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Abstract 
 

Efficient data sharing in global peer-to-peer systems is 
complicated by erratic node failure, unreliable network 
connectivity and limited bandwidth. Replicating data on 
multiple nodes can improve availabilit y and response time. 
Yet determining when and where to repli cate data in order 
to meet performance goals in large-scale systems with 
many users and files, dynamic network characteristics, and 
changing user behavior is diffi cult. We propose an 
approach in which peers create repli cas automaticall y in a 
decentrali zed fashion, as required to meet availabilit y 
goals. The aim of our framework is to maintain a threshold 
level of availabilit y at all times. 

We identify a set of factors that hinder data availability 
and propose a model that decides when more repli cation is 
necessary. We evaluate the accuracy and performance of 
the proposed model using simulations. Our preliminary 
results show that the model is effective in predicting the 
required number of repli cas in the system. 

1. Introduction 

We are interested in using the aggregate storage 
capacity of large numbers of geographicall y distributed 
personal computers to store large scientific data sets.  Such 
a peer-to-peer (P2P) storage system can, in principle, offer 
low cost, large capacity (a milli on PCs can provide 1-10 
petabytes of storage today), access to significant collocated 
computation power, and high aggregate access bandwidth. 

Yet the design and implementation of a P2P storage 
system also raises significant challenges. The average 
reliabilit y of any single storage element in such a system 
will be low, due to unreliable networks and the possible 
departure of its associated node.  Similarly, the data access 
performance offered to clients will be variable, depending 
on often limi ted bandwidth and the popularity of the data 
item in question.  Yet the scientif ic applications that are of 
interest to us want guarantees that data will be available 
when they need it—at least with high probabilit y. 

A well -known technique for improving availabilit y in 
unreliable systems is repli cation.  If multiple copies of data 
exist on independent nodes, then the chances of at least one 

copy being accessible are increased.  Aggregate data 
access performance will also tend to increase, and total 
network load will t end to decrease, if repli cas and requests 
are reasonably distributed.  

Yet while repli cation has advantages, it also has 
significant costs. We need a mechanism for creating 
repli cas that allows us to meet availabilit y and performance 
goals without consuming undue amounts of storage and 
bandwidth.  We would li ke this mechanism to function 
entirely automaticall y.  And it must function effectively in 
a dynamic, decentrali zed P2P environment. 

We describe here a mechanism with these properties.  In 
our approach, each peer in the system possesses a 
(necessaril y highly approximate) model of the P2P storage 
system that it can use to determine how many repli cas of 
any file are needed to maintain desired availabilit y. Each 
peer applies this model to the  (necessaril y incomplete 
and/or inaccurate) information it has about system state 
and repli cation status of its files to determine if, when, and 
where new repli cas should be created.  The result is a 
completely decentrali zed system that can maintain 
performance guarantees.  

We evaluated our approach with three different 
simulation experiments to (1) check the accuracy of our 
model; (2) compare our dynamic model approach to a 
static repli cation scheme; and (3) gauge the effects of the 
decentrali zed decision making process. 

The use of a system model to guide repli ca creation 
clearly distinguishes our work from Web caching systems 
[1], [2], [3] and from file sharing systems such as Freenet 
[4], in which data is repli cated entirely on the basis of 
popularity.  Those systems do not address availabilit y 
issues. The OceanStore system [5] is concerned with 
availabilit y, but does not model system behavior. Our cost 
models of repli ca creation and placement can be used by 
such a system to ensure data availabilit y.  

The rest of this paper is as follows. Section 2 presents a 
number of data intensive applications that can benefit from 
dynamic data management.  We present in Section 3 our 
dynamic, adaptive repli ca management approach, and 
describe in Section 4 the analytical mechanism that 
supports our solution. Our solution relies on two basic 
services: resource discovery and repli ca location. Section 5 
presents some of the current designs for both. In Section 6 
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we describe our simulations results and conclude with 
future directions in Section 7. 

2. Target Applications 

A typical example of a data sharing collaboration is a 
community of scientists who want to perform 
computationally demanding analyses on large amounts of 
data. The output of their analyses creates new data that 
they then want to circulate among their colleagues across 
the world. Both the experimental data and the new derived 
data are read-only, as is, for example, the case of the 
Compact Muon Solenoid [6] experiments that will start at 
CERN in 2006. 

Many applications in the scientific community, 
spanning biology, astrophysics, astronomy, and genetics, 
fit nicely into target applications that deal with huge data 
sets and need some amount of data management.  

The Human Genome Project [7]  constructs detailed 
genetic and physical maps of the human genome. The 
project needs advanced means of making new scientific 
data widely available to scientists so that the results may be 
used for public good. 

Telescopes li ke that in the Sloan Digital Sky Survey 
experiment [8] will scan vast amounts of the sky and 
generate large amounts of data every night. Data often 
needs to be processed during the next day, which requires 
fast dissemination to powerful computational resources. 

The Human Brain Project [9] consists of collaborations 
spanning different fields (computer graphics, molecular 
biology, digital optical microscopy, modeling, and control 
theory) that require high resolution, multi -dimensional 
images of the nervous system in several models. This 
project involves sharing of large datasets among a 
potentiall y large set of participants. 

 A popular application that has boosted interest in the 
P2P concept is the sharing of mp3 files by geographicall y 
distributed users. Music sharing environments are more 
static than scientific environments: the use of data by 
scientists often leads to creation of new data.  In addition, 
the number of distinct music files is small er and there is no 
attempt to ensure availabilit y of any particular file.  

3. Dynamic Replica Management 

In the solution we propose, each peer uses a set of tools 
to obtain a (typicall y partial and inaccurate) understanding 
of the state of the system and takes file repli cation and 
migration decisions. The system works as follows. 

 Each node in the network is authorized to create 
repli cas for the files it stores. A node decides where to 
repli cate a file using a performance model that compares 
the costs and the benefits of creating replicas of a particular 
file in certain locations.  (Section 4.3 discusses the factors 
that trigger a node to evaluate the opportunity of file 

repli cation.) Replicas are deleted according to the local 
poli cy of the host node.  

Our model-driven approach relies on a resource 
discovery service to find available storage and on a tool 
such as the Network Weather Service [10] to provide 
network availabilit y and prognosis information.  

The parameters we consider in our repli cation decision 
model are:   
1. Single-system stabilit y p, which encompasses node 

failures, communication failures that render the node 
unreachable, and the departure of the node from the 
network. In our model, this parameter is expressed as 
the average probabilit y of a node being up.   

2. The transfer time between nodes N1 and N2 for the file 
F to be repli cated trans(N1, N2, F). This parameter is 
defined as the ratio between file size and available 
bandwidth. 

3. Storage cost of file F at a given node N: s(F, N). This 
parameter captures the cost of writing new data to the 
storage. The storage cost can include local poli cies, 
from data replacement mechanisms to acceptance to 
store specific data. For example, the storage cost 
published by a node that does not agree to store some 
data can be infinity. A node that does never replace a 
repli ca within an hour after its creation can also 
advertise a very high storage price, allowing it not to 
be chosen to host new data. This cost can also depend 
on the size of the file to store, or incentives (if we 
consider a market model). 

4. The accuracy of the repli ca location mechanism RLacc. 
The decision of creating more repli cas depends on the 
number of currently existent repli cas. However, this 
number may not always be accurately determined, 
given the system’s dynamism and inherent 
communication delays. We hence take into account a 
less than perfect accuracy of the repli ca location 
service. The accuracy is measured through past 
performance of the mechanism or simulations in a 
controlled environment. 

The model-driven approach we propose aims to help 
nodes answer two criti cal questions for repli ca 
management.  

1. What is the optimal number of replicas for a file?  
2. Which is the best node to host a particular repli ca? 

These questions need to be answered for an externally 
defined availabilit y threshold for each file. 

4. Analytical Mechanisms  

Our proposed approach has two objectives.  First, we 
want to express the number of repli cas per file as a 
function of the parameters that influence availabilit y. 
Second, we want to provide a function that evaluates the 
placement of a repli ca in a particular location. This 
function can then be used for choosing the best alternative.  
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4.1. Computing the number of replicas per file 

To determine the number of replicas that guarantees the 
required availabilit y of a file, we need to consider the 
system parameters that affect availabilit y and performance. 

The availabilit y of a file depends on the failure rate of 
peers in the network and the accuracy of the repli ca 
location service. If a large number of peers are often 
unreachable, then a large proportion of files may become 
unavailable. Aggressive repli cation is one method to 
maintain the desired level of availabilit y in such 
environments.  

The accuracy of the repli ca location service determines 
the percentage of accessible files: if the location service is 
ineffective, more repli cas need to be created to ensure that 
at least some are retrieved. 

We develop a function to calculate the number of 
repli cas needed (r) for a certain availabilit y threshold. 
Since the availabilit y of a file depends on the failure rate of 
peers in the network and on the eff iciency of the Replica 
Location Service (RLS), a simple function can be 
developed as follows. 

Let  r be the total number of repli cas for a file A,  
       p be the probabilit y of a node to be up, 
      RLacc be the accuracy of the repli ca location service,  
       Avail  be the required amount of availabilit y for file 

A. 
Then, the probabilit y of all r repli cas of file A being 
unavailable is:   

( )rp−1  
Therefore, the probabilit y of at least one repli ca of A 

being available is: 

( )rp−− 11  
and the probabilit y that a repli ca of A will be found is: 

RLacc* ( ( )rp−− 11 ) 
(We assume that the availabilit y of a file and the RLS 
accuracy are independent). 

Therefore, we need  

( )( ) AvailpRL r
acc ≥−−∗ 11  

to ensure the amount of availabilit y needed for a given file. 
The desired value for r can be calculated from the above 
function for any given availabilit y threshold. For example, 
for a probabilit y p of 30% of a node to be up, an 
availabilit y threshold of 75% and the RLS accuracy of 
80%, the model recommends a minimum of 8 repli cas. If p 
is 1%, the recommended number of repli ca increases to 
276.  

Once a node knows the ideal number of repli cas r for a 
file, it employs the repli ca location service to discover how 
many actuall y exist. Let us assume the repli ca location 
service returns M and M is less than r, then the node knows 
that it has to create (r – M) copies of the file and distribute 
them to remote locations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the number of existent repli ca is larger than needed 
(M ≥ r), the node does nothing, for as we mentioned 
earlier, the extra repli cas will eventually be replaced by 
files more “ interesting” to the local host. 

Since each peer in the system acts independently, there 
is considerable chance that two peers simultaneously take 
the decision of repli cating the same file. If storage 
resources are scarce, then the extra-repli cas will soon be 
replaced with others.  If storage resources are abundant, 
then the excessive repli cation is not necessaril y harmful.  

4.2. Determining the location for a new replica 

We assume that the resource discovery mechanism 
provides a set of candidate storage resources located in 
different domains for a new repli ca host. A domain is a 
collection of nodes in a particular geographical area. We 
assume that any two locations within a particular domain 
will have the same or similar transfer and storage costs 
owing to their geographical locality. 
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Collect 
parameters 

Using parameters, calculate 
the advised number of 
replicas (r) for the file 

Use Replica Locator to find 
current number of replicas in 

system (M) 
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M < r 

Wait 

Use Resource Discovery 
System to get a set of suitable 
candidates for hosting replicas 

Calculate best remote 
hosts from candidate 

set 
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remote host(s) 

Wait 

Time to check  
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Figure 1: Set of actions taken by a node for a 
file in the P2P system 
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The candidates returned by the resource discovery 
service meet the following criteria: they do not contain a 
copy of the file to be repli cated, they have available 
storage (or at least replaceable files), and have a reasonable 
transfer time (below a certain maximum) to the potential 
users. 

Once the node has the possible set of host candidates, it 
uses a heuristic to select the best candidate(s). The best 
candidate maximizes the difference between repli cation 
benefits and repli cation costs. The benefit is the reduction 
in transfer time to the potential users. The repli cation costs 
are the storage cost at the remote site and the transfer time 
from the current location to the new location.  

The cost of creating a repli ca at a location N2 for a file F 
stored at the location N1 is: s(F, N2) +  trans(F, N1,N2)),    
where, 

N1 = Node that currently has the file 
N2 = Candidate node for new repli ca 
 s(F, N)  = Storage cost for file F at node N 
 trans(F,a,b)=transfer cost between locations a and b 
The benefit of creating a repli ca at N2 is:  
trans(F, N1,User) – trans(F, N2,User), where User is the 

location from which we expect the most number of future 
requests. Therefore, the net benefits of repli cating at N2 can 
be calculated and the best candidate identified.        

4.3.  When to Check 

An important problem to be addressed is what triggers a 
node to check if more repli cas are needed for a file.  
    A possible solution is to compare periodicall y the 
number of existent repli cas with the required number of 
repli cas. The periodicity of these checks can be altered to 
suit network volatilit y and usage patterns. If, for example, 
during the last three checks there was no action needed on 
the part of a node, it can increase the time interval of its 
checks (and hence use fewer system resources). If, on the 
other hand, consecutive checks show that more replicas are 
needed, the node may want to increase its frequency of 
checks to adapt to the changing surroundings. One 
disadvantage of this approach is the overhead created by 
frequently using the repli ca location service: for each file a 
node has, the location service is called, independent of the 
file’s popularity. An alternative is to check the level of 
repli cation of a file only when that file is requested.  

However, in both scenarios, multiple nodes could 
simultaneously create repli cas for the same file. Though 
the extra repli cas will eventually be overwritten, there still 
remains the cost of wasted bandwidth and the problem of 
eff icient resource utili zation. Since we cannot rely on a 
central decision-making authority, such conditions are hard 
to eliminate. Section 6.2 elaborates on this. 

5. Resource discovery and replica location 

The mechanisms presented in the previous sections rely 
on resource location services for locating repli cas and 
resource discovery services for locating available storage 
and network resources. We briefly present the state of the 
art for these two mechanisms. 

A basic service in many wide-area sharing 
environments is resource discovery: given a description of 
resources desired, a resource discovery mechanism returns 
a set of (contact addresses of) resources that match the 
description. Resource discovery can be challenging 
because of system scale, heterogeneity, and dynamism. 
These characteristics create significant diff iculties for 
traditional centrali zed and hierarchical resource discovery 
services. [11] evaluates some simple, full y decentrali zed 
resource discovery mechanisms. Search-eff icient, 
hierarchical solutions were also proposed ([12]) 

There are already many solutions for locating files in 
P2P environments: CAN [13], Chord [14], Tapestry [15], 
Gnutella [16], Freenet [4], and Napster.  

CAN [13], Chord [14], and Tapestry [15] build search-
eff icient indexing structures that provide good scalabilit y 
and search performance at the increased cost of file 
insertion and removal. Gnutella does not use indexing 
mechanisms; its relatively good search performance (as 
measured in number of hops) is due to intensive network 
usage.  Napster uses a centralized approach: a file index is 
maintained at a central location, while real data (files) are 
widely distributed. Freenet includes, in our terminology, 
both repli ca management and repli ca location mechanisms: 
popular files are repli cated closer to users, while the least 
popular files eventually disappear.  Freenet’s file location 
mechanism is also built based on usage patterns, using 
dynamic routing tables. However, the Freenet approach 
assumes that non-popular data is unimportant data (and 
removes it), which is not a valid assumption for many 
scientific applications. We assume that files always exist at 
their source (since we are not concerned with anonymity of 
data). 

6. Simulation Results 

It is by no means clear that our proposed approach to 
repli ca management will work well i n practice. Too many 
repli cas could be created due to partial or incorrect 
information and due to multiple nodes acting 
simultaneously. The overhead of the state monitoring 
required to guide repli ca creation might be excessive.  Or, 
repli cas might not be created often enough, with the result 
that availabilit y would fall below desired goals. 

We simulated a 100-node P2P network with unlimited 
storage space. While the number of nodes does not 
influence the model’s answer, it somewhat reflects the 
scale of the network. Nodes join and leave the network 
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with a specified probabilit y. We assume that nodes that fail 
or leave the network lose all the repli cas they store. Each 
simulation is run for 100 steps. At each step: �  A certain number of nodes go down (depending on the 

probabilit y of nodes being up) � A percentage of the nodes that are up check for available 
repli cas for the files they contain. If needed, they create 
more repli cas. 
We built our simulations with three objectives in mind: 

(1) evaluate the validity of our model; (2) evaluate the 
effect of partial information on decision accuracy; and (3) 
compare our dynamic repli cation strategy with a static 
strategy. We assume a repli ca location accuracy of 0.8 for 
all experiments. In Figures 2, 3 and 4 each plot 
corresponds to a different average node reliabilit y. 

6.1. Model Validation 

     Our model computes the minimum number of repli cas 
that are necessary to achieve a certain availabilit y threshold 
in the presence of node failures. One way to check the 
accuracy of our model’s results is therefore to fix the 
number of repli cas existent in the system at any time and 
measure data availabilit y. Ideally, for the number of 
repli cas equal to that returned by our model for a required 
availabilit y X, we should measure an availabilit y close to 
X. Figure 2 compares the numbers of repli cas 
corresponding to matching availabilit y values. For 
example, for the probabilit y of 0.4 of nodes being up and a 
required availabilit y threshold of 0.6, the model requires 3 
repli cas. When we maintain the number of repli cas per file 
at 3, we measure the average availabilit y per file to be 
around 0.65. Though the model predictions are not this 
accurate at all points in the graph, the simulations validate 
the general trend pointed to by the model. We note that 
further fine-tuning of the model is needed for better 
accuracy. 

6.2. Effect of decentralized decision making 

A potential drawback of the P2P mechanism we 
describe is that each node makes its own repli cation 
decisions. Extra repli cas may get created in the event of 
more than one node repli cating the same file 
simultaneously. To evaluate this effect, we record the total 
number of repli cas per file in the system (after system 
warm-up). At each step, 25% of the nodes that are up 
check the system and create repli cas if needed, 
simultaneously. The results of these runs along with the 
ideal number of repli cas as calculated by the model are 
plotted in Figure 3. 

When the probabilit y of a node being up is moderately 
high (
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is not substantial: e.g., for probabilit y = 0.4 and availabilit y 
of 0.7, the model suggests 5 repli cas/file, but we find an 

average of 7 repli cas/file. When nodes are highly 
unreliable (e.g., probabilit y=0.2), the number of repli cas in 
the system is significantly larger than the number required 
by the model. 
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Figure 2: Model prediction versus actual behavior 
for different values of node reliability 
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6.3. Static versus Dynamic schemes 

 Finall y, we compare the performance over time of a 
static repli cation scheme with our dynamic scheme. For the 
static scheme, we initiall y placed a constant number of 
repli cas for each file in the system. For the dynamic model, 
we started the simulations with only one repli ca per file. 
As Figure 4 shows, in the static scheme the repli cas in the 
system eventually decrease to 1 copy (minimum) per file. 
In the dynamic scheme, the number of repli cas is 
maintained at a constant level, thus ensuring a better, 
constant data availabilit y over time.  

7. Conclusions and Future Directions 

We have proposed a decentrali zed model for dynamic 
creation of repli cas in an unreliable peer-to-peer system. 
The aim of our model is to ensure a specified degree of 
data availabilit y. Along with the analytical mechanisms 
used by our model, we discussed the advantages and 
disadvantages of our approach and presented some 
preliminary evaluation results based on simulations. 

Our results show that the model we propose is able to 
predict the required number of repli cas in the system with 
moderate accuracy. We plan to further fine-tune the model 
based on more simulation studies. The results also show 
that our adaptive scheme is more adequate to a dynamic 
environment than a static replication scheme.  
    Our decentralized, dynamic mechanism has no single 
point of failure, as it does not rely on a central monitoring 
agent. Even if a sizable portion of the network is down or 
the network becomes partitioned, our adaptive mechanism 
adjusts the number of repli cas to the new conditions. 
Moreover, the overhead associated with the extra 
monitoring and computations are distributed over the 
system.   

These advantages come at the price of accuracy: nodes 
take decisions based on partial information, which 
sometimes lead to unneeded repli cation. Simulation results 
show that the redundancy in action associated with 
distributed authority is more evident when nodes are very 
unreliable. 
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