Coherent Temporal Synthesis for Incremental Action Segmentation

CVPR2024

Guodong Ding, Hans Golong and Angela Yao

National University of Singapore

Extensively studied in image domain

- Image classification,
- Object detection,
- Semantic segmentation, etc.

Extensively studied in image domain

- Image classification,
- Object detection,
- Semantic segmentation, etc.

Underexplored in video domain

- Action recognition,
- \cdot ... (more to come)

Fundamental Categories of IL algorithms

• Replay/Rehersal

replay a few of the data samples previously seen tasks (exemplar, generative)

• Regularization [1]

consolidates the past knowledge, controlling the network weights updates

• Architectural

dynamically changes the model's architecture, isolating task-specific parameters

Procedural Videos

Series of actions performed in some **constrained but non-unique order** to achieve some intended high-level goal.

Procedural Videos

Series of actions performed in some **constrained but non-unique order** to achieve some intended high-level goal.

Make coffee

Procedural Videos

Series of actions performed in some **constrained but non-unique order** to achieve some intended high-level goal.

Make coffee

Video Replay

- (Symbolic) Action sequence
 - take cup pour coffee add milk add sugar stir coffee SIL
- \cdot Action duration
 - 180 150 90 140 160 100
- (Segmental) Action features

Temporally Coherent Action Model

Action Modeling via Conditional VAE

The Encoder takes as input

- $\cdot x$ frame feature
- *a* action label
- *c* coherence variable
 - relative temporal progression of a frame within the action [0-1]

The Decoder

- samples a latent variable
- outputs the reconstruction of the original feature

Action Synthesis with Decoder

Frames in the same segment have

- consistent action label
- identical sampled latent variable
- varying coherence variable
 - in accordance to their temporal location

Generated segments are concatenated in time to form the replay video.

Whenever new task data comes

Action Segmentation

- construct replay data with generators from previous tasks
- \cdot learn segmentation with both incoming data and replay data

Whenever new task data comes

Action Segmentation

- construct replay data with generators from previous tasks
- \cdot learn segmentation with both incoming data and replay data

Video Replay

- train new generator with incoming data
- cache generator in task stask

Incremental Training

Whenever new task data comes

Action Segmentation

- \cdot construct replay data with generators from previous tasks
- \cdot learn segmentation with both incoming data and replay data

Video Replay

- train new generator with incoming data
- cache generator in task stask

Iterate between Action Segmentation and Video Replay.

Main Result

Effectiveness on two benchmarks with two backbones

Improvement

- significant improvements over standard finetune approach without data replay
- improvements compared to exemplar-saving counterpart

Gaps

• large performance gap compared to using original frame features

# Tasks			MSTCN					ASFormer			
		Acc	Edit	F1 @ {10, 25, 50}			Acc	Edit	F1 @	F1 @ {10, 25, 50}	
			Breakfast								
10	Finetune Exemplar Ours Original	7.4 16.1 29.4 43.1	7.2 13.3 25.9 41.1	7.5 13.8 26.3 41.2	7.0 12.5 23.5 37.6	5.4 9.5 17.7 29.5	9.9 12.4 34.2 48.1	9.8 11.2 32.4 45.2	10.3 11.7 33.1 45.9	9.4 10.7 30.1 42.4	7.5 8.5 23.4 34.2
5	Finetune Exemplar Ours Original	15.4 32.5 54.5 60.4	15.8 28.9 49.4 59.1	16.6 30.8 51.1 60.3	15.8 28.5 46.9 56.1	12.7 22.9 37.7 46.0	15.7 29.5 57.2 65.1	16.1 27.5 56.8 64.2	16.9 28.7 58.3 65.6	15.8 26.7 54.0 61.5	13.2 22.0 43.6 51.0
		YouTube Instructional									
5	Finetune Exemplar Ours Original	13.6 30.8 30.2 55.9	2.8 19.7 25.0 39.4	3.6 19.8 21.9 38.1	2.7 16.0 18.5 32.2	0.6 9.3 11.1 19.1	13.9 22.1 25.2 59.2	11.5 18.9 20.9 51.1	11.1 17.7 20.1 45.4	9.8 15.3 17.5 39.1	6.3 10.0 11.4 25.5

Temporal Coherence

	SD	FD	TC	Acc	Edit	F1 @ {10, 25, 50}		
Exemplar	1	×	X	27.8	35.6	36.1	31.7	24.3
Ours _{random}	\checkmark	\checkmark	×	32.9	38.9	40.0	35.6	27.2
Ours _{static}	\checkmark	×	×	37.9	42.9	43.8	38.9	29.0
Ours	\checkmark	\checkmark	\checkmark	41.8	45.0	47.0	41.5	32.0

SD - segment-level diversity FD - frame-level diversity TC - tempo

TC - temporal coherence

- Without temporal coherence, static segmnet works better than random
- All factors considered together achieves the best performance

Replay Size

М	Acc	Edit	F1 @	{10, 25	5, 50}
30	34.0	39.6	41.0	34.8	24.7
60	35.4	41.2	42.3	36.0	25.6
90	36.2	42.3	43.9	37.3	26.8
120	38.0	42.3	44.0	37.1	26.2

- A larger replay size leads to better performance
- saturates and no further gain with replay size

TCA Training data

	$\mathcal{T}(\%)$	Acc	Edit	F1 @ {10, 25, 50}		
Exemplar	-	22.6	34.8	36.0	32.4	25.2
	25	41.7	43.2	46.1	40.9	31.5
Ourc	50	42.1	43.3	45.1	40.5	31.5
Ours	75	45.3	45.9	47.8	43.7	34.7
	100	47.4	46.9	48.2	42.8	33.4

Access to more real data helps build the generative ability

Take aways

- · Generative replay approaches are better desired for procedural videos
- Temporal coherence is essential for video replay
- This is an underexplored area full of research possibilities

Thank you!