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Temporal Action Segmentation

- Temporally segments long-range procedural video
- Assigns semantic labels for each segment
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Frame-wise annotation for procedural videos is time-consuming
- Number of videos (hundreds if not thousands)
- Temporal span of videos (minutes long)

Semi-supervised only requires
- A small portion of annotated videos (as low as 3)
- A large collection of videos unlabelled (cost free)
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Incorporating unlabelled videos for training, factors
to consider:

- What action compositions are likely to occur?

- What is a reasonable temporal proportion for each action to
take?

- What kind of constraints should the action labels follow?
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Action Affinity

action
priors

- Videos performing the same activity will I|||I.... ..... IIII ”II ..I.!.!!..
share a similar set of actions Action Affinity Loss

- There exist pairs of videos sharing
resembling action temporal portions

action
predictions

Action Continuity

- Action labels stay locally constant and only
transit at the actual boundaries.

Action Continuity Loss

- Existing models tend to over-segment,
leading to over-fragmentation problem

fragments
removed
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Impose the action prior induced from labelled videos to guide the
learning of unlabelled samples.

Labelled videos Action frequency (labelled):
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Action Sequence Sub-sampling Dynamic Time Warping
1. Sub-sample actions in time 3. Using the KL-Divergence for cost calculation
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ADAPTIVE BOUNDARY SMOOTHING
Step function Linear Interpolation Adaptive Sigmoid
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(a) Standard One-hot Labels (b) Fixed-Duration Linear [18]

The adaptive boundary:
- Adopts a sigmoid shape for mixed action probability assignment

- Faster probability descending speed when approaching the boundary

- Is proportional to the action duration
- Smoothing in a longer boundary for long actions provides more training samples

for adjacent shorter segments
- Smoothing in a shorter boundary for short actions preserves more high confident

frames for shorter segments
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Action prior by the affinity loss is
effective:

Avoid overfitting to the incorrect pseudo

labels esp. when data annotation is rather
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ABS 1s generic and applied to the fully supervised setting:
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- Two novel loss functions are proposed specifically for the semi-
supervised learning of temporal action segmentation task.

- The densely labelled videos do not only provide frame-wise
semantic action labels, when put together at a video level, they also
serve as action priors for a specific procedural task.

- The action boundary itself and the human annotations are
ambiguous in pinpointing exact transiting timestamps. Transitional
action boundaries can be helpful.
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