
 1

Improving Data Availability through Dynamic Model-Driven Replication
in Large Peer-to-Peer Communities

Kavitha Ranganathan, Adriana Iamnitchi, Ian Foster
Department of Computer Science,

The University of Chicago, Chicago, IL 60637
{k rangana, anda, foster} @cs.uchicago.edu

Abstract

Efficient data sharing in global peer-to-peer systems is
complicated by erratic node failure, unreliable network
connectivity and limited bandwidth. Replicating data on
multiple nodes can improve availabilit y and response time.
Yet determining when and where to repli cate data in order
to meet performance goals in large-scale systems with
many users and files, dynamic network characteristics, and
changing user behavior is diffi cult. We propose an
approach in which peers create repli cas automaticall y in a
decentrali zed fashion, as required to meet availabilit y
goals. The aim of our framework is to maintain a threshold
level of availabilit y at all times.

We identify a set of factors that hinder data availability
and propose a model that decides when more repli cation is
necessary. We evaluate the accuracy and performance of
the proposed model using simulations. Our preliminary
results show that the model is effective in predicting the
required number of repli cas in the system.

1. Introduction

We are interested in using the aggregate storage
capacity of large numbers of geographicall y distributed
personal computers to store large scientific data sets. Such
a peer-to-peer (P2P) storage system can, in principle, offer
low cost, large capacity (a milli on PCs can provide 1-10
petabytes of storage today), access to significant collocated
computation power, and high aggregate access bandwidth.

Yet the design and implementation of a P2P storage
system also raises significant challenges. The average
reliabilit y of any single storage element in such a system
will be low, due to unreliable networks and the possible
departure of its associated node. Similarly, the data access
performance offered to clients will be variable, depending
on often limi ted bandwidth and the popularity of the data
item in question. Yet the scientif ic applications that are of
interest to us want guarantees that data will be available
when they need it—at least with high probabilit y.

A well -known technique for improving availabilit y in
unreliable systems is repli cation. If multiple copies of data
exist on independent nodes, then the chances of at least one

copy being accessible are increased. Aggregate data
access performance will also tend to increase, and total
network load will t end to decrease, if repli cas and requests
are reasonably distributed.

Yet while repli cation has advantages, it also has
significant costs. We need a mechanism for creating
repli cas that allows us to meet availabilit y and performance
goals without consuming undue amounts of storage and
bandwidth. We would li ke this mechanism to function
entirely automaticall y. And it must function effectively in
a dynamic, decentrali zed P2P environment.

We describe here a mechanism with these properties. In
our approach, each peer in the system possesses a
(necessaril y highly approximate) model of the P2P storage
system that it can use to determine how many repli cas of
any file are needed to maintain desired availabilit y. Each
peer applies this model to the (necessaril y incomplete
and/or inaccurate) information it has about system state
and repli cation status of its files to determine if, when, and
where new repli cas should be created. The result is a
completely decentrali zed system that can maintain
performance guarantees.

We evaluated our approach with three different
simulation experiments to (1) check the accuracy of our
model; (2) compare our dynamic model approach to a
static repli cation scheme; and (3) gauge the effects of the
decentrali zed decision making process.

The use of a system model to guide repli ca creation
clearly distinguishes our work from Web caching systems
[1], [2], [3] and from file sharing systems such as Freenet
[4], in which data is repli cated entirely on the basis of
popularity. Those systems do not address availabilit y
issues. The OceanStore system [5] is concerned with
availabilit y, but does not model system behavior. Our cost
models of repli ca creation and placement can be used by
such a system to ensure data availabilit y.

The rest of this paper is as follows. Section 2 presents a
number of data intensive applications that can benefit from
dynamic data management. We present in Section 3 our
dynamic, adaptive repli ca management approach, and
describe in Section 4 the analytical mechanism that
supports our solution. Our solution relies on two basic
services: resource discovery and repli ca location. Section 5
presents some of the current designs for both. In Section 6

 2

we describe our simulations results and conclude with
future directions in Section 7.

2. Target Applications

A typical example of a data sharing collaboration is a
community of scientists who want to perform
computationally demanding analyses on large amounts of
data. The output of their analyses creates new data that
they then want to circulate among their colleagues across
the world. Both the experimental data and the new derived
data are read-only, as is, for example, the case of the
Compact Muon Solenoid [6] experiments that will start at
CERN in 2006.

Many applications in the scientific community,
spanning biology, astrophysics, astronomy, and genetics,
fit nicely into target applications that deal with huge data
sets and need some amount of data management.

The Human Genome Project [7] constructs detailed
genetic and physical maps of the human genome. The
project needs advanced means of making new scientific
data widely available to scientists so that the results may be
used for public good.

Telescopes li ke that in the Sloan Digital Sky Survey
experiment [8] will scan vast amounts of the sky and
generate large amounts of data every night. Data often
needs to be processed during the next day, which requires
fast dissemination to powerful computational resources.

The Human Brain Project [9] consists of collaborations
spanning different fields (computer graphics, molecular
biology, digital optical microscopy, modeling, and control
theory) that require high resolution, multi -dimensional
images of the nervous system in several models. This
project involves sharing of large datasets among a
potentiall y large set of participants.

 A popular application that has boosted interest in the
P2P concept is the sharing of mp3 files by geographicall y
distributed users. Music sharing environments are more
static than scientific environments: the use of data by
scientists often leads to creation of new data. In addition,
the number of distinct music files is small er and there is no
attempt to ensure availabilit y of any particular file.

3. Dynamic Replica Management

In the solution we propose, each peer uses a set of tools
to obtain a (typicall y partial and inaccurate) understanding
of the state of the system and takes file repli cation and
migration decisions. The system works as follows.

 Each node in the network is authorized to create
repli cas for the files it stores. A node decides where to
repli cate a file using a performance model that compares
the costs and the benefits of creating replicas of a particular
file in certain locations. (Section 4.3 discusses the factors
that trigger a node to evaluate the opportunity of file

repli cation.) Replicas are deleted according to the local
poli cy of the host node.

Our model-driven approach relies on a resource
discovery service to find available storage and on a tool
such as the Network Weather Service [10] to provide
network availabilit y and prognosis information.

The parameters we consider in our repli cation decision
model are:
1. Single-system stabilit y p, which encompasses node

failures, communication failures that render the node
unreachable, and the departure of the node from the
network. In our model, this parameter is expressed as
the average probabilit y of a node being up.

2. The transfer time between nodes N1 and N2 for the file
F to be repli cated trans(N1, N2, F). This parameter is
defined as the ratio between file size and available
bandwidth.

3. Storage cost of file F at a given node N: s(F, N). This
parameter captures the cost of writing new data to the
storage. The storage cost can include local poli cies,
from data replacement mechanisms to acceptance to
store specific data. For example, the storage cost
published by a node that does not agree to store some
data can be infinity. A node that does never replace a
repli ca within an hour after its creation can also
advertise a very high storage price, allowing it not to
be chosen to host new data. This cost can also depend
on the size of the file to store, or incentives (if we
consider a market model).

4. The accuracy of the repli ca location mechanism RLacc.
The decision of creating more repli cas depends on the
number of currently existent repli cas. However, this
number may not always be accurately determined,
given the system’s dynamism and inherent
communication delays. We hence take into account a
less than perfect accuracy of the repli ca location
service. The accuracy is measured through past
performance of the mechanism or simulations in a
controlled environment.

The model-driven approach we propose aims to help
nodes answer two criti cal questions for repli ca
management.

1. What is the optimal number of replicas for a file?
2. Which is the best node to host a particular repli ca?

These questions need to be answered for an externally
defined availabilit y threshold for each file.

4. Analytical Mechanisms

Our proposed approach has two objectives. First, we
want to express the number of repli cas per file as a
function of the parameters that influence availabilit y.
Second, we want to provide a function that evaluates the
placement of a repli ca in a particular location. This
function can then be used for choosing the best alternative.

 3

4.1. Computing the number of replicas per file

To determine the number of replicas that guarantees the
required availabilit y of a file, we need to consider the
system parameters that affect availabilit y and performance.

The availabilit y of a file depends on the failure rate of
peers in the network and the accuracy of the repli ca
location service. If a large number of peers are often
unreachable, then a large proportion of files may become
unavailable. Aggressive repli cation is one method to
maintain the desired level of availabilit y in such
environments.

The accuracy of the repli ca location service determines
the percentage of accessible files: if the location service is
ineffective, more repli cas need to be created to ensure that
at least some are retrieved.

We develop a function to calculate the number of
repli cas needed (r) for a certain availabilit y threshold.
Since the availabilit y of a file depends on the failure rate of
peers in the network and on the eff iciency of the Replica
Location Service (RLS), a simple function can be
developed as follows.

Let r be the total number of repli cas for a file A,
 p be the probabilit y of a node to be up,
 RLacc be the accuracy of the repli ca location service,
 Avail be the required amount of availabilit y for file

A.
Then, the probabilit y of all r repli cas of file A being
unavailable is:

()rp−1
Therefore, the probabilit y of at least one repli ca of A

being available is:

()rp−− 11
and the probabilit y that a repli ca of A will be found is:

RLacc* (()rp−− 11)
(We assume that the availabilit y of a file and the RLS
accuracy are independent).

Therefore, we need

()() AvailpRL r
acc ≥−−∗ 11

to ensure the amount of availabilit y needed for a given file.
The desired value for r can be calculated from the above
function for any given availabilit y threshold. For example,
for a probabilit y p of 30% of a node to be up, an
availabilit y threshold of 75% and the RLS accuracy of
80%, the model recommends a minimum of 8 repli cas. If p
is 1%, the recommended number of repli ca increases to
276.

Once a node knows the ideal number of repli cas r for a
file, it employs the repli ca location service to discover how
many actuall y exist. Let us assume the repli ca location
service returns M and M is less than r, then the node knows
that it has to create (r – M) copies of the file and distribute
them to remote locations.

If the number of existent repli ca is larger than needed
(M ≥ r), the node does nothing, for as we mentioned
earlier, the extra repli cas will eventually be replaced by
files more “ interesting” to the local host.

Since each peer in the system acts independently, there
is considerable chance that two peers simultaneously take
the decision of repli cating the same file. If storage
resources are scarce, then the extra-repli cas will soon be
replaced with others. If storage resources are abundant,
then the excessive repli cation is not necessaril y harmful.

4.2. Determining the location for a new replica

We assume that the resource discovery mechanism
provides a set of candidate storage resources located in
different domains for a new repli ca host. A domain is a
collection of nodes in a particular geographical area. We
assume that any two locations within a particular domain
will have the same or similar transfer and storage costs
owing to their geographical locality.

 Yes

No

Collect
parameters

Using parameters, calculate
the advised number of
replicas (r) for the file

Use Replica Locator to find
current number of replicas in

system (M)

Is
M < r

Wait

Use Resource Discovery
System to get a set of suitable
candidates for hosting replicas

Calculate best remote
hosts from candidate

set

Send replica(s) to
remote host(s)

Wait

Time to check
replica status

Figure 1: Set of actions taken by a node for a
file in the P2P system

 4

The candidates returned by the resource discovery
service meet the following criteria: they do not contain a
copy of the file to be repli cated, they have available
storage (or at least replaceable files), and have a reasonable
transfer time (below a certain maximum) to the potential
users.

Once the node has the possible set of host candidates, it
uses a heuristic to select the best candidate(s). The best
candidate maximizes the difference between repli cation
benefits and repli cation costs. The benefit is the reduction
in transfer time to the potential users. The repli cation costs
are the storage cost at the remote site and the transfer time
from the current location to the new location.

The cost of creating a repli ca at a location N2 for a file F
stored at the location N1 is: s(F, N2) + trans(F, N1,N2)),
where,

N1 = Node that currently has the file
N2 = Candidate node for new repli ca
 s(F, N) = Storage cost for file F at node N
 trans(F,a,b)=transfer cost between locations a and b
The benefit of creating a repli ca at N2 is:
trans(F, N1,User) – trans(F, N2,User), where User is the

location from which we expect the most number of future
requests. Therefore, the net benefits of repli cating at N2 can
be calculated and the best candidate identified.

4.3. When to Check

An important problem to be addressed is what triggers a
node to check if more repli cas are needed for a file.
 A possible solution is to compare periodicall y the
number of existent repli cas with the required number of
repli cas. The periodicity of these checks can be altered to
suit network volatilit y and usage patterns. If, for example,
during the last three checks there was no action needed on
the part of a node, it can increase the time interval of its
checks (and hence use fewer system resources). If, on the
other hand, consecutive checks show that more replicas are
needed, the node may want to increase its frequency of
checks to adapt to the changing surroundings. One
disadvantage of this approach is the overhead created by
frequently using the repli ca location service: for each file a
node has, the location service is called, independent of the
file’s popularity. An alternative is to check the level of
repli cation of a file only when that file is requested.

However, in both scenarios, multiple nodes could
simultaneously create repli cas for the same file. Though
the extra repli cas will eventually be overwritten, there still
remains the cost of wasted bandwidth and the problem of
eff icient resource utili zation. Since we cannot rely on a
central decision-making authority, such conditions are hard
to eliminate. Section 6.2 elaborates on this.

5. Resource discovery and replica location

The mechanisms presented in the previous sections rely
on resource location services for locating repli cas and
resource discovery services for locating available storage
and network resources. We briefly present the state of the
art for these two mechanisms.

A basic service in many wide-area sharing
environments is resource discovery: given a description of
resources desired, a resource discovery mechanism returns
a set of (contact addresses of) resources that match the
description. Resource discovery can be challenging
because of system scale, heterogeneity, and dynamism.
These characteristics create significant diff iculties for
traditional centrali zed and hierarchical resource discovery
services. [11] evaluates some simple, full y decentrali zed
resource discovery mechanisms. Search-eff icient,
hierarchical solutions were also proposed ([12])

There are already many solutions for locating files in
P2P environments: CAN [13], Chord [14], Tapestry [15],
Gnutella [16], Freenet [4], and Napster.

CAN [13], Chord [14], and Tapestry [15] build search-
eff icient indexing structures that provide good scalabilit y
and search performance at the increased cost of file
insertion and removal. Gnutella does not use indexing
mechanisms; its relatively good search performance (as
measured in number of hops) is due to intensive network
usage. Napster uses a centralized approach: a file index is
maintained at a central location, while real data (files) are
widely distributed. Freenet includes, in our terminology,
both repli ca management and repli ca location mechanisms:
popular files are repli cated closer to users, while the least
popular files eventually disappear. Freenet’s file location
mechanism is also built based on usage patterns, using
dynamic routing tables. However, the Freenet approach
assumes that non-popular data is unimportant data (and
removes it), which is not a valid assumption for many
scientific applications. We assume that files always exist at
their source (since we are not concerned with anonymity of
data).

6. Simulation Results

It is by no means clear that our proposed approach to
repli ca management will work well i n practice. Too many
repli cas could be created due to partial or incorrect
information and due to multiple nodes acting
simultaneously. The overhead of the state monitoring
required to guide repli ca creation might be excessive. Or,
repli cas might not be created often enough, with the result
that availabilit y would fall below desired goals.

We simulated a 100-node P2P network with unlimited
storage space. While the number of nodes does not
influence the model’s answer, it somewhat reflects the
scale of the network. Nodes join and leave the network

 5

with a specified probabilit y. We assume that nodes that fail
or leave the network lose all the repli cas they store. Each
simulation is run for 100 steps. At each step: � A certain number of nodes go down (depending on the

probabilit y of nodes being up) � A percentage of the nodes that are up check for available
repli cas for the files they contain. If needed, they create
more repli cas.
We built our simulations with three objectives in mind:

(1) evaluate the validity of our model; (2) evaluate the
effect of partial information on decision accuracy; and (3)
compare our dynamic repli cation strategy with a static
strategy. We assume a repli ca location accuracy of 0.8 for
all experiments. In Figures 2, 3 and 4 each plot
corresponds to a different average node reliabilit y.

6.1. Model Validation

 Our model computes the minimum number of repli cas
that are necessary to achieve a certain availabilit y threshold
in the presence of node failures. One way to check the
accuracy of our model’s results is therefore to fix the
number of repli cas existent in the system at any time and
measure data availabilit y. Ideally, for the number of
repli cas equal to that returned by our model for a required
availabilit y X, we should measure an availabilit y close to
X. Figure 2 compares the numbers of repli cas
corresponding to matching availabilit y values. For
example, for the probabilit y of 0.4 of nodes being up and a
required availabilit y threshold of 0.6, the model requires 3
repli cas. When we maintain the number of repli cas per file
at 3, we measure the average availabilit y per file to be
around 0.65. Though the model predictions are not this
accurate at all points in the graph, the simulations validate
the general trend pointed to by the model. We note that
further fine-tuning of the model is needed for better
accuracy.

6.2. Effect of decentralized decision making

A potential drawback of the P2P mechanism we
describe is that each node makes its own repli cation
decisions. Extra repli cas may get created in the event of
more than one node repli cating the same file
simultaneously. To evaluate this effect, we record the total
number of repli cas per file in the system (after system
warm-up). At each step, 25% of the nodes that are up
check the system and create repli cas if needed,
simultaneously. The results of these runs along with the
ideal number of repli cas as calculated by the model are
plotted in Figure 3.

When the probabilit y of a node being up is moderately
high (

����� ���
	���
�������������� ������������������� ������������!
��"#�#$����%!
��&�"#�#�������#���
is not substantial: e.g., for probabilit y = 0.4 and availabilit y
of 0.7, the model suggests 5 repli cas/file, but we find an

average of 7 repli cas/file. When nodes are highly
unreliable (e.g., probabilit y=0.2), the number of repli cas in
the system is significantly larger than the number required
by the model.

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Availability Threshold

N
um

be
r

of
 R

ep
lic

as

.4 (actual)

.4 (predicted)

.8 (actual)

.8 (predicted)

Figure 2: Model prediction versus actual behavior
for different values of node reliability

0
2

4
6
8

10
12
14
16

18
20

0.2 0.4 0.6 0.7
Availability Threshold

A
vg

. n
um

be
r

of
 R

ep
lic

as
/F

ile .2 (ideal)
.2 (P2P)
.4 (ideal)
.4 (P2P)
.8 (ideal)
.8 (P2P)

 Figure 3: The effect of independent,
decentralized replication decisions

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11

Time Step

A
vg

. n
um

be
r

of
 R

ep
lic

as
/F

ile

.4 (dynamic)

.8 (dynamic)

.4 (static)

.8 (static)

Figure 4: Static versus dynamic replication for
different probabilities of a node being up and

availability threshold of 0.7

 6

6.3. Static versus Dynamic schemes

 Finall y, we compare the performance over time of a
static repli cation scheme with our dynamic scheme. For the
static scheme, we initiall y placed a constant number of
repli cas for each file in the system. For the dynamic model,
we started the simulations with only one repli ca per file.
As Figure 4 shows, in the static scheme the repli cas in the
system eventually decrease to 1 copy (minimum) per file.
In the dynamic scheme, the number of repli cas is
maintained at a constant level, thus ensuring a better,
constant data availabilit y over time.

7. Conclusions and Future Directions

We have proposed a decentrali zed model for dynamic
creation of repli cas in an unreliable peer-to-peer system.
The aim of our model is to ensure a specified degree of
data availabilit y. Along with the analytical mechanisms
used by our model, we discussed the advantages and
disadvantages of our approach and presented some
preliminary evaluation results based on simulations.

Our results show that the model we propose is able to
predict the required number of repli cas in the system with
moderate accuracy. We plan to further fine-tune the model
based on more simulation studies. The results also show
that our adaptive scheme is more adequate to a dynamic
environment than a static replication scheme.
 Our decentralized, dynamic mechanism has no single
point of failure, as it does not rely on a central monitoring
agent. Even if a sizable portion of the network is down or
the network becomes partitioned, our adaptive mechanism
adjusts the number of repli cas to the new conditions.
Moreover, the overhead associated with the extra
monitoring and computations are distributed over the
system.

These advantages come at the price of accuracy: nodes
take decisions based on partial information, which
sometimes lead to unneeded repli cation. Simulation results
show that the redundancy in action associated with
distributed authority is more evident when nodes are very
unreliable.

Acknowledgements

This research was supported in part by the National
Science Foundation’s GriPhyN project under contract ITR-
0086044.

 References
[1] S. Acharya and S. B. Zdonik, "An Eff icient Scheme for

Dynamic Data Repli cation," Brown University CS-93-
43, 1993.

[2] M. Rabinovich and A. Aggarwal, "RaDaR: A Scalable
Architecture for a Global Web Hosting Service,"
presented at The 8th Int. World Wide Web Conference,
1999.

[3] O. Wolfson, S. Jajodia, and Y. Huang, "An adaptive
data repli cation algorithm," ACM Transactions on
Database Systems, vol. 22, pp. 255--314, 1997.

[4] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong,
"Freenet: A distributed anonymous information storage
and retrieval system," presented at ICSI Workshop on
Design Issues in Anonymity and Unobservabilit y,
Berkeley, Cali fornia, 2000.

[5] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H.
Weatherspoon, W. Weimer, C. Well s, and B. Zhao,
"OceanStore: An Architecture for Global-Scale
Persistent Storage," presented at Proceedings of the
Ninth international Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS 2000), Cambridge, MA, 2000.

[6] CMS: Compact Muon Solenoid:
http://cmsinfo.cern.ch/Welcome.html/

[7] Human Genome Project: http://www.nhgri.nih.gov/
[8] Sloan Digital Sky Survey:

http://www.sdss.org/sdss.html
[9] Human Brain Project: http://www-hbp.scripps.edu/
[10] R. Wolski, "Forecasting Network Performance to

Support Dynamic Scheduling Using the Network
Weather Service," in Proc. 6th IEEE Symp. on High
Performance Distributed Computing. Portland, Oregon,
1997.

[11] A. Iamnitchi and I. Foster, "On Full y Decentrali zed
Resource Discovery in Grid Environments," presented
at International Workshop on Grid Computing, Denver,
CO, 2001.

[12] T. D. Hodes, S. E. Czerwinski, B. Zhao, A. D. Joseph,
and R. H. Katz, "An Architecture for Secure Wide-Area
Service Discovery," Wireless Networks, 2001.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, "A Scalable Content-Addressable Network,"
presented at SIGCOMM Conference, 2001.

[14] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.
Balakrishnan, "Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Appli cations," presented at
SIGCOMM Conference, 2001.

[15] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph,
"Tapestry: An infrastructure for fault-tolerant wide-area
location and routing," UC Berkeley, Technical Report
CSD-01-1141, 2001.

[16] Clip2, "The Gnutella Protocol Specifications v0.4."
[17] K. Ranganathan and I. Foster, "Identifying Dynamic

Repli cation Strategies for a High Performance Data
Grid," presented at International Workshop on Grid
Computing, Denver, CO, 2001.

[17]

