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Abstract

Efficient data sharingin gobd pee-to-pea systemsis
complicated by eratic node failure, unreliable network
conredivity and limited bandvidth. Replicating daa on
multi ple nodes canimprove avail ability andresporse time.
Yet determining when and where to replicate data in order
to med performance gods in large-scale systems with
many users andfil es, dynamic network characteristics, and
changng wser behavior is difficult. We propose an
approach in which peers ceatereplicas automatically in a
decantralized fashion, as required to med availahility
gods. The aim of our framework isto maintain a threshold
levd of avail ahility at all times.

We identify a set of factors that hinder data avail ability
andpropacse a nodel that deddeswhen nore replicationis
necessary. We ewaluate the accuracy and performance of
the proposed model using simulations. Our preliminary
results show that the model is effedive in predicting the
required nunber of replicasin the sytem.

1. Introduction

We are interested in using the aggregate storage
capacity of large numbers of geographically distributed
personal computersto store large scientific data sets. Such
a pea-to-peeg (P2P) storage system can, in principle, offer
low cogt, large @pacity (a million PCs can provide 1-10
petabytes of storage today), accessto significant coll ocated
computation power, and high aggregate accessbandwidth.

Yet the design and implementation of a P2P storage
system also raises sgnificant challenges. The average
reliability of any single storage dement in such a system
will be low, due to unreliable networks and the posshble
departure of itsassociated node. Similarly, the data access
performance offered to clients will be variable, depending
on often limited bandwidth and the popularity of the data
item in question. Yet the ientific applications that are of
interest to us want guarantees that data will be available
when they nedd it—at least with high probahility.

A well-known technique for improving avail ability in
unreliable systemsisreplication. |f multiple cpies of data
exist on independent nodes, then the chances of at least one

copy being accessble are increased. Aggregate data
access performance will also tend to increase, and total
network load will tend to deaease, if replicas and requests
are reasonably distributed.

Yet while replication has advantages, it also has
significant costs. We nead a mechanism for creating
repli cas that all ows usto med avail abilit y and performance
goals without consuming undue amounts of storage and
bandwidth. We would like this mechanism to function
entirdy automatically. And it must function effedively in
adynamic, decentrali zed P2P environment.

We describe here a mechanism with these properties. In
our approach, each pea in the system poseses a
(necessarily highly approximate) model of the P2P storage
system that it can use to determine how many replicas of
any file are nealed to maintain desired avail ability. Each
pea applies this modd to the (necessarily incomplete
and/or inacaurate) information it has about system state
and repli cation status of itsfilesto determineif, when, and
where new replicas ould be aeated. The result is a
completedly decentralized system that can maintain
performance guarantees.

We ealuated our approach with three different
simulation experiments to (1) ched the accuracy of our
model; (2) compare our dynamic model approach to a
static replication scheme; and (3) gauge the dfeds of the
decentrali zed dedsion making process

The use of a system model to guide replica creation
clearly distinguishes our work from Web caching systems
[1], [2], [3] and from file sharing systems sich as Freenet
[4], in which data is replicated entirely on the basis of
popularity. Those systems do not address avail ability
issies. The OceanStore system [5] is concerned with
avail ability, but does not model system behavior. Our cost
models of replica creation and placement can be used by
such a system to ensure data availahility.

The rest of this paper is asfollows. Sedion 2 preents a
number of data intensive appli cations that can benefit from
dynamic data management. We present in Sedion 3 our
dynamic, adaptive replica management approach, and
describe in Sedion 4 the analytica mecdhanism that
supports our solution. Our solution relies on two hasic
services: resource discovery and replicalocation. Sedion 5
presents me of the aurrent designs for bath. In Sedion 6



we describe our simulations results and conclude with
future diredionsin Sedion 7.

2. Target Applications

A typical example of a data sharing collaboration is a
community of scientisss who want to perform
computationally demanding analyses on large amounts of
data. The output of their analyses creates new data that
they then want to circulate among their coll eagues across
the world. Both the experimental data and the rew derived
data ae read-only, as is, for example, the ase of the
Compact Muon Solenoid [6] experiments that will start at
CERN in 2006

Many applications in the scientific community,
spanning biology, astrophysics, astronomy, and genetics,
fit nicdy into target applications that deal with huge data
sets and nead some amount of data management.

The Human Genome Projed [7] constructs detail ed
genetic and physical maps of the human genome. The
projed neeals advanced means of making new scientific
data widely avail able to scientists so that the resuts may be
used for public good.

Telescopes like that in the Sloan Digital Sky Survey
experiment [8] will scan vast amounts of the sky and
generate large amounts of data every night. Data often
needs to be processed duing the next day, which requires
fast dissemination to powerful computational resources.

The Human Brain Projed [9] consists of coll aborations
spanning dfferent fields (computer graphics, molealar
biology, digital optical microscopy, modeling, and contral
theory) that require high resolution, multi-dimensional
images of the nervous gystem in several modes. This
projed involves daring of large datasets among a
potentiall y large set of participants.

A popular application that has bocsted interest in the
P2P concept is the sharing of mp3 fil es by geographically
distributed users. Music sharing environments are more
static than scientific environments. the use of data by
scientists often leads to creation of new data. In addition,
the number of distinct musicfiles issmall er and thereisno
attempt to ensure availability of any particular file.

3. Dynamic Replica M anagement

In the solution we propose, each pee uses a set of tod's
to oltain a (typicall y partial and inaccurate) understanding
of the state of the system and takes file replication and
migration dedsions. The system works as foll ows.

Each node in the network is authorized to create
replicas for the files it stores. A node deddes where to
replicate a file using a performance model that compares
the costs and the berefits of creating replicasof a particular
filein cetain locations. (Sedion 4.3 discusses the factors
that trigger a node to evaluate the opportunity of file

replication.) Replicas are ddeted acocording to the local

policy of the host node.

Our model-driven approach relies on a resource
discovery service to find available storage and on a tod
such as the Network Weather Service [10] to provide
network avail abilit y and prognosisinformation.

The parameters we ansider in our replication dedsion
modd are:

1. Single-system stahility p, which encompasses node
fail ures, communication fail ures that render the node
unreachable, and the departure of the node from the
network. In our model, this parameter is expressed as
the average probabilit y of a node being up.

2. Thetransfer time between nodes N; and N, for thefile
F to be replicated trans(N;, N,, F). This parameter is
defined as the ratio between file size and available
bandwidth.

3. Storage wst of file F at a given node N: s(F, N). This
parameter captures the st of writing new data to the
storage. The storage st can include local policies,
from data replacament mechanisms to acceptance to
store spedfic data. For example, the storage st
published by a node that does not agreeto store some
data can be infinity. A node that does never replacea
replica within an hour after its creation can also
advertise a very high storage price, allowing it not to
be thosen to host new data. This cost can also depend
on the size of the file to store, or incentives (if we
consider a market model).

4. The acauracy of the replicalocation medanism RL ..
The dedsion of creating more repli cas depends on the
number of currently existent replicas. However, this
number may not always be accurately determined,
given the system's dynamism and inherent
communication delays. We hence take into acoount a
less than perfed accuracy of the replica location
service The acauracy is measured through past
performance of the medhanism or simulations in a
controll ed environment.

The model-driven approach we propose aims to help
nodes answer two criticah questions for replica
management.

1.  What is the optima number of replicasfor afile?

2. Which isthe best node to host a particular replica?
These questions neal to be answered for an externally
defined avail ahility threshold for each file.

4. Analytical M echanisms

Our proposed approach has two oljedives. First, we
want to express the number of replicas per file as a
function of the parameters that influence availahility.
Seand, we want to provide a function that evaluates the
placement of a replica in a particular location. This
function can then be used for choosing the best alternative.



4.1. Computing the number of replicas per file

To determine the number of replicas that guarantees the
required availability of a file, we neal to consider the
system parameters that affed avail abilit y and performance.

The avail ahility of a file depends on the fail ure rate of
peeas in the network and the accuracy of the replica
location service If a large number of peas are often
unreachable, then a large proportion of files may become
unavailable. Aggressve replication is one method to
maintain the desired level of availability in such
environments.

The acauracy of the replica location service determines
the percentage of accesshle files: if the location serviceis
ineffedive, more replicas need to be aeated to ensure that
at least some are retrieved.

We develop a function to calculate the number of
replicas nealed (r) for a cetain availahility threshold.
Sincethe avail ahilit y of afil e depends on the fail ure rate of
pees in the network and on the dficiency of the Replica
Location Service (RLS), a simple function can be
developed as foll ows.

Let r bethetotal number of replicasfor afile A,

p be the probability of a node to ke up,
RL . be the accuracy of the replicalocation service
Avail be the required amount of avail ability for file
A.
Then, the probability of all r replicas of file A being
unavail ableis:
(L-p)

Therefore, the probability of at least one replica of A
being avail ableis:

1-(t-p)
and the probabilit y that a replica of A will befoundis:

RLacc* (1-(1- p)')
(We asaume that the availability of a file and the RLS
accuracy are independent).
Therefore, we nedd

RL,,, 0L~ (L~ p) )= Avail

to ensure the amount of avail abilit y needed for a given file.
The desired value for r can be alculated from the above
function for any given avail ahilit y threshold. For example,
for a probability p of 30% of a node to be up, an
avail ability threshold of 75% and the RLS acauracy of
80%, the model remmmends a minimum of 8 replicas. If p
is 1%, the recommended number of replica increases to
276

Once a node knows the ideal number of replicasr for a
file, it employs the replicalocation serviceto discover how
many actually exist. Let us asaume the replica location
servicereturns M and M islessthan r, then the node knows
that it hasto create (r — M) copies of the fil e and distribute
them to remote locations.
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/
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v
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Figure 1: Set of actions taken by a node for a
filein the P2P system

If the number of existent replica is larger than needed
(M =), the node does nothing, for as we mentioned
earlier, the etra replicas will eventually be replaced by
filesmore “interesting” to the local host.

Since &ch pee in the system acts independently, there
is considerable chancethat two peas smultaneoudy take
the dedsion of replicating the same file. If storage
resources are scarce then the extra-replicas will soon be
replaced with others. |If storage resources are abundant,
then the excessve replication is not necessarily harmful.

4.2. Determining thelocation for a new replica

We asame that the resource discovery mechanism
provides a set of candidate storage resources located in
different domains for a new replica host. A domain is a
colledion of nodes in a particular geographical area. We
asaume that any two locations within a particular domain
will have the same or similar transfer and storage @sts
owing to their geographical locality.



The andidates returned by the resource discovery
service med the following criteria: they do not contain a
copy of the file to be replicated, they have available
storage (or at least replacesblefiles), and have a reasonable
transfer time (below a certain maximum) to the potential
users.

Oncethe node has the posshle set of host candidates, it
uses a heuristic to sded the best candidate(s). The best
candidate maximizes the difference between replication
benefits and replication costs. The benefit is the reduction
in transfer time to the potential users. The repli cation costs
are the storage st at the remote site and the transfer time
from the arrent location to the new location.

The st of creating areplicaat alocation N, for afileF
stored at the location Ny is: s(F, Ny) + trans(F, Ni,Ny)),
where,

N; = Node that currently hasthefile

N, = Candidate node for new replica

S(F, N) = Storage st for file F at node N

trans(F,a,b)=transfer cost between locationsa and b

The benefit of creating areplicaat N, is:

trans(F, Ng,User) —trans(F, N,,User), where User isthe
location from which we exped the most number of future
requests. Therefore, the net benefits of replicating at N, can
be @l culated and the best candidate identified.

4.3. When to Check

An important problem to be addressed is what triggers a
node to ched if more replicas are needed for afile.

A possble solution is to compare periodicaly the
number of existent replicas with the required number of
replicas. The periodicity of these hedks can be altered to
suit network volatility and usage patterns. If, for example,
during the last three dedks there was no action neede on
the part of a node, it can increase the time interval of its
cheds (and hence use fewer system resources). If, on the
other hand, conseautive checks show that more replicasare
neeaded, the node may want to increase its frequency of
cheks to adapt to the danging surroundings. One
disadvantage of this approach is the overhead created by
frequently using the replica location service for each filea
node has, the location serviceis call ed, independent of the
file's popularity. An alternative is to ched the level of
replication of afile only when that fil e is requested.

However, in bah scenarios, multiple nodes could
simultaneoudly create replicas for the same file. Though
the extrareplicas will eventually be overwritten, there till
remains the st of wasted bandwidth and the probem of
efficient resource utili zation. Since we annot rely on a
central dedsion-making authority, such conditionsare hard
to diminate. Sedion 6.2 elaborates on this.

5. Resource discovery and replica location

The mechanisms presented in the previous sedions rely
on resource location services for locating replicas and
resource discovery services for locating avail able storage
and network resources. We briefly present the state of the
art for these two mechanisms.

A basc sevice in many widearea sharing
environments is resource discovery: given a description of
resources desired, a resource discovery mechanism returns
a st of (contact addresses of) resources that match the
description. Resource discovery can be dallenging
becuse of system scale, heterogeneity, and dynamism.
These daracteristics create significant difficulties for
traditional centralized and hierarchical resource discovery
services. [11] evaluates ome simple, fully decentralized
resource discovery mechanisms.  Search-efficient,
hierarchical solutionswere also proposed ([12])

There are aready many solutions for locating files in
P2P environments. CAN [13], Chord [14], Tapestry [15],
Gnutella[16], Freenet [4], and Napster.

CAN [13], Chord [14], and Tapestry [15] buil d search-
efficient indexing structures that provide good scalahility
and search performance at the increased cost of file
insertion and removal. Gnutdla does not use indexing
medanisms; its relatively good search performance (as
measured in number of hops) is due to intensive network
usage. Napster uses a centralized goproach: afile index is
maintained at a central location, whil e real data (fil es) are
widely distributed. Freenet includes, in our terminology,
bath repli ca management and repli calocation medanisms:
popular files are replicated closer to users, while the least
popular files eventually disappear. Freenet’s file location
medanism is also huilt based on usage patterns, using
dynamic routing tables. However, the Freenet approach
asaimes that non-popular data is unimportant data (and
removes it), which is not a valid assumption for many
scientific appli cations. We assume that fil es always exist at
their source (sincewe are not concerned with anonymity of
data).

6. Simulation Results

It is by no means clear that our proposed approach to
replica management will work well in practice Too many
replicas could be aeated dwe to partial or incorred
information and duwe to multiple nodes acting
simultaneously. The overhead of the state monitoring
required to guide replica creation might be excessve. Or,
replicas might not be aeated often enough, with the result
that avail ability would fall below desired goals.

We simulated a 100-node P2P network with unlimited
storage space While the number of nodes does not
influence the modd’s answer, it somewhat refleds the
scale of the network. Nodes join and leave the network



with a spedfied probability. We assumethat nodes that fail

or leave the network lose al the replicas they store. Each

simulation isrun for 100steps. At each step:

= A cetain number of nodes go down (depending on the
probabilit y of nodes being up)

= A percentage of the nodesthat are up ched for avail able
replicas for the files they contain. If nealed, they create
more replicas.

We built our simulations with threeoljedives in mind:
(1) evaluate the validity of our modd; (2) evaluate the
effed of partial information on dedsion accuracy; and (3)
compare our dynamic replication strategy with a static
strategy. We assume a replica location accuracy of 0.8 for
al experiments. In Figures 2, 3 and 4 each plot
corresponds to a different average node reli abilit y.

6.1. Modd Validation

Our model computes the minimum number of replicas
that are necessary to achieve a certain avail abilit y threshold
in the presence of node failures. One way to ched the
acauracy of our mode’s results is therefore to fix the
number of replicas existent in the system at any time and
measure data availability. ldealy, for the number of
replicas equal to that returned by our model for arequired
avail ability X, we should measure an avail ability close to
X. Figure 2 compares the numbers of replicas
corresponding to matching availability values. For
example, for the probability of 0.4 of nodesbeing upand a
required avail ahilit y threshold of 0.6, the modd requires 3
replicas. When we maintain the number of replicas per file
at 3, we measure the average avail ability per file to be
around 0.65. Though the mode predictions are not this
accurate at all pointsin the graph, the simulations vali date
the general trend pointed to by the model. We note that
further fine-tuning of the model is needed for better
acauracy.

6.2. Effect of decentralized decision making

A potential drawback of the P2P mechanism we
describe is that each node makes its own replication
dedsions. Extra replicas may get created in the event of
more than one node replicating the same file
simultaneoudly. To evaluate this effed, we record the total
number of replicas per file in the system (after system
warm-up). At each step, 25% of the nodes that are up
chedk the system and create replicas if needed,
simultaneoudly. The results of these runs along with the
ideal number of replicas as calculated by the model are
plotted in Figure 3.

When the probability of a node being upis moderately
high (> 0.4), the negative effect of decentralized replication
isnot substantial: e.g., for probability = 0.4 and avail ability
of 0.7, the modd suggests 5 replicas/file, but we find an

average of 7 replicas/filee. When nodes are highly
unreliable (e.g., probability=0.2), the number of replicasin
the system is sgnificantly larger than the number required
by the moddl.
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6.3. Static ver sus Dynamic schemes

Finaly, we cmpare the performance over time of a
static repli cation scheme with our dynamic scheme. For the
static scheme, we initialy placed a constant number of
replicasfor each filein the system. For the dynamic model,
we started the simulations with only one replica per file.
As Figure 4 shows, in the static scheme the replicas in the
system eventually deaease to 1 copy (minimum) per file.
In the dynamic scheme, the number of replicas is
maintained at a constant level, thus ensuring a better,
constant data availability over time.

7. Conclusions and Future Directions

We have proposed a decantralized model for dynamic
creation of replicas in an unreliable pea-to-pea system.
The aim of our model is to ensure a spedfied degree of
data availability. Along with the analytical mechanisms
used by our model, we discused the advantages and
disadvantages of our approach and presented some
preliminary evaluation results based on simulations.

Our results show that the model we propose is able to
predict the required number of replicas in the system with
moderate accuracy. We plan to further fine-tune the model
based on more simulation studies. The results also show
that our adaptive scheme is more adequate to a dynamic
environment thana static replication schere.

Our decentralized, dynamic mechanism has no single
point of failure, asit does not rely on a central monitoring
agent. Even if a sizable portion of the network is down or
the network becomes partiti oned, our adaptive mechanism
adjusts the number of replicas to the new conditions.
Moreover, the overhead aswociated with the etra
monitoring and computations are distributed over the
system.

These advantages come at the price of accuracy: nodes
take dedsions based on partia information, which
sometimes lead to unneeded repli cation. Simulation results
show that the redundancy in action associated with
distributed authority is more evident when nodes are very
unreliable.
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