by the k centroids.

q̄ = G
T
q (14)

The third algorithm [9] solves the least-squares problem in Equa-
tion 15 to derive the k-dimensional representation for vector q. We
will refer to this algorithm as the LS (least-squares) algorithm.

q̄ = argq̄ min ||Gq̄ − q||2 (15)

The fourth algorithm [23] is based on QR decomposition. The
QR decomposition of matrix G ∈ Rt×k gives an orthogonal matrix
Q ∈ Rt×t and an upper triangular matrix R ∈ Rk×k such that

G = Q

(

R

0

)

= (Qk Qr)

(

R

0

)

= QkR (16)

where Qk ∈ Rt×k and Qr ∈ Rt×(t−k). The k-dimensional repre-
sentation of vector q is computed using Equation 17. We will refer

0
5

10
15
20
25
30
35
40

20 30 40 50 60 80 10
0

12
0

14
0

16
0

18
0

20
0

30
0

60
0

90
0

Dimension

LSI
RP-eLSI
sel-eLSI
QR
LS
CI
RP

R
et

ri
ev

ed
 r

el
ev

an
t d

oc
s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

RP
LSI
RP-eLSI
QR
LS
CI

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

RP
LSI
RP-eLSI
QR
LS
CI

(a) (b) (c)

Figure 5: Comparison of dimensionality reduction methods. (a) Retrieved relevant documents. (b) Precision-recall in a 140-
dimensional space. (c) Precision-recall in a 300-dimensional space.

to this algorithm as the QR algorithm.

q̄ = Q
T
k q (17)

As discussed in Section 3, normalization improves retrieval qual-
ity. We use Equation 12 to normalize vector q̄ in Equation 13, 14,
15, and 17 to unit length.

The eLSI algorithm described in Section 4.1 uses term selection
to reduce the dimensionality of the centroid vectors before applying
SVD. Alternatively, one can use random projection with eLSI to
reduce the dimensionality of the centroid vectors,

C̃ = F
T
C (18)

where C ∈ Rt×s is the centroid matrix (from Equation 7), C̃ ∈
Re×s is the reduced centroid matrix, and F ∈ Rt×e is a random
matrix whose columns have unit length. After obtaining C̃, other
steps of the eLSI algorithm are used without change. We refer to
this version of eLSI as “RP-eLSI” (using RP with eLSI) and refer
to the original eLSI algorithm as “sel-eLSI” (term selection eLSI).
We will use “eLSI” to generally refer to “sel-eLSI” and “RP-eLSI”.

In total, we have seven different dimensionality reduction algo-
rithms to compare—RP-eLSI, sel-eLSI, RP, CI, LS, QR, and LSI,
where “LSI” is the traditional LSI algorithm that directly applies
SVD to the original or sampled term-document matrix. Note that
RP-eLSI and RP are different. RP directly applies random pro-
jection to the term-document matrix, whereas RP-eLSI only uses
random projection as one substep of our eLSI algorithm to reduce
the dimensionality of the centroid vectors.

4.3 Experimental Results
In this section, we evaluate eLSI and the above algorithms. Ex-

periments are conducted with the TREC 7&8 corpus and queries.

4.3.1 Comparing Dimensionality Reduction Methods
Figure 5 compares the dimensionality reduction methods. In this

experiment, sel-eLSI and RP-eLSI use 2,000 centroids of 2,000 di-
mensions. We use semantic vectors generated by each method to
retrieve 1,000 documents for a query and report the average number
of retrieved relevant documents in Figure 5(a). The dimensionality
of the semantic space varies from 20 to 300 (shown on the X axis),
except for RP. RP’s recall is among the worst when the dimension-
ality is low but we notice a big improvement when the dimensional-
ity increases from 200 to 300. Out of curiosity, we further increase
the dimensionality up to 900 and observe that RP keeps its momen-
tum. This matches with the theory that RP performs well when the
dimensionality of the reduced space is sufficient in capturing the
real dimensionality of the data. When the dimensionality of the re-
duced space is insufficient, RP’s recall degrades quickly because,

unlike LSI, it does not try to capture the major structure of the data
in low dimensions.

The recall of eLSI (both sel-eLSI and RP-eLSI) is very close
to LSI, but we start to see a difference when the dimensionality
is bigger than 140. eLSI uses document clustering plus term se-
lection or RP to reduce the size of the input matrix for SVD. It
retains the major structure of the data but does lose some fine de-
tails that are captured by the high-dimensional elements of the se-
mantic vectors produced by LSI. pLSI only exploits information in
low-dimensional subvectors (usually lower than 150 dimensions) to
guide index placement and query routing (see Section 2.4). There-
fore, when used with pLSI, the choice of LSI or eLSI makes no
difference in retrieval quality. eLSI outperforms QR, LS, and CI.
With a 140-dimensional space, eLSI retrieves 38%, 79%, and 102%
more relevant documents than QR, LS, and CI, respectively. This
is because eLSI uses more document clusters, which contain more
information about the corpus, and SVD is superior than other meth-
ods in dimensionality reduction.

Figure 5(b) and (c) report the precision-recall for different meth-
ods in a 140-dimensional and 300-dimensional space, respectively.
Since the performance of RP-eLSI and sel-eLSI are similar, we
omit the results for sel-eLSI for clarity. To our surprise, although
RP’s recall is among the worst in Figure 5(a), its high-end preci-
sion is among the best in Figure 5(b) and (c). This indicates that,
after random projection, vectors that are very close in the original
high-dimensional space are still very close in the low-dimensional
space. If two vectors have a medium or long distance in the origi-
nal space, their distance in the low-dimensional space may be dis-
torted, however. This is the reason why RP has a low recall. In the
140-dimensional space, eLSI’s precision-recall is similar to that of
LSI; in the 300-dimensional space, eLSI’s performance is notice-
ably worse, which is consistent with the results in Figure 5(a).

Figure 6(a) reports the number of queries that find no relevant
document in a 300-dimensional space. Consistent with the results

0

5

10

15

20

25

30

35

Oka
pi RP

LSI

RP-eL
SI

sel
-eL

SI
QR LS CI

L
os

t q
ue

ri
es

0.00
0.10
0.20
0.30
0.40
0.50

R
P+

eL
SI

L
SI

se
l-

eL
SI Q
R L
S C
I

R
P

R
P+

eL
SI

L
SI

se
l-

eL
SI Q
R L
S C
I

R
P

precision at 10 docs precision at 5 docs

Pr
ec

is
io

n

(a) (b)

Figure 6: Comparison of dimensionality reduction methods.
(a) Queries that find no relevant document. (b) High-end pre-
cision when combining with Okapi.

0
50

100
150
200
250
300
350

250 500 1k 2k 4k 8k
Number of centroids

T
im

e
(s

ec
.)

0

50

100

150

200

M
em

or
y

(M
B

)time (rp-elsi)
time (sel-elsi)
mem (rp-elsi)
mem (sel-elsi)

0

40

80

120

160

250 500 1k 2k 4k
Dimensionality of centroids

T
im

e
(s

ec
.)

0

20

40

60

80

100

M
em

or
y

(M
B

)time (rp-elsi)
time (sel-elsi)
mem (rp-elsi)
mem (sel-elsi)

(a) (b)

Figure 7: Efficiency of eLSI. Memory consumption and exe-
cution time of SVD when varying (a) the number of document
centroids; and (b) the dimensionality of the reduced centroid
matrix C̃.

in Figure 5(b) and (c), RP performs best, which again indicates that
RP is good at keeping distance between very close vectors.

Figure 6(b) reports the high-end precision when combining di-
mensionality reduction methods with Okapi. The configuration
is similar to that for LSI+Okapi in Figure 3(c). We project doc-
uments into a 100-dimensional space and then partition the 100-
dimensional space into four planes, each of which is of 25 dimen-
sions. Each plane uses its subvectors to retrieve 1,000 documents
for a query, resulting in a total of 4,000 returned documents. Fi-
nally, we use Okapi to rank these returned documents and report
the precision at top 5 and 10 documents. When used with Okapi,
eLSI achieves precisions almost identical to LSI and outperforms
all other methods. RP’s precision is the worst in this figure, which
seems to contradict with previous results. However, since we use
Okapi to rerank documents, what dimensionality reduction meth-
ods really contribute is their recall. RP’s recall is the worst in spaces
of very low dimensions (25 dimensions in this experiment). There-
fore, the precision of RP with Okapi reranking is the worst.

In summary, when the goal is high recall or when the dimension-
ality reduction method is to be used with other ranking algorithms,
we recommend eLSI. When the goal is high precision (without fur-
ther ranking by other algorithms), we recommend RP.

4.3.2 Scalability of eLSI
The main computation in eLSI is document clustering and SVD.

We consider clustering to be much more scalable than SVD. The
time complexity of the clustering algorithm we use is O(n log(s)),
where n is the number of documents and s is the number of clusters.
One can use more efficient algorithms based on data summarization
or random sampling, or use algorithms that only scan the data set
once. Clustering is inherently data parallel. Implemented properly,
distributed clustering can achieve almost linear speedup. Interested
readers may refer to [2] for all these details. A comparison of clus-
tering algorithms is out of the scope of this paper. Our evaluations
below will focus on the scalability of SVD.

Figure 7 reports the execution time and memory consumption
of using SVD to project eLSI’s reduced centroid matrix C̃ into a
150-dimensional space. For sel-eLSI, the dimensionality of C̃ is
the number of terms kept in C̃ after term selection. For RP-eLSI,
the dimensionality of C̃ is the reduced dimensionality after random
projection. In Figure 7(a), we vary the number of document clusters
while fixing the dimensionality of C̃ to 2,000. In Figure 7(b), we
vary the dimensionality of C̃ while fixing the number of document
clusters to 2,000. The cost of SVD scales reasonably well in both
figures. sel-eLSI is more efficient than RP-eLSI because the matrix
C̃ produced by sel-eLSI is more sparse than that produced by RP-
eLSI. Recall that the cost of SVD is proportional to the number of
nonzero elements in the input matrix to SVD. A cluster of similar
documents tend to use a small vocabulary. Therefore the centroid

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 8 10
Quit bound

V
is

ite
d

no
de

s

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Pr
ec

is
io

n
@

 1
0

nodes (500)
nodes (2k)
nodes (8k)
nodes (32k)
nodes (128k)
p@10 (500)
p@10 (2k)
p@10 (8k)
p@10 (32k)
p@10 (128k)

Figure 8: The number of visited nodes and precision at top 10
documents when varying the number of nodes in the system
from 500 to 128,000 (in parentheses).

vectors are sparse. When the TREC corpus is partitioned into 2,000
clusters, on average 98.8% of elements in a centroid are zero. After
term selection, many elements of matrix C̃ are still zero. RP uses
a random matrix for projection. After projection, the probability
of having zero elements in matrix C̃ is very low. Since sel-eLSI is
more efficient and the retrieval quality of RP-eLSI and sel-eLSI are
similar, we opt for sel-eLSI.

eLSI significantly reduces LSI’s computation cost for SVD. SVD
for sel-eLSI with a 2000-by-2000 centroid matrix C̃ takes 55 sec-
onds and consumes 47MB memory, whereas running SVD over the
sampled 15% TREC documents takes 57 minutes and consumes
1.7GB memory. The good retrieval quality of eLSI indicates that
document clustering and term selection do keep important content
of the term-document matrix. We believe that, when combined with
an efficient clustering algorithm and a parallel implementation of
SVD [18], eLSI can handle very large copora.

5. PERFORMANCE OF PSEARCH
We use the TREC 7&8 corpus and queries to evaluate the com-

plete pSearch system that includes the enhancements for LSI we
developed in Section 3 and 4. pSearch has some details not cov-
ered in this paper. Unless otherwise noted, we use the configura-
tion in Table 1 of [32] for those omitted features. The semantic
vectors are generated by “sel-eLSI” (below we will simply refer to
it as “eLSI”). eLSI uses 2,000 document clusters and 2,000 selected
terms. We use Okapi to guide content-directed search and to select
documents on visited nodes.

Figure 8 shows the number of visited nodes and precision at top
10 documents when varying the number of nodes in the system
from 500 to 128,000 (in parentheses). The X axis is the quit thresh-
old T that controls the size of the search region (see Section 2.4). A
search is terminated when no better document is found on the most
recently searched T nodes. Okapi’s precision at top 10 documents
is 0.45. pSearch achieves a precision close to Okapi by visiting
only a small number of nodes. This performance is scalable with
respect to system size. For an 8,000-node system, pSearch achieves
a precision of 0.4 by visiting 47 nodes. For a 32,000-node system,
pSearch achieves a precision of 0.4 by visiting 67 nodes. It can
achieve a higher precision by visiting more nodes. When searching
a similar number of nodes, the precision decreases as the system
size increases. Since the size of the corpus is constant, more nodes
imply fewer indices on each node. Results not presented here show
that search efficiency and retrieval quality improve as the number
of indices stored on each node increases.

The experiment in Figure 9(a) is the same as that in Figure 8 but
we report here the documents searched on those visited nodes as
a percentage of the entire corpus. To some extent this reflects the
balanced distribution of indices across nodes (see [32] for details
on load balance). For clarity, we only vary node population from

0%

2%

4%

6%

8%

1 2 3 4 5 6 8 10
Quit bound

Se
ar

ch
ed

 d
oc

s

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

docs (2k)
docs (8k)
docs (32k)
p@10 (2k)
p@10 (8k)
p@10 (32k)

Pr
ec

is
io

n
@

 1
0

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 8 10
Quit bound

V
is

ite
d

no
de

s

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Pr
ec

is
io

n
 @

 1
0

nodes (c2000) nodes (c1000) nodes (c500)
accuracy (c2000) accuracy (c1000) accuracy (c500)

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 8 10
Quit bound

V
is

ite
d

no
de

s

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Pr
ec

is
io

n
@

 1
0

nodes (t2000) nodes (t1000) nodes (t500)
accuracy (t2000) accuracy (t1000) accuracy (t500)

(a) (b) (c)

Figure 9: (a) Precision at top 10 documents and documents searched on the visited nodes as a percentage of the entire corpus, when
varying the number of nodes in the system from 2,000 to 32,000 (in parentheses). eLSI’s impact on pSearch’s retrieval quality
when (b) varying the number of document clusters; and (c) varying the number of selected terms.

2,000 to 32,000. For the 8,000-node system, pSearch searches only
1.3% of TREC to achieve a precision of 0.4 for top 10 documents.

Figure 9(b) and (c) evaluates the impact on retrieval quality when
eLSI reduces the size of the input matrix for SVD through docu-
ment clustering and term selection. This experiment uses a 10,000-
node system. In Figure 9(b), we fix the number of selected terms to
2,000 while varying the number of document clusters from 500 to
2,000 (in parentheses). In Figure 9(c), we fix the number of docu-
ment clusters to 1,000 while varying the number of selected terms
from 500 to 2,000 (in parentheses). When reducing the size of the
input for SVD dramatically, we only see a minor degradation in
precision, indicating that eLSI is scalable. The performance gap
between different input sizes diminishes as pSearch searches more
nodes to achieve a higher precision.

Overall, pSearch is efficient and effective. It searches a small
number of nodes to achieve a precision close to the state-of-the-
art centralized baseline. pSearch is scalable with respect to sys-
tem size. When the number of nodes increases exponentially, the
number of visited nodes increases moderately and the precision de-
grades marginally. We expect it to be scalable with respect to cor-
pus size as well, since eLSI can aggressively reduce the size of
the input for SVD without seriously compromising the quality of
semantic vectors it produces. The performance is expected to im-
prove as the average number of indices stored on a node increases.

6. RELATED WORK
In pSearch, we adopted techniques from several fields to build

an efficient P2P IR system. Due to space limitation, we will only
introduce works that are most relevant. A survey of clustering al-
gorithms can be found in [2]. Many methods have been proposed
to reduce search space for multi-dimensional data [35]. Our use of
a CAN to partition a Cartesian space is similar to Grid File [21]. To
our knowledge, all existing multi-dimensional data access methods,
including Grid File, are designed for centralized systems.

6.1 Distributed Information Retrieval
Centralized IR systems suffer from a single point of failure and

performance bottleneck at the server. Flooding-based techniques
such as Gnutella send a query to every node in the system, con-
suming huge amounts of system resources. To reduce this cost,
heuristic-based approaches direct a search to only a subset of nodes.
Rhea and Kubiatowicz [26] used attenuated Bloom filters to sum-
marize content on neighbors of a node. A node only forwards a
query to neighbors that are likely to contain relevant documents.
GlOSS [13] uses a hierarchy of meta-databases to summarize con-
tent of other databases. During a search, the summary is referenced
to choose databases that may contain most relevant documents.

Both [36] and [17] pointed out problems with conventional database
selection algorithms when dealing with heterogeneous databases.
They proposed to cluster database content into topics. Searches are
conducted in topically organized databases. Database selection is
guided by a centralized meta-database that maintains information
about topics. SETS [1] follows a similar approach but floods the
meta-database to all nodes. The number of topics in these systems
are predetermined and they only route queries among a relatively
small number of distributed sites. In contrast, pLSI uses seman-
tic vectors to cluster documents in a large P2P overlay. It does
not explicitly maintain the meta-database since this knowledge is
embedded in the structure of the overlay network. The number of
“topics” automatically adapts to current node population.

Some P2P search systems directly implement inverted files on
top of a DHT [19]. Each node is responsible for the inverted lists for
some terms. To answer multi-term queries, the inverted lists must
be transmitted over the network such that an intersection to iden-
tify documents that contain multiple query terms can be performed.
This communication cost grows with the corpus size. eSearch uses
a novel hybrid global-local indexing structure to avoid this commu-
nication at the expense of moderate index replication [31].

6.2 Enhancements to LSI
Various fast dimensionality reduction methods have been pro-

posed to approximate LSI. The three methods based on document
clustering (CI, LS, and QR) [9, 15, 23] were originally proposed for
document categorization. We found that, when used for document
retrieval, their performance is not as good as our eLSI algorithm.
Bingham and Mannila [6] reported reasonably good performance
when using random projection (RP) to reduce the dimensionality
of text data. They used a corpus that was more than 200 times
smaller than the corpus we used. We found that when used alone to
aggressively reduce dimensionality, RP’s recall is the worst among
eLSI, CI, LS, and QR. However, when used as one substep of eLSI,
RP is effective when it reduces dimensionality not so aggressively.
Papadimitriou et al. [22] used RP to reduce the dimensionality of
document vectors, prior to applying SVD. Our RP-eLSI algorithm
uses RP to reduce the dimensionality of centroid vectors, produc-
ing a much smaller input matrix for SVD. Moreover, they only pre-
sented experimental results on a set of artificially generated docu-
ments. Kolda and O’Leary [16] used semi-discrete matrix decom-
position (SDD), instead of SVD, with LSI. Compared with SVD,
SDD uses less memory but takes much more time. Potentially, one
can use eLSI to reduce the size of the input for SDD.

Husbands et al. [14] found that normalizing semantic vectors for
terms improves LSI’s retrieval quality by emphasizing rare terms.
We discovered that, for large corpora, it is important to normalize
semantic vectors for both terms and documents. We observed per-

formance discrepancies between a small, homogeneous corpus and
a large, heterogeneous corpus and gave one explanation. That is,
normalizations are beneficial when the dimensions of the semantic
space are insufficient in capturing the fine structure of a corpus.

7. CONCLUSIONS
We have described several techniques to scale LSI to work in

a large P2P system and quantified the efficiency and efficacy of
pSearch by experimenting with the large TREC corpus. We made
the following contributions in this paper.

• We proposed the eLSI algorithm to improve the efficiency
of LSI. eLSI uses document clustering plus term selection
or random projection to reduce the size of the input matrix
for SVD, while retaining the matrix’s major content. eLSI
retains the retrieval quality of LSI but is several orders of
magnitude more efficient. It outperforms four major fast di-
mensionality reduction methods in retrieval quality.

• Through extensive experimentation, we found that, when the
dimensions of the semantic space are insufficient to capture
the fine structure of the corpus, proper normalizations of se-
mantic vectors for terms and documents improve recall by
76% compared with the standard LSI baseline.

• Without sufficient dimensions, LSI cannot accurately rank
documents for large corpora. We found that LSI can still
cluster documents properly because it captures the important
structure of the corpus. Our LSI+Okapi algorithm combines
the benefit of LSI and Okapi. It uses LSI to cluster docu-
ments in a P2P network to reduce the search space, but uses
Okapi to guide the search process and document selection.

The combination of our optimizations makes pSearch both more
efficient and more effective. For a 32,000-node system, pSearch’s
precision at 10 retrieved documents (for the TREC corpus) is 0.4
compared with Okapi’s 0.45, when on average searching only 67
nodes for a query. Although pSearch’s high-end precision approaches
that of state-of-the-art centralized IR systems, its low-end precision
is inferior. Our future work includes improving low-end precision,
incorporating other IR techniques such as automatic query expan-
sion and PageRank, and experimenting with a large corpus crawled
from the Web.

8. REFERENCES
[1] M. Bawa, G. S. Manku, and P. Raghavan. SETS: Search Enhanced by

Topic Segmentation. In SIGIR’03, 2003.
[2] P. Berkhin. Survey of clustering data mining techniques. Technical

report, Accrue Software, San Jose, CA, 2002.
[3] M. Berry, Z. Drmac, and E. Jessup. Matrices, vector spaces, and

information retrieval. SIAM Review, 41(2):335–362, 1999.
[4] M. W. Berry and M. Browne. Understanding Search Engines:

Mathematical Modeling and Text Retrieval (Software, Environments,
Tools). Society for Industrial & Applied Mathematics, 1999.

[5] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear algebra
for intelligent information retrieval. SIAM Review, 37(4):573–595,
1995.

[6] E. Bingham and H. Mannila. Random projection in dimensionality
reduction: applications to image and text data. In SIGKDD’01, 2001.

[7] C. Buckley. Implementation of the SMART information retrieval
system. Technical Report TR85-686, Department of Computer
Science, Cornell University, Ithaca, NY 14853, May 1985. Source
code available at ftp://ftp.cs.cornell.edu/pub/smart.

[8] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman. Indexing by latent semantic analysis. Journal of the
American Society of Information Science, 41(6):391–407, 1990.

[9] I. S. Dhillon and D. S. Modha. Concept decompositions for large
sparse text data using clustering. Machine Learning, 42(1):143–175,
2001.

[10] S. Dumais. Using LSI for information filtering: TREC-3
experiments. In Third Text REtrieval Conference (TREC-3), 1995.

[11] P. Frankl and H. Maehara. The johnson-lindenstrauss lemma and the
sphericity of some graphs. Journal of Combinatorial Theory Ser. B,
44(3):355–362, 1988.

[12] G. Golub and C. V. Loan. Matrix Computations. The Jason Hopkins
University Press, Baltimore, Maryland, second edition edition, 1989.

[13] L. Gravano, H. Garcı́a-Molina, and A. Tomasic. GlOSS: text-source
discovery over the Internet. ACM Transactions on Database Systems,
24(2), 1999.

[14] P. Husbands, H. Simon, and C. Ding. the use of singular value
decomposition for text retrieval. In M. Berry, editor, Proc. of SIAM
Comp. Info. Retrieval Workshop, October 2000.

[15] G. Karypis and E.-H. S. Han. Concept indexing: A fast
dimensionality reduction algorithm with applications to document
retrieval and categorization. In CIKM’00, 2000.

[16] T. G. Kolda and D. P. O’Leary. semidiscrete matrix decomposition
for latent semantic indexing in information retrieval. ACM Trans.
Information Systems, 16:322–346, 1998.

[17] L. S. Larkey, M. E. Connell, and J. P. Callan. Collection Selection
and Results Merging with Topically Organized U.S. Patents and
TREC Data. In CIKM’00, 2000.

[18] T. A. Letsche and M. W. Berry. Large-scale information retrieval
with latent semantic indexing. Information Sciences,
100(1-4):105–137, 1997.

[19] J. Li, B. T. Loo, J. Hellerstein, F. Kaashoek, D. R. Karger, and
R. Morris. On the Feasibility of Peer-to-Peer Web Indexing and
Search. In IPTPS’03, February 2003.

[20] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu. Peer-to-peer computing. Technical
Report HPL-2002-57, HP Lab, 2002.

[21] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An
adaptable, symmetric multikey file structure. ACM Transactions on
Database Systems, 9(1):38–71, 1984.

[22] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent
Semantic Indexing: A Probabilistic Analysis. In PODC’98, 1998.

[23] H. Park, M. Jeon, and J. Rosen. Lower dimensional representation of
text data based on centroids and least squares. BIT, 43(2):1–22, 2003.

[24] C. D. Prete, J. T. McArthur, R. L. Villars, I. L. Nathan Redmond, and
D. Reinsel. Industry developments and models, Disruptive
Innovation in Enterprise Computing: storage. IDC, February 2003.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In SIGCOMM’01, 2001.

[26] S. Rhea and J. Kubiatowicz. Probabilistic Location and Routing. In
INFOCOM’02, 2002.

[27] S. E. Robertson, S. Walker, S. Jones, M. M. HancockBeaulieu, and
M. Gatford. Okapi at TREC-3. In TREC-3, 1994.

[28] G. Salton, A. Wong, and C. Yang. A vector space model for
information retrieval. Journal for the American Society for
Information Retrieval, 18(11):613–620, 1975.

[29] A. Singhal, C. Buckley, and M. Mitra. Pivoted Document Length
Normalization. In SIGIR’96, 1996.

[30] SVDPACK. http://www.netlib.org/svdpack.
[31] C. Tang and S. Dwarkadas. Peer-to-Peer Information Retrieval in

Distributed Hashtable Systems. In NSDI’04, 2004.
[32] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-Peer Information

Retrieval Using Self-Organizing Semantic Overlay Networks. In
SIGCOMM’03, 2003.

[33] C. Tang, Z. Xu, and M. Mahalingam. pSearch: Information Retrieval
in Structured Overlays. In The First Workshop on Hot Topics in
Networks (HotNets I), 2002. Older but partially expanded version
available as technical report HPL-2002-198, “PeerSearch: Efficient
Information Retrieval in Peer- to-Peer Networks”.

[34] Text Retrieval Conference (TREC). http://trec.nist.gov.
[35] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and

performance study for similarity-search methods in high-dimensional
spaces. In VLDB’98, 1998.

[36] J. Xu and W. B. Croft. Cluster-Based Language Models for
Distributed Retrieval. In SIGIR’99, 1999.

