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ABSTRACT

Generative Adversarial Networks (GAN) have shown promis-
ing results on data modeling and can generate high quality
synthetic samples from the data distribution. However, how
to effectively use the generated data for improved feature
learning still remains an open question. This work proposes
a Center based Pseudo-Labeling (CPL) method dedicated to
this purpose. The network is trained with both labeled real
data and unlabeled synthetic data, under a joint supervision of
cross-entropy loss together with a center regularization term,
which simultaneously predicts pseudo-labels for unlabeled
synthetic data. Experimental results on two standard bench-
marks show our approach achieves superior performance over
closely related competitors and comparable results with state-
of-the-art methods.

Index Terms— pseudo-labels, semi-supervised learning,
person re-identification, convolutional networks.

1. INTRODUCTION

Person re-identification aims at matching pedestrians across
images captured from multiple non-overlap cameras. Thus,
labeling for this task involves manually associating images
from different cameras which is rather demanding. The emer-
gence of Generative Adversarial Network (GAN) [1] in 2014
provides an option to tackle this problem by generating im-
ages with perceptual quality. However, it is still an open ques-
tion how to properly adopt them for training. Previous works
towards this purpose [2, 3] either assign one single label for all
generated samples or use a fixed label for each sample during
the training procedure. In this paper we aim to design a dy-
namic labeling strategy, which progresses through the whole
training process. On the other hand, the labeling should take
into account the distances between the generated sample and
all other labeled samples.

The main contributions of this work are summarized as
follows:

• We propose a multi-task loss formulation for the person
re-identification task that jointly considers conventional
cross-entropy loss for supervised learning and a center
loss term for unsupervised clustering.

Fig. 1. Overall architecture with our proposed CPL for person
re-identification task. DCGAN is trained to generate synthetic
data, followed by semi-supervised learning with our proposed
multi-task loss (Denoted by dashed boxes).

• We propose a clustering based pseudo-labeling ap-
proach for GAN generated samples which helps regu-
larize our proposed model for a better performance over
closely related approaches and is on par with state-of-
art methods.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work and Section 3 provides details of
our proposed semi-supervised learning. Section 4 reports ex-
perimental results, and Section 5 concludes this paper.

2. RELATED WORK

We review related work in the fields of person re-
identification and pseudo-labeling, respectively.

Person Re-identification. Majority efforts in this area
can be grouped into two categories: (a) metric learning and
(b) feature extraction based approaches. Metric learning usu-
ally takes input in the form of image pairs or triplets and
learn a similarity metric using pairwise or triplet loss [4, 5, 6].
However, this stream of work suffers from huge data expan-
sion when constituting image pairs and triplets. The other
type of works focus on feature learning, addressing this task
in the form of classification. Common practices include first
training a pedestrian identity predicting model and then ex-
tract last fully connected layer as pedestrian descriptor for re-
trieval during testing [7, 8].

Pseudo-labeling. Pseudo-labeling is a technique to pro-
duce approximate labels for unlabeled data on the basis of
labeled data instead of manually labeling them. Existing
pseudo-labeling approaches can be categorized as follows:
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• All-in-one [9, 10] simply introduces an extra new and
fixed class label for all unlabeled data without consid-
ering any relationships between labeled and unlabeled
data.

• One-hot pseudo [11] improves labeling strategy on the
basis of all-in-one and proposes to dynamically assign
labels for unlabeled data every forward process accord-
ing to its maximum class prediction probability.

• LSRO [2], MpRL [3] uses distributed (multiple)
pseudo class labels for a single unlabeled data. LSRO
proposed a uniformly distributed pseudo-label while
MpRL considers different class contributions. Labels
are also updated every iteration.

None of the above methods consider the relationships be-
tween labeled and unlabeled data samples to improve the fea-
ture representations during semi-supervised learning. A ma-
jor drawback of [2] approach is the underlying assumption
that the synthetic data does not belong to any class, therefore
considering a uniform distribution for all unlabeled samples.
Our work aims to address this limitation and propose a novel
loss function that automatically discovers patterns in the un-
labeled data.

3. PROPOSED APPROACH

In this section, we describe our proposed semi-supervised
learning approach in person re-identification and some dis-
cussions.

3.1. Overview

We propose a semi-supervised learning approach for person
re-identification that does not require any extra data besides
the training dataset. The whole work-flow is displayed in Fig.
1. The proposed semi-supervised learning approach can be
separated in two modules. The first module on the left side is
the data generation module, where a generative model (DC-
GAN) is learned using adversarial training to estimate the data
distribution based on existing real samples(e.g., labeled im-
ages from training set). Then, the trained generator can be
used to obtain large amounts of synthetic image samples ly-
ing on the approximated data manifold. The second module
takes as input these unlabeled generated data samples along-
side the labeled ones to learn feature representations with the
joint supervision of a center regularization term which simul-
taneously predict pseudo labels for generated samples. Dur-
ing testing, the output representations from the convolutional
network are used as pedestrian descriptors for a Euclidean
distance based retrieval task.

To be specific, we introduce a new learning objective for
the semi-supervised training. We propose a new method of
pseudo-labeling for unlabeled data samples by exploring the
underlying data patterns. Our proposed approach is based on

Fig. 2. A toy example illustrating representation distribu-
tions in feature space before and after the center regulariza-
tion term is imposed. Circles with different colors (e.g. red
and black) stand for feature representations of real (labeled)
samples form different categories. Blue triangles represent
GAN generated fake (unlabeled) data, which are denoted 1-6
from top to bottom. The filled color of each triangle denotes
pseudo-label predicted in each case. Cross in each dashed
circle denotes the center of that class. (Best viewed in color.)

the proposition that a good pseudo-label should reflect the
data sample’s similarity to real ground truth data. Further-
more, the similarity needs to be more broadly defined and
measured with a defined distance metric rather than to a sin-
gle closest data point.

3.2. Proposed Semi-supervised Learning

We now introduce our proposed center based pseudo-labeling
approach. It takes into account the patterns in the labeled data
and leverages those to infer pseudo-labels for unlabeled data.
Further, it jointly learns more discriminative feature represen-
tations for both labeled real data and unlabeled synthetic data.

Loss Function. Common CNN models for classification
adopt classical cross-entropy loss during training whose out-
put deeply learned features often have large intra-class vari-
ations. Contrastive and triplet losses have been proposed to
enhance the discriminative power of these features. However,
both these losses suffer from drastic data expansion when
constituting the sample pairs or sample triplets from training
set. Here, we use the center loss [12] to provide joint supervi-
sion with conventional cross-entropy loss to minimize intra-
class variations while keeping it simple to train. The final loss
for the proposed model is a combination of cross-entropy loss
LS and center regularization term LC defined as follows:

L = LS + λLC
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where xi is the ith feature representation, belonging to the
class yi, cyi

denotes the yith class center of the features. W is
the layer parameter of cross-entropy loss. λ is a trade-off pa-
rameter to balance two loss functions. K is the total number
of classes.

The LC term seeks to pull closer representations from
same class and with the joint supervision, network is there-



fore encouraged to learn discriminative deep features while
assuring low intra-class variations.

Pseudo-label generation. Pseudo-label conceptually de-
fines which class the unlabeled sample belongs to based on
some measurement. Distinguished from approaches with the
choice of unlabeled sample’s maximum class prediction prob-
ability, we consider similarity between its feature represen-
tation and class centers to decide which class it belongs to,
which itself can be regarded as a clustering process. We for-
mulate our similarity definition as cosine similarity given by:

sim(ui, ck) =
ui · ck
‖ui‖‖ck‖

(2)

where, ui is the feature vector for an unlabeled data sample i
and ck is the cluster center. Label Y (ui) is defined according
to its clustering results as:

Y (ui) = arg max
k

sim(ui, ck), s.t., k ∈ [1,K]. (3)

We assign one-hot label, same as one-hot pseudo, for unla-
beled data which is in format consistent with ground truth
labels for easier implementation and training.

Gradients. It is clear that our loss Eq. (1) is differentiable
and thus it can be optimized by Stochastic Gradient Descent
(SGD). The gradient of loss L with respect to xi and the cen-
ter cyi update equation are written as:
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(5)

where δ denotes delta function i.e., δ(condition) = 1 if
condition is satisfied, and otherwise 0.

Once pseudo-labels are obtained, we train our network
following the same procedure as [12] with two notable mod-
ifications: (a) Instead of taking the entire training set into ac-
count, centers are updated based on mini-batches. (b) Only
labeled samples in mini-batches are allowed to update class
centers, enabling a more stable training procedure.

We present our proposed semi-supervised feature learning
procedure in Algorithm 1.

3.3. Discussion

Why center better labels data? As mentioned before, GAN
generator is trained to generate samples following the original
data distribution to fool the discriminator. Once GAN is well
trained, one can assume its generated samples are close to

Algorithm 1: The semi-supervised feature learning
approach

Input: Labeled data set L, Unlabeled data set U ,
Maximum iteration T , Parameters θ, Center
update rate α

Output: Updated parameters θ
Initialization: Training set X = L ∪ U , Initialize θ,
Class centers {ck = 0|k = 1, 2, ...,K}

1 for t = 1 : T do
Shuffle X and sample mini batch xt;
Feed forward xt through M and calculate
sim(xtu, ck) using Eq. (2);

Update pseudo-label ytu for xtu using Eq. (3);
Compute the joint loss Lt using Eq. (1);
Update class center ctj = ct−1

j + α∆ctj with Eq (5);
Update the parameter set θt;

original ones. However, it will be inappropriate to use the
class which has the maximum predicted probability to label
data as proposed in [11]. A toy example is shown in Fig. 2
for illustration. Left part in Fig. 2 shows large intra-class
representation variations trained only with cross-entropy loss
and adopts one-hot pseudo-label proposed in [11]. As the
closest real samples to unlabeled data samples 1 and 3 are
red, high chances are that 1 and 3 will be classified as red
(due to their maximum class prediction is more likely red)
despite the fact they are more inclined towards black if seen
from a global view. Similar argument stands for data samples
2 and 4. Feature distribution after center regularization term
imposed is displayed on the right part with much lower intra-
class variations and the unlabeled samples are plausibly and
correctly classified according to the distance to each center.

Another worth mentioning fact is that this line of re-id re-
searches use an identity predicting network in training, but
extract last fully connected layer activations as the final de-
scriptor to perform similarity calculation when testing. That
is to say, final retrieval is based on feature similarity rather
than class predictions. Thus, pseudo-labels derived from pre-
dictions in varying degrees introduce extra errors. In contrast,
center based labeling directly considers feature similarity.

Comparison with related methods. Unlike all-in-one
approach with an extra class for unlabeled data, ours takes
into consideration the distribution property of GAN gener-
ated images and propose to classify them into existing classes.
LSRO assigns one single label for all samples while ignor-
ing the variance within generated samples. CPL is superior
to one-hot pseudo and MpRL in the sense that it leverages
the relationships between labeled and unlabeled data instead
of purely based on single class predictions. In summary, our
proposed center based pseudo-labeling is better designed than
other pseudo-labeling methods.



Table 1. Rank-1 accuracy (%) and mAP (%) on the Market-1501 dataset with varying numbers of unlabeled training data. Best
results amongst approaches are in bold whilst best results for different unlabeled data incorporated is underlined.

#GAN images All-in-one [9, 10] One-hot Pseudo [11] LSRO [2] dMpRL-I [3] dMpRL-II [3] CPL(Ours)
rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP

0(baseline) 72.74 50.99 72.74 50.99 72.74 50.99 72.74 50.99 72.74 50.99 72.74 50.99
12000 76.96 55.68 76.52 55.69 77.17 55.22 77.88 55.84 79.22 58.14 81.38 60.31
18000 77.40 55.59 77.95 55.04 76.96 55.28 78.36 56.21 79.81 58.31 82.10 62.31
24000 77.21 56.07 77.62 56.90 78.21 56.33 77.79 56.10 80.37 58.59 82.04 61.26
30000 77.17 56.19 77.95 56.54 77.46 55.40 78.65 57.15 79.16 57.69 82.10 61.42
36000 75.92 55.24 77.42 56.38 77.91 55.82 78.95 57.42 79.90 57.61 82.12 60.70

improvement 4.66 5.20 5.21 5.91 5.47 5.34 6.21 6.43 7.63 7.60 9.38 11.32

4. EXPERIMENTS

In this section, we evaluate our proposed method on two stan-
dard person re-identification benchmarks: Market-1501 and
DukeMTMC-reID. We will start with the implementation de-
tails, followed by the evaluations and an ablation study.

4.1. Implementation Details

GAN network. We follow [2] and train a DCGAN to gener-
ate synthetic unlabeled pedestrian images to enlarge the train-
ing set. The generator first applies a linear function on a 100-
dim random noise to form a 4×4×16 tensor, then further adds
6 deconvolution layers with a kernel size of 5×5 to generate
the final 128×128×3 image. The discriminator uses 5 convo-
lutional layers with 5×5 kernels to separate real and synthetic
samples from its input. After training, we use the generator
to produce up to 36,000 synthetic images for following semi-
supervised learning. Some samples of real and generated syn-
thetic data are displayed in Fig. 3. Although these generated
images can be easily recognized as fake by human eyes, they
can still help regularize the model and result in better match-
ing accuracy.

Fig. 3. Above are real samples from Market-1501 dataset and
below are synthetic images generated by a trained DCGAN.

Re-id Baseline. For fair comparison, we followed [2] and
adopted ResNet-50 which is commonly used as our backbone
network. In our experiments, no changes were made to the ar-
chitecture expect for substituting the last 1000 class activation
neurons to the number of identities in each dataset.

4.2. Evaluations on Standard Benchmarks

Comparison with existing pseudo-label methods. To eval-
uate CPL, we compare it with four competitive pseudo-
labeling methods: all-in-one, one-hot pseudo, LSRO and
MpRL. MpRL is the current state-of-art approach tackling
semi-supervised learning problem on person re-identification
with GAN generated images. Detailed results on Market-
1501 are reported in Table 1.

Compared with existing virtual label methods, ours out-
performs the top competitor dMpRL-II by a margin of 1.75%
and 3.72% in rank-1 accuracy and mAP respectively on the
Market-1501 dataset. dMpRL-II and dMpRL-I differs in the
starting point of dynamical label process. dMpRL-II slightly
performs better (around 1-2%) because labels are assigned af-
ter certain number of epochs when the network is relatively
stabilized while dMpRL-I generates labels in the very begin-
ning. This is intuitive since a stable network can make stable
predictions for label ranking in their case. Our proposed CPL
follows the same setting as dMpRL-I and produces pseudo-
labels from scratch. This is reasonable, because our approach
allows automatic adaptation for the pseudo-labels.

We also test our approach on the DukeMTMC-reID
dataset to show the generalization ability, results are shown
in Table 2. Whole training procedure is identical to that on
Market-1501. Our method achieves the better results than
other works on pseudo-labeling and outperforms the most re-
cent competitor [3] by a margin of 2.68% in rank-1 accuracy
and 3.41% in mAP.

Table 2. Comparison of related approaches for pseudo-
labeling on the DukeMTMC-reID dataset. Rank-1 accuracy
(%) and mAP (%) are reported.

Method rank-1 mAP
baseline 65.22 44.99
LSRO [2] 67.68 47.13
dMpRL [3] 68.24 48.58
CPL (Ours) 70.92 51.99

Amount of unlabeled data. In our experiments, different
numbers of unlabeled data samples were used during training



Table 3. Comparison with state-of-the-art methods on the
Market-1501 dataset. Best and second best results are denoted
in bold and underlined, respectively.

Method Market 1501
rank-1 mAP

Gate-reID (ECCV’16) [14] 65.88 39.55
SCSP (CVPR’16) [15] 51.90 26.35
DNS (CVPR’16) [16] 61.02 35.68
ResNet+OIM (CVPR’17) [17] 82.10 -
Latent Parts (CVPR’17) [18] 80.31 57.53
P2S (CVPR’17) [19] 70.72 44.27
Consistent-Aware (CVPR’17) [20] 80.90 55.60
Spindle (CVPR’17) [21] 76.90 -
SSM (CVPR’17) [22] 82.21 68.80
JLML (IJCAI’17) [23] 85.10 65.50
SVDNet (ICCV’17) [24] 82.30 62.10
Part Aligned (ICCV’17) [25] 81.00 63.40
PDC (ICCV’17) [26] 84.14 63.41
LSRO (ICCV’17) [2] 78.06 56.23
dMpRL-II (Arxiv’18) [3] 80.37 58.59
Baseline 72.74 50.99
Ours 82.10 62.31
Ours+re-rank 84.47 75.90

to show its influence. A considerable performance increase
in both rank-1 accuracy (9.38%) and mAP (11.32%) com-
pared to baseline is observed when our proposed approach
is applied. However, an increase in the amount of unlabeled
images (from 12000 to 36000) failed to lead to further boost
and the final result fluctuates around 82%. Same trend is ob-
served amongst all other pseudo-labeling methods. For this
phenomenon, we speculate it is due to the inherent represen-
tation ability of generated images. Those images are sampled
from a specific distribution (manifold of real data), so simply
increasing samples can not produce any new information that
benefits the retrieval task eventually.

Comparison with state-of-art methods. We compare
our proposed approach with other state-of-art works on
Market-1501 to show its competence. Our method (rank-
1:82.10%, mAP: 62.31%) shows to be very competitive with
many state-of-art methods except for JLML (rank-1:85.1%,
65.50%), PDC and SVDNet. The main reason why JLML
outperforms by a relatively large margin is because JLML
adopted a much stronger baseline (around 3% higher than
ours) and incorporates three extra networks focusing on dif-
ferent local areas compared to our single branch architecture.
After applying a re-ranking technique from [13] applied, a
further boost is observed showing reciprocal relationships are
encoded in learned identity representations.

4.3. Ablation Study

We provide ablative experiment results on Market-1501 to
evaluate each component in our proposed approach. The net-
work is under full supervision of labeled data for baseline and
center loss but turns into a semi-supervision case when unla-
beled data is provided.

Table 4. Ablative experiments about effectiveness of center
regularization term and pseudo-labeling on Market-1501.

methods rank-1 mAP supervision
baseline 72.74 50.99 full
center 79.45 57.25 full

center + pseudo 82.10 62.31 semi

Regularization term. In order to study the effect of cen-
ter regularization term on final results, we discard all gener-
ated data and train only on labeled data with the regularization
term imposed. Note in this case, it is a fully supervised mode.
As show in Table. 4, imposing the regularization term leads
to a 6.71% rank-1 increase to get 79.45% and 6.26% gain in
mAP to achieve 57.25%. This improvement is intuitive since
the regularization term helps to reduce the intra-class varia-
tions and thus leads to stronger feature representations.

Pseudo-label. Adopting generated images from DCGAN
with pseudo-labels predicted by CPL turns previous full-
supervised model into a semi-supervised one. With synthetic
data labeled by our proposed CPL, the network gains a further
performance boost on both metrics to 82.1% rank-1 accuracy
and 62.31% mAP, which justify the effectiveness of our la-
beling solution. In this experiment, the number of unlabeled
images is set to 18,000.

5. CONCLUSION

In this paper, we proposed a center based pseudo-labeling
(CPL) approach for GAN generated synthetic images and
evaluated its effectiveness on the person re-identification task.
Specifically, unlabeled each synthetic sample is assigned a
one-hot class label according to its closest class center. Train-
ing with a combination of labeled real and pseudo-labeled
synthetic samples better address the re-id problem in a semi-
supervised manner. Experimental results show that our pro-
posed approach outperforms other pseudo-labeling methods
on the person re-identification task and achieves competitive
accuracy compared to state-of-the-art methods.
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