Center based Pseudo-labeling for Semi-supervised Person Re-identification

<u>Guodong Ding</u>, Shanshan Zhang, Salman Khan and Zhenmin Tang Email: guodong.ding@njust.edu.cn

Contents

- Motivation
- Contribution
- ➢ Method
- ➢ Experiments
- ➢ Conclusion

Motivation

Deep networks are data-hungry

Considers both intra-class and inter-class variations

Reason between labeled and unlabeled data

Contributions

We introduce a multi-task loss function

We propose a novel clustering based pseudolabeling approach

Method

Pseudo-labels recap

Method

Overall Architecture:

Method

Formulations:

➤ Multi-task loss

$$L = L_S + \lambda L_C$$

= $-\sum_{i=1}^m \log \frac{e^{W_{y_i}^T x_i + b_{y_i}}}{\sum_{k=1}^K e^{W_{y_k}^T x_i + b_{y_k}}} + \frac{\lambda}{2} \sum_{i=1}^m ||x_i - c_{y_i}||_2^2$

➢ Pseudo-labeling

$$Y(u_i) = \arg\max_k sim(u_i, c_k), \quad s.t., k \in [1, K].$$

where:

$$sim(u_i, c_k) = \frac{u_i \cdot c_k}{\|u_i\| \|c_k\|}$$

Method

Derivatives/Update rules

$$\begin{aligned} \frac{\partial L}{\partial x_i} &= \frac{\partial L_S}{\partial x_i} + \frac{\lambda}{2} \frac{\partial L_C}{\partial x_i} \\ &= \frac{W_{y_i} \cdot e^{W_{y_i}^T x_i + b_{y_i}}}{\sum_{k=1}^K e^{W_{y_k}^T x_i + b_{y_k}}} - W_{y_i} + \lambda (x_i - c_{y_i}) \end{aligned}$$

$$\Delta c_j = \frac{\sum_{i=1}^m \delta(x_i \in L) \cdot \delta(y_i = k) \cdot (c_k - x_i)}{1 + \sum_{i=1}^m \delta(x_i \in L) \cdot \delta(y_i = k)}$$

Experiments

Image Generation

> Network

DCGAN[1]

➢ Results

Real

[1] Radford A, Metz L, Chintala S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[J]. Computer Science, 2015.

Experiments

Effectiveness of proposed approach

Table 1. Rank-1 accuracy (%) and mAP (%) on the Market-1501 dataset with varying numbers of unlabeled training data. Best results amongst approaches are in bold whilst best results for different unlabeled data incorporated is underlined.

#GAN images	All-in-one [9, 10]		One-hot Pseudo [11]		LSRO [2]		dMpRL-I [3]		dMpRL-II [3]		CPL(Ours)	
	rank-1	mAP	rank-1	mAP	rank-1	mAP	rank-1	mAP	rank-1	mAP	rank-1	mAP
0(baseline)	72.74	50.99	72.74	50.99	72.74	50.99	72.74	50.99	72.74	50.99	72.74	50.99
12000	76.96	55.68	76.52	55.69	77.17	55.22	77.88	55.84	79.22	58.14	81.38	60.31
18000	77.40	55.59	77.95	55.04	76.96	55.28	78.36	56.21	79.81	58.31	82.10	62.31
24000	77.21	56.07	77.62	56.90	78.21	56.33	77.79	56.10	80.37	58.59	82.04	61.26
30000	77.17	<u>56.19</u>	77.95	56.54	77.46	55.40	78.65	57.15	79.16	57.69	82.10	61.42
36000	75.92	55.24	77.42	56.38	77.91	55.82	78.95	<u>57.42</u>	79.90	57.61	82.12	60.70
improvement	4.66	5.20	5.21	5.91	5.47	5.34	6.21	6.43	7.63	7.60	9.38	<u>11.32</u>

Experiments

More Comparison

Table 2.Comparison of related approaches for pseudo-labeling on the DukeMTMC-reID dataset.Rank-1 accuracy(%) and mAP (%) are reported.

Method	rank-1	mAP
baseline	65.22	44.99
LSRO [2]	67.68	47.13
dMpRL [3]	68.24	48.58
CPL (Ours)	70.92	51.99

Ablation study

Table 4. Ablative experiments about effectiveness of centerregularization term and pseudo-labeling on Market-1501.

methods	rank-1	mAP	supervision
baseline	72.74	50.99	full
center	79.45	57.25	full
center + pseudo	82.10	62.31	semi

 Table 3.
 Comparison with state-of-the-art methods on the

 Market-1501 dataset.
 Best and second best results are denoted

 in bold and underlined, respectively.
 Item (Second Best results)

Mathod	Market 1501			
Method	rank-1	mAP		
Gate-reID (ECCV'16) [14]	65.88	39.55		
SCSP (CVPR'16) [15]	51.90	26.35		
DNS (CVPR'16) [16]	61.02	35.68		
ResNet+OIM (CVPR'17) [17]	82.10	-		
Latent Parts (CVPR'17) [18]	80.31	57.53		
P2S (CVPR'17) [19]	70.72	44.27		
Consistent-Aware (CVPR'17) [20]	80.90	55.60		
Spindle (CVPR'17) [21]	76.90	-		
SSM (CVPR'17) [22]	82.21	68.80		
JLML (IJCAI'17) [23]	85.10	65.50		
SVDNet (ICCV'17) [24]	82.30	62.10		
Part Aligned (ICCV'17) [25]	81.00	63.40		
PDC (ICCV'17) [26]	84.14	63.41		
LSRO (ICCV'17) [2]	78.06	56.23		
dMpRL-II (Arxiv'18) [3]	80.37	58.59		
Baseline	72.74	50.99		
Ours	82.10	62.31		
Ours+re-rank	84.47	75.90		

Conclusion

CPL can reduce intra-class variations

CPL generates labels based on feature similarity

This method can improve the accuracy of person re-identification

Follow-up work

Generalize the one-hot scheme of pseudo-labels to the distributed scheme

Add extensive experiments and elaborations

Feature Affinity based Pseudo-Labeling for Person Re-identification <u>https://arxiv.org/abs/1805.06118</u>.

Thanks!

Questions?

Any further inquires, contact me at guodong.ding@njust.edu.cn