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 A B S T R A C T

Assembly tasks, as an integral part of daily routines and activities, involve a series of sequential steps that are 
prone to error. This paper proposes a novel method for identifying ordering mistakes in assembly tasks based 
on knowledge-grounded beliefs. The beliefs comprise spatial and temporal aspects, each serving a unique role. 
Spatial beliefs capture the structural relationships among assembly components and indicate their topological 
feasibility. Temporal beliefs model the action preconditions and enforce sequencing constraints. Furthermore, 
we introduce a learning algorithm that dynamically updates and augments the belief sets online. To evaluate, 
we first test our approach in deducing predefined rules on synthetic data based on industry assembly. We 
also verify our approach on the real-world Assembly101 dataset, enhanced with annotations of component 
information. Our framework achieves superior performance in detecting ordering mistakes under both synthetic 
and real-world settings, highlighting the effectiveness of our approach.
. Introduction

In assembly procedures, components or parts are brought together 
n a precise and sequential manner to produce a final product or struc-
ure. In everyday life, we assemble furniture, appliances, toys (Ben-
habat et al., 2021; Ragusa et al., 2021; Sener et al., 2022), etc. Despite 
aving manuals, assembly tasks are challenging due to their complexity 
r unclear instructions.1 Beyond the household, assembly extends into 
ndustries and workplaces. Manufacturers rely heavily on assembly 
ines and processes to produce a wide array of goods (Kumar et al., 
022; Cicirelli et al., 2022). These processes are meticulously designed 
o ensure precision, efficiency, and quality.
In real-world settings, making mistakes is a natural part of assembly 

asks. Assembly is interesting to study due to its inherent complex-
ty; mistakes in ordering, orientation, and fastening are common in 
ssembly (Mattsson and Hogler, 2018; Sener et al., 2022). This work 
ocuses on detecting ordering mistakes. Ordering mistakes can either 
e stand-alone, or they can have a cascade effect, impacting subsequent 
teps and leading to the need for disassembly and reassembly. In the 
ideo dataset Assembly101 (Sener et al., 2022), adult participants were 
sked to assemble and disassemble a toy vehicle designed for 4- to 6-
ear-olds. However, nearly 60% of the sequences showcased at least 
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1 A quick online search leads to dozens of articles with titles like ‘‘31PiecesofFurnitureYouWon’tHaveaHardTimeAssembling’’ and ‘‘The Secret to Assembling
KEA Furniture Without Losing Your Sanity’’

one mistake, and 78.6% of these were ordering mistakes. An ordering 
mistake example is shown in Fig.  4(a)l; if the ‘roof’ is placed on the 
‘cabin’ before the ‘speaker’ and the ‘light’, it will be impossible to 
position them afterwards. Just like for humans, mistakes are valuable 
learning opportunities for intelligent systems by revealing possibilities 
for preventative adjustments.

Sener et al. (2022) first introduced the ordering mistake detection 
task for assembly with the release of the video dataset Assembly101. 
Their benchmark formulated the problem as a video classification task 
and used a neural network to predict mistake labels directly. However, 
this direct mapping from video features to mistake labels conflates the 
action semantics and their temporal relations, making it challenging to 
interpret the temporal dependencies. We, therefore, introduce a new 
set of annotations for Assembly101 that include part information to 
mitigate the ambiguities. While numerous video datasets exist for pro-
cedural activity recognition (Kuehne et al., 2014; Zhukov et al., 2019; 
Tang et al., 2019), these datasets predominantly showcase successful 
outcomes and do not endorse any mistakes.

Task graphs (Huang et al., 2019; Logeswaran et al., 2023) cap-
ture dependencies between key steps in a task, where Inductive Logic 
Programming (ILP) algorithms are implemented for the purpose. For 
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Fig. 1. Overview of our online mistake learning and detection system. Given a flow of action sequence, BeliefBuilder updates the knowledge-grounded spatial and temporal beliefs 
at each step. Inferencer make predictions on the action with beliefs. Ordering mistakes rely less on semantics yet more on the timing of the action. Step 3 & 6 are the same action 
but have different mistake labels.
example, Sohn et al. (2020) integrates classification and regression tree
(CART) as the logic induction module to build their task graph with step 
sequences in a reinforcement setting. It is noteworthy that ILP systems 
are good at maximizing the objective function with the complete set 
of data but struggle to adjust and perform well in dynamic or real-time 
setups. This makes them less efficient for our mistake detection because 
of the online detection requirement.

We are motivated to build an adaptive intelligent system that has 
the ability to learn from mistakes in an online fashion and then identify 
errors as novel sequences are observed. Specifically, assembly tasks 
entail a predefined sequence of steps dictated by the components’ struc-
ture.2 Furthermore, assembly is a sequential process; each step builds 
upon previous steps, demanding a specific order of actions. Lastly, 
assembly actions are reversible and can be undone by disassembly. This 
is in contrast to procedures like cooking, where actions are irreversible.

Inspired by these characteristics, we propose a mistake detec-
tion framework presented in Fig.  1. The framework consists of two 
knowledge-grounded beliefs: spatial beliefs, capturing structural rela-
tionships between components, and temporal beliefs, encompassing the 
ordering constraints among action steps. Each of these beliefs attends to 
a distinct aspect of assembly tasks, as previously outlined. We differ-
entiate between two classes of temporal beliefs due to their different 
unique error accumulation mechanisms. Additionally, we introduce 
algorithms designed for the construction of belief sets (BeliefBuilder) 
and inference (Inferencer) in an online setup.

To summarize, our main contributions are threefold:

• We present two belief sets for the assembly tasks. Spatial beliefs 
describe relationships between components, while temporal be-
liefs capture sequencing constraints. These learned beliefs are pre-
sented explicitly, enabling inspection, comprehension, and vali-
dation. Furthermore, our graph representations provide a more 
intuitive explanation.

• We propose a novel mistake detection framework comprising a
BeliefBuilder and an Inferencer designed for assembly tasks. The
BeliefBuilder dynamically constructs the belief sets, while the
Inferencer utilizes these learned beliefs to make predictions and 
detect mistakes.

2 We exclude LEGO construction from this work, as it is more free-form 
than the assembly tasks considered.
2

• We compose a synthetic dataset and enrich the Assembly101 
dataset with information about the mistake type and the explicit 
component connections to facilitate the mistake detection task. 
Our method can better detect mistakes on both datasets and can 
also be integrated with perception modules.

2. Related work

Task Structure Construction. Our approach is the first to study 
ordering mistakes in procedural activities. Soran et al. (2015) tried to 
detect missing actions for making lattes. In their dataset, 18 of the 41 
videos have a purposefully omitted action, e.g., ‘steaming milk’. Soran 
et al. (2015) model the dependencies of latte-making actions with 
a directed graph and learn the graph from the complete sequences. 
Missing actions, however, are not identified until the entire sequence 
is completed. This method cannot be generalized to detect assembly 
ordering mistakes in Assembly 101 since it can only identify missing 
steps from a fixed sequence. Sohn et al. (2020) establish task precondi-
tions using a off-the-shelf inductive logic programming (ILP) module. 
The same ILP technique has also been employed (Logeswaran et al., 
2023) for constructing task graphs solely from textual inputs.

Mistake vs Anomaly. Detecting anomalies and unintentional ac-
tions (Epstein et al., 2020; Sultani et al., 2018; Chakravarthy et al., 
2022; Zatsarynna et al., 2022), especially in temporal sequences, share 
a similar thread with our research objects. These tasks identify actions 
that deviate from their intended course. However, anomalies and unin-
tended actions differ from procedural mistakes as they exhibit distinct 
semantics from normal actions. For instance, a person walking suddenly 
falls to the ground; the semantics of falling is atypical from walking. 
Yet in assembly, the ordering mistakes are not always discernible by 
the action semantics stand-alone and may also depend on the temporal 
context. For example, placing parts in the wrong order is contingent 
upon the precise assembly steps; each part placement standalone is 
not discernible as a mistake. This unique distinction highlights the 
significance of exploring mistake detection in assembly tasks.

3. New annotation

Assembly101 (Sener et al., 2022) is the only real-world assembly 
dataset containing natural ordering mistakes and its annotations only 
provide one verb and a single object, which appears to be the most 
salient in view upon our examination. However, an assembly action 
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Fig. 2. The annotation for one video instance from (Sener et al., 2022) contains ambiguity and inconsistency. All three instances are labeled as ‘attach water tank’ (the top line). 
While (a) connects the ‘water tank’ to the ‘base’, b) connects the ‘water tank’ to itself and c) connects ‘base’ to ‘chassis’. Our part-to-part annotation (the bottom line) provides 
more precise information.
Table 1
Six types of mistakes in Assembly101. Misorientation shown in gray as it is beyond 
the scope of our work. 
 Verb Coarse # of samples Remark Fine # of samples 
 
Attach

Correct 2927 Correct step A 2927  
 

Mistake 332
Generic order B1 128  

 Accumulated B2 51  
 misorientation B4 153  
 Detach Mistake 382 Unnecessary B3 382  
 Correction 330 Correction C 330  

typically would involve one verb and two parts, e.g., attach wheels 
and chassis. In that regard, the original action labels provided by 
Assembly101 (Sener et al., 2022) are likely to result in ambiguity and 
inconsistency for the mistake detection task. An illustrative example 
is shown in Fig.  2 where all three cases are labeled as the same 
action ‘attach water tank’. However, they are fundamentally distinct toy 
assembly operations and interpretations of their semantics can greatly 
affect the mistake detection performance.

In addition, there are also self-looped and repetitive actions in the 
annotation. For example, certain toy parts from Assembly101 can be 
further split into two halves, e.g., ‘water tank part’ and ‘water tank 
part’ as shown by Fig.  2(b). Given the geometrical symmetry of the 
toys, it is common for assembly sequences to involve repetitive steps. 
For example, four wheels can be attached at different sequential locati-
ons.

In light of this, we present a new set of annotations for Assem-
bly101. Through a meticulous review of all video sequences, we anno-
tate each segment detailing interacting object information to mitigate 
ambiguities. As shown in Fig.  2, our annotation serves to complement 
the missing object information. For simplicity, we keep a consistent 
level of annotation and do not consider the subpart level and annotate 
them as ‘attach chassis, chassis’ (Fig.  2(b)). The repetitive actions are 
annotated whenever they occur, regardless of their number of occur-
rences. The overall statistics of our annotation is provided in Table  1. 
Coarsely speaking, there are three classes for the mistake detection task:
‘correct’ (A), ‘mistake’ (B), and ‘correction’ (C), where the ‘correction’
is a step made to rectify the ‘mistake’. The mistakes can be further 
classified based on four causes. The most straightforward type is the 
generic ordering mistake (B1). Accumulated mistakes (B2) are cascaded 
on generic order mistakes. Another type of mistake is the unnecessary 
detachment (B3) of correctly assembled parts. Misorientation mistakes 
(B4) happen when a part is placed in the wrong orientation, such as a 
reversed cabin. This involves 3D perception and modeling of toy parts, 
which is beyond the scope of this work. We hope that the release of our 
new annotations can attract and foster increased interest in the mistake 
detection task.
3

4. The approach

4.1. Problem setup

Consider the assembly of item 𝐗 with a component set 𝐏. Now 
consider a collection of 𝑁 sequences, 𝐒 = {𝑠𝑛}𝑁𝑛=1, of people as-
sembling 𝐗, and the corresponding labels 𝐘 = {𝑦𝑛}𝑁𝑛=1. Each se-
quence 𝑠 = {𝑣(𝑖, 𝑗)𝑡}𝑇𝑡=1 has 𝑇  steps, where 𝑣 ∈ {𝑎𝑡𝑡𝑎𝑐ℎ, 𝑑𝑒𝑡𝑎𝑐ℎ}
denotes the ‘verb’, and 𝑖, 𝑗 are commutable interacting components,
i.e., 𝑖, 𝑗 ∈ 𝐏, (𝑖, 𝑗) ≡ (𝑗, 𝑖). The step-wise mistake label is denoted as 
𝑦𝑡 ∈ {𝐴𝑡

𝑖𝑗 ,¬𝐴
𝑡
𝑖𝑗 , 𝐷

𝑡
𝑖𝑗 ,¬𝐷

𝑡
𝑖𝑗}, where 𝐴𝑡

𝑖𝑗 denotes that the step 𝑎𝑡𝑡𝑎𝑐ℎ(𝑖, 𝑗) is 
correct in sequence and ¬𝐴𝑡

𝑖𝑗 is a mistake. Similarly, 𝐷𝑡
𝑖𝑗 indicates that 

the step 𝑑𝑒𝑡𝑎𝑐ℎ(𝑖, 𝑗) is expected as a correction of the preceding mistake 
in time (¬𝐴𝑡′

𝑖𝑗 , 𝑡
′ < 𝑡) and ¬𝐷𝑡

𝑖𝑗 when it is a mistake of unnecessary 
operation, e.g., taking apart correctly assembled parts.

We further define an episodic context for each sequence 𝑀 𝑡
𝑛 =

{𝑦𝑡′}𝑡𝑡′=1 to store the collective steps executed up to time 𝑡. Due to our 
online setup of the mistake detection task where the prediction is for 
the current action, we simplify the notations by omitting 𝑡. The mistake 
detection task is then to infer the mistake label 𝑦̂ for each step 𝑣(𝑖, 𝑗) in 
a sequence.

4.2. Spatial beliefs 

In assembly, the component structures dictate the permissible action 
space. The structural information governs the feasibility of an assembly 
step and the number of actions required for successful completion. 
For instance, when assembling toys, a ‘roof’ component is attached to 
the ‘cabin’, and the ‘wheels’ are affixed to the ‘chassis’. As such, we 
define the spatial beliefs  to consolidate the components’ structure. 
More specifically, given components (𝑖, 𝑗), the Spatial(𝑖, 𝑗, 𝑦𝑠) finds the 
assignment of 𝑦̂𝑠 ∈ {𝐴𝑖𝑗 ,¬𝐴𝑖𝑗} such that the following formula evaluates 
to True: 
𝑦̂𝑠 ← Spatial(𝑖, 𝑗, 𝑦𝑠) ∶ (𝑖, 𝑗) ∈  ⟺ 𝑦𝑠, (1)

where 𝑦𝑡 is an assignment of {TRUE, FALSE} depending on if the 
action of ‘‘attach i and j’’ is correct or not, while ⟺  indicates that 
expressions on either side of the equation are equivalent, e.g., if one 
expression is true, the other must also be true, and vice versa.

The formula in Eq. (1) indicates that only (𝑖, 𝑗) pairs that conform 
to the structural constraints belonging to  are feasible; this is given 
by definition as 𝐴𝑖𝑗 . The attempt to attach a pair (𝑖, 𝑗) that does not fit 
together,  i.e., excluded from , is a mistake; this is given by definition 
as ¬𝐴𝑖𝑗 . Additionally,  verifies the completion of the assembly task 
with the following rule: 
Completed(𝑀) ∶ ∀(𝑖,𝑗)∈𝐴𝑖𝑗 ∈ 𝑀 ⟺ True. (2)

The rule in Eq. (2) yields a True outcome only when all interconnected 
components (𝑖, 𝑗) ∈  have been successfully assembled by existing 
steps (𝐴𝑖𝑗 ∈ 𝑀).

Graph Interpretation. The spatial beliefs can be visualized as a 
graph (Fig.  3), where nodes represent components and edges represent 
feasible attachments. Completion occurs when the episodic context 𝑀
fully traverses the graph.



G. Ding, F. Sener, S. Ma et al. Computer Vision and Image Understanding 254 (2025) 104338
Fig. 3. Spatial beliefs as part pairs (left) and a graph (right).

4.3. Temporal beliefs 

The spatial beliefs verify attachment feasibility without enforcing 
temporal ordering; they cannot indicate ordering mistakes. As such, we 
also establish a set of temporal beliefs   based on observed mistakes 
during training.

We denote for a focal component pair (𝑖, 𝑗) its precondition set 𝑖𝑗 , a 
collection of pairs that focal action 𝑎𝑡𝑡𝑎𝑐ℎ(𝑖, 𝑗) relies upon. Our temporal 
belief is defined as the union of the focal pair and its precondition 
set, i.e., 𝑖𝑗 ∶= (𝑖, 𝑗) ∪ 𝑖𝑗 . For example, in Fig.  4(a), the focal pair 
is (roof,cabin), while 𝑖𝑗 consists of (light,cabin) and (speaker,cabin). 
For a focal action, e.g., 𝑎𝑡𝑡𝑎𝑐ℎ(𝑖, 𝑗), we write as Temporal(𝑖, 𝑗,𝑀, 𝑦𝑡) the 
function that finds the assignment of 𝑦̂𝑡 ∈ {𝐴𝑖𝑗 ,¬𝐴𝑖𝑗} which conforms 
to the provided formula: 

𝑦̂𝑡 ← Temporal(𝑖, 𝑗,𝑀, 𝑦𝑡) ∶ ∀(𝑖′ ,𝑗′)∈𝑖𝑗
𝐴𝑖′𝑗′ ∈ 𝑀 ⟺ 𝑦𝑡. (3)

The formula in Eq. (3) checks if all precondition pairs from 𝑖𝑗 are 
assembled before the current action 𝑎𝑡𝑡𝑎𝑐ℎ(𝑖, 𝑗). The focal action is 
deemed correct only when all its precondition actions are correct.

Error Accumulation. Incorrect focal actions in context (¬𝐴𝑖𝑗 ∈ 𝑀)
may propagate errors to its associated actions within 𝑖𝑗 . These errors 
are referred to as accumulated mistakes. There are two distinct types 
of error accumulations, based on the transitivity within 𝑖𝑗 : transitive
(represented as 𝑖𝑗) and intransitive (denoted as ¬𝑖𝑗). A transitive belief 
signifies that any precondition action after the focal action is a mistake. 
For example, in Fig.  4(a), once (roof, cabin) is attached, attaching 
(light, cabin) and/or (speaker, cabin) will fail and are mistakes. Sup-
pose the pair (𝑖, 𝑗) is precondition pair for the focal pair (𝑖′, 𝑗′), meaning 
(𝑖, 𝑗) ∈ 𝑖′𝑗′ . We write the function 𝑖′𝑗′ (𝑖, 𝑗,𝑀) with the following rule 
to infer the label 𝑦̂𝑡: 

𝑦̂𝑡 ← 𝑖′𝑗′ (𝑖, 𝑗,𝑀) ∶ (𝑖, 𝑗) ∈ 𝑖′𝑗′ ∧ ¬𝐴𝑖′𝑗′ ∈ 𝑀 ⟺ ¬𝑦𝑡. (4)

On the other hand, an intransitive belief suggests that if the focal is 
incorrect, the execution of any of its preconditions is deemed correct, 
except for the final one. To illustrate, in Fig.  4(b), attach (base, chassis) 
as a first step would be a mistake according to Eq. (3) because its 
preconditions are not performed. While the next step attach (cabin, 
interior) would be considered correct, further attachment of (interior, 
chassis) would be deemed a mistake. Conversely, should (interior, 
chassis) occur prior to (cabin, interior), their mistake labels will be 
swapped. We enforce the following rule in ¬𝑖′𝑗′ (𝑖, 𝑗,𝑀) to obtain the 
label assignment 𝑦̂𝑡: 

𝑦̂𝑡 ← ¬𝑖′𝑗′ (𝑖, 𝑗,𝑀) ∶ ¬𝐴𝑖′𝑗′ ∈ 𝑀 ∧ (∀(𝑖′′ ,𝑗′′)≠(𝑖,𝑗)∈𝑖′ 𝑗′
𝐴𝑖′′𝑗′′ ∈ 𝑀) ⟺ ¬𝑦𝑡.

(5)

Our intransitive beliefs are specifically designed to handle multi-step 
dependencies, allowing our method to capture relationships that extend 
beyond immediate, one-step interactions. This enables more accurate 
mistake detection, accounting for cascading effects across multiple 
steps.
4

Combining both transitive and intransitive belief, we have the fol-
lowing to make inference for the actions that appear in any precondi-
tion sets: 
Precondition(𝑖, 𝑗,𝑀) ↦ (𝑖′𝑗′ ∧ 𝑖′𝑗′ (𝑖, 𝑗,𝑀)) ∨ (¬𝑖′𝑗′ ∧ ¬𝑖′𝑗′ (𝑖, 𝑗,𝑀)). (6)

Algorithm 1 Belief building Step
1: procedure BeliefBuilder(𝑀, 𝑖, 𝑗, 𝑦,)
2:  switch 𝑦 do
3:  case 𝐴𝑖𝑗
4:   ←  ∪ (𝑖, 𝑗)
5:  𝑖𝑗 ← [𝑖𝑗 ] ∩ Precedes(𝑀, 𝑖, 𝑗) ⊳ Eq.  (8)
6:  if 𝐷𝑖𝑗 ∈ 𝑀 then
7:  𝑖𝑗 ← [𝑖𝑗 ] ∩ [Context(𝑀, 𝑖, 𝑗)] ∩ [𝑖𝑗] ⊳ Eq.  (9)
8:  𝑖𝑗 ← Connect(𝑖𝑗 ,𝑀,) ⊳ Eq.  (10)
9:  pop(𝑀,¬𝐴𝑖𝑗), pop(𝑀,𝐷𝑖𝑗)
10:  push(𝑀,𝑦)
11:  case ¬𝐴𝑖𝑗
12:  if Accumulated(¬𝐴𝑖𝑗 ) then
13:  for ¬𝐴𝑖′𝑗′ ∈ 𝑀, do
14:  𝑖′𝑗′ ← 𝑖′𝑗′ ∪ (𝑖, 𝑗) ⊳ Eq.  (11)
15:  push(𝑀,𝑦)
16:  case ¬𝐷𝑖𝑗
17:  pop(𝑀,𝐴𝑖𝑗 )

18:  case 𝐷𝑖𝑗
19:  push(𝑀,𝑦)

Algorithm 2 Inference Step
1: procedure Inferencer(𝑀,𝑣, 𝑖, 𝑗)
2:  switch 𝑣 do
3:  case ‘attach’
4:  𝑦̂ ← attach(𝑀, 𝑖, 𝑗) ⊳ Eq.  (12)
5:  push(𝑀,𝑦)
6:  case ‘detach’
7:  𝑦̂ ← detach(𝑀, 𝑖, 𝑗) ⊳ Eq.  (13)
8:  if 𝑦̂ == 𝐷𝑖𝑗 then
9:  pop(𝑀,¬𝐴𝑖𝑗)
10:  else
11:  pop(𝑀,𝐴𝑖𝑗)
12:  return 𝑦̂

Graph Interpretation. Our temporal rules can also be represented 
as graphs. In their graph representation, the rule’s transitivity is de-
termined by its radius. In conventional terms, the radius of a graph 
is defined as 𝑟 = min𝑢∈𝑉 max𝑣∈𝑉 𝑑(𝑢, 𝑣), where 𝑑(𝑢, 𝑣) represents the 
geodesic distance or shortest-path distance between two nodes 𝑢 and 𝑣
in graph 𝑉 . Graphs for Transitive rules have a fixed radius 𝑟 = 1, while
intransitive rule graphs have a larger radius of 𝑟 > 1. An illustration is 
shown in Fig.  4. The correctness of the focal action (indicated by the red 
edge) relies on traversing the dark edges. It is also possible to consider 
a hybrid version of these two cases; additional details on this hybrid 
case are provided in the Appendix.

4.4. BeliefBuilder and inferencer

Our attention now shifts to the creation and inference processes of 
spatial and temporal beliefs. To facilitate, we introduce two compo-
nents: BeliefBuilder and Inferencer. BeliefBuilder continuously enhances 
and revises the belief sets as it parses more streaming sequential action 
inputs. During inference, the Inferencer leverages the belief sets to 
anticipate the output label 𝑦̂ associated with the observed action, i.e., 
as correct (𝐴𝑖𝑗), mistake(¬𝐴𝑖𝑗 or ¬𝐷𝑖𝑗), and correction (𝐷𝑖𝑗).

BeliefBuilder. The spatial and temporal beliefs are initialized as 
being agnostic to the task, i.e., set to an empty set  = ∅,  = ∅. Belief-
Builder proceeds to construct and continuously revise both belief sets as 
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Fig. 4. Transitivity of temporal beliefs. Focal action (the red edge) is reliant on the completion of the rest (black edges in gray). Transitive and intransitive rules differ by their 
graph radius 𝑟. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
more assembly sequences are observed. Each sequencing error unveils 
a temporal belief, hence, every mistake counts in assembly sequences. 
For any mistake instance ¬𝐴𝑖𝑗 , its mistake context Context(𝑖, 𝑗,𝑀)
invariably contains its preconditions. The mistake context, denoted as 
the set of correct actions occurring between the mistake fix (𝐷𝑖𝑗) and 
its correct execution (𝐴𝑖𝑗), i.e., Context(𝑖, 𝑗,𝑀) = {(𝑖′, 𝑗′)|𝑡𝐷𝑖𝑗

< 𝑡𝐴𝑖′𝑗′
<

𝑡𝐴𝑖𝑗
, 𝐴𝑖′𝑗′ ∈ 𝑀}. The precondition set 𝑖𝑗 for 𝑖𝑗 is updated with the 

following: 

𝑖𝑗 ← [𝑖𝑗 ] ∩ [Context(𝑖, 𝑗,𝑀)], (7)

the inclusion of [𝛺] is excluded when 𝛺 is an empty set. While ob-
serving ordering mistakes in the sequences is a clear trigger for the 
builder to update the temporal beliefs, there exists an implicit temporal 
logic corresponding to fully correct assembly sequences as well. For 
instance, an action 𝐴𝑖𝑗 does not have temporal dependencies on its 
subsequent actions. Conversely, its proceeding actions that are correct, 
Precedes(𝑖, 𝑗,𝑀) = {(𝑖′, 𝑗′)|𝐴𝑖′𝑗′ ∈ 𝑀}, constitute a candidate set 𝑖𝑗
wherein 𝑖𝑗 should be included, i.e., 𝑖𝑗 ⊂ 𝑖𝑗 . 𝑖𝑗 is shared across 
sequences of actions and continuously refined by: 

𝑖𝑗 ← [𝑖𝑗 ] ∩ Precedes(𝑖, 𝑗,𝑀). (8)

Adding  to Eq. (7) yields: 

𝑖𝑗 ← [𝑖𝑗 ] ∩ [Context(𝑖, 𝑗,𝑀)] ∩ [𝑖𝑗 ]. (9)

As illustrated in Fig.  7, the algorithm may overlook precondition 
pairs for intransitive temporal beliefs. The reason is that the precondi-
tion actions can be interpreted differently due to the error accumulation 
as given by the logic formula of Eq. (5) from  Section 4.3. The result 
is a disjoint intransitive belief graph, i.e., missing black edges in Fig. 
4(b). To address this scenario, we utilize the spatial belief  to find 
the actions present in the episodic context 𝑀 to establish connections 
between sub-graphs. Specifically, we apply: 

Connect(𝑖𝑗 ,𝑀,) ← 𝑖𝑗 ∪{(𝑖′𝑗′)|(𝑖′, 𝑗′) ∈ Path( , 𝑖𝑗 ) ∧𝐴𝑖′𝑗′ ∈ 𝑀}, (10)

where Path( ,  ) finds the shortest path in  that completes the rule 
graph of  . The accumulated mistake ¬𝐴𝑖𝑗 is accommodated by being 
added into the precondition set of any ongoing order mistakes in 
context, i.e., 

𝑖′𝑗′ ← 𝑖′𝑗′ ∪ (𝑖, 𝑗)|¬𝐴𝑖′𝑗′ ∈ 𝑀. (11)

The BeliefBuilder represented in Algorithm 1 is iteratively applied at 
each step until the sequence ends.

Discussion. Our belief-building process is designed to be computa-
tionally efficient by relying solely on action labels rather than complex 
visual or multimodal processing. The primary computational cost arises 
when errors occur within a sequence, triggering mistake-driven updates 
that refine the belief sets. Additional update may happen for correctly 
executed sequences to remove spurious correlations and can lead to a 
convergence towards a minimal, stable set of rules. In nature, assem-
bly tasks are governed by a finite set of valid action dependencies, 
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Table 2
Performance of learned rules on HA4M.

Data Acc precision recall 
Sohn et al. (2020) 50% 64.7 77.3 72.9  
Ours 76.1 83.9 81.2  
Sohn et al. (2020) 100% 67.6 79.8 77.0  
Ours 83.2 89.4 85.7  

inherently limits the potential for unbounded growth in computa-
tional requirements. This characteristic ensures that our system remains 
scalable and efficient, even as task complexity increases. 

Inferencer. The Inferencer, as presented in Algorithm 2 is recurrent 
and generates predictions based on the belief sets and prior decisions. 
At each step, the Inferencer estimates for the tuple (𝑣, 𝑖, 𝑗) the mistake 
label, with the context of 𝑀 , which contains the history of action labels 
up to the current step in that sequence. When the action is to attach,
i.e., 𝑣 =‘attach’, multiple inferences by spatial and temporal beliefs,
Spatial (Eq. (1)), Temporal (Eq. (3)) and Precondition (Eq. (6)) are made 
simultaneously, to determine its label 𝑦̂ ∈ {𝐴𝑖𝑗 ,¬𝐴𝑖𝑗}: 

𝑦̂ ← Attach(𝑖, 𝑗,𝑀) ∶ Spatial(𝑖, 𝑗)∧Temporal(𝑀, 𝑖, 𝑗)∧Precondition(𝑖, 𝑗,𝑀) ⟺ 𝑦.

(12)

In the case of the action being detach,  i.e., 𝑣 =‘detach’, the label 
is contingent upon the context 𝑀 . If the attachment of the same 
component pairs is an existing mistake, ¬𝐴𝑖𝑗 ∈ 𝑀 , the detachment is 
considered as a ‘correction’ (𝐷𝑖𝑗); otherwise, it is a ‘mistake’ involving 
unnecessary detachment (¬𝐷𝑖𝑗). Formally, with 𝑦 ∈ {𝐷𝑖𝑗 ,¬𝐷𝑖𝑗}, we 
have: 
𝑦̂ ← Detach(𝑖, 𝑗,𝑀) ∶ ¬𝐴𝑖𝑗 ∈ 𝑀 ⟺ 𝑦 (13)

The Inferencer can be utilized to plan and recommend course of assem-
bly actions, which we show in the Appendix.

5. Experiments

5.1. Synthetic data

We leveraged the assembly process of an Epicyclic Gear Train (EGT) 
from the HA4M dataset (Cicirelli et al., 2022) to create synthetic 
sequences with mistakes. HA4M records the assembly of the train 
with the provided instructions. We transform their original 12 actions 
(verb, noun) to 8 actions (verb, this, that) to account for component 
interactions. In line with these provided sequences, we converted their 
original actions (comprising a verb and noun) into actions involving 
component interactions (verb, this, that) We identified 8 actions for 
successfully assembling an EGT: 1: attach planet gear to planet gear 
bearing, 2: attach planet gear bearing to carrier, 3: attach carrier shaft to 
carrier, 4: attach ring bear to sun shaft, 5: attach sun gear bearing to ring 
bear, 6: attach sun gear bearing to sun gear, 7: attach carrier shaft to sun 
shaft, 8: attach cover to ring bear as show in Fig.  5. We manually identify 
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Fig. 5. Part connection graph (left) and task graph (right) for EGT. 
Table 3
Performance comparison with coarse mistake labels. 

AR Acc mistake correction correct Acc F1  
recall prec. recall prec. recall prec.  

TempAgg 100 (GT) 37.1 52.8 46.5 42.7 94.4 76.2 76.9 57.4  
LSTM 100 (GT) 34.6 56.3 42.9 48.6 98.5 89.2 81.7 63.6  
ILP (Sohn et al., 2020) 100 (GT) 65.8 59.3 23.3 57.1 94.5 91.9 83.3 62.9  
Ours 100 (GT) 78.2 68.3 51.7 86.7 95.0 94.8 88.5 77.5  
Gains +12.4 +9.0 +28.4 +29.6 +0.5 +2.9 +5.2 +14.6 
Ours 86.4 42.3 53.2 40.2 55.6 73.1 84.6 74.3 56.5  
action dependencies, two transitive and one intransitive, by inspecting 
the geometric part constraints. Subsequently, we generate a synthetic 
dataset with 20 sequences, 10 of which contain mistakes and 10 are 
correct.

Baseline. We adopt the logic induction approach used by Sohn 
et al. (2020) as the baseline. We parse the full set of sequences to 
generate training data for (Sohn et al., 2020) as the ideal input while 
our approach is applied in a streaming fashion.

Metric. Similar to Sohn et al. (2020), we evaluate the performance 
by measuring the agreement between predicted and the ground-truth 
preconditions for all possible assignments of input. Our metrics include 
average accuracy (Acc), average precision and average recall.

Performance. We conduct a performance analysis by varying the 
amount of synthetic data accessed by the model and present the re-
sults in Table  2. As expected, both approaches gain in performance 
with more data for learning. For both sets of data, we consistently 
outperform (Sohn et al., 2020) by a large margin of > 10% in Acc. 
Moreover, with only 50% of data, our approach has a recall of 81.2%, 
surpassing (Sohn et al., 2020) with 100% access of data (77.0%). It 
is because the logic module in Sohn et al. (2020) faces challenges to 
generalize and handle the mistakes caused by the intransitive belief, 
which our approach is capable of handling.

Error Analysis. Upon conducting a deeper analysis on failure cases, 
we identified two main types of errors from our approach: 1) unseen 
mistake and 2) spurious action dependencies. An unseen mistake occurs 
when a specific type of error is not represent in the training data, 
causing the model to fail in detecting it during inference. Spurious 
dependencies, on the other hand, arise from irrelevant actions within 
the CONTEXT set. This type of error can be mitigated by our design 
in Eq.  (8), which considers the PRECEDES set, allowing the model to 
prune the spurious dependencies in the belief set as more sequence are 
observed. 

5.2. Real-world data

Splits. In Assembly101, there are a total of 328 distinct action 
sequences constructing 101 different toys. To create our data splits, we 
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randomly sample one action sequence for testing and use the remaining 
sequences as the training data for each toy. This process is repeated 
four times to obtain four splits; we report results averaged over the 
four splits.

Evaluation Metric. We evaluate the task following standard classi-
fication and report the per class recall and precision, Acc and mean F1 
scores over three mistake classes.

Baselines. Following the synthetic experiment, we also use the 
logic module from Sohn et al. (2020) as our baseline for comparison. 
We further compare to two data-driven approaches, i.e., LSTM and 
TempAgg (Sener et al., 2020), by treating the mistake detection as a 
sequence-to-sequence task. In particular, given a sequence of actions, 
we treat each subsequent 𝑠1∶𝑡 as the input. The target is then defined 
as the label of the last mistake label 𝑦𝑡 from 𝑠1∶𝑡, where 𝑡 ∈ [1 ∶ 𝑇 ]. We 
design the LSTM (Hochreiter and Schmidhuber, 1997) with four hidden 
layers; each hidden layer size is set to 256. We train the LSTM with a 
learning rate of 1𝑒−3 for 100 epochs. For TempAgg, we follow Sener 
et al. (2022) and train the model for 15 epochs. As inputs, each step 
in the sequence is represented as its one-hot action feature vector and 
the action sequences are truncated or padded to a fixed length of 60 
for both experiments.

Coarse mistake detection. We report the results on Assembly101 
dataset with the coarse mistake labels for different approaches in Table 
3. LSTM slightly outperforms TempAgg at the Acc (+4.8%) and F1 
(+6.2%) scores. Such a performance gap mainly results from LSTM’s 
boost in the ‘correct’ class. Our method achieves a high recall of 78.2% 
on the ‘mistake’ class, which doubles that (37.1%) of the TempAgg. In 
the meantime, we are 12.4% and 9.0% higher than Sohn et al. (2020) 
in mistake recall and precision, respectively. For other classes, our 
approach also demonstrates higher performance but with a small gap 
compared to Sohn et al. (2020) on the ‘correct’ class. When evaluated 
across the classes, ours is the best in both Acc (88.5%) and F1 (77.5%), 
showing its strong ability to capture the ordering dynamics in assembly 
sequences.

Visual Integration. To relieve the reliance on the ground truth 
action labels, we next show how our framework can be integrated 
with the off-the-shelf action recognition model for mistake detection. 
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Fig. 6. Confusion matrix comparison on the fine mistake labels.
Fig. 7. A running example of our BeliefBuilder. Upper part shows the algorithm state at the 7-th step in Sequence 1. Within the precondition set 03, which is highlighted in 
pink, one precondition pair (3, 4) is absent due to its positioning outside the mistake context. Additionally, it includes an extra pair (1, 2) introduced by Step 6. The missing pair is 
subsequently retrieved through the Connect operation, while the extra pair is eliminated when the RuleBuilder encounters the 6-th step in Sequence 2 in the lower part. The right 
side exhibits the final spatial and intransitive temporal beliefs discovered by our framework.
Assembly101 (Sener et al., 2022) is a challenging dataset for action 
recognition. A fine-tuned TSM model (Lin et al., 2019) achieves only 
around 30% accuracy. To show the potential to work with visual 
perception, we introduce an intermediate scenario in which verbs 
(attach, detach) are predicted by the fine-tuned TSM module (86.4% in 
accuracy) with ground truth object parts provided. The result in Table 
3 (last row) indicates a decrease in performance, 35.9% in recall and 
16.1% in precision for mistake. Nevertheless, this variant still shows 
superior or comparable performance in detecting ordering mistakes 
compared to our LSTM and TempAgg baselines that requires the ground 
truth action labels as inputs. This further underscores the potential for 
integrating our module with action recognition models.

Fine mistake detection. Fig.  6 compares confusion matrices for 
the LSTM and our approach on fine-grained mistakes. As it is shown 
in Fig.  6(a), the LSTM model confuses most of the ordering mistakes 
(on B1, B2, and B3) with the correct (A) class. This is likely due 
to the significant imbalance ratio between each fine mistake class 
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and the correct class. However, it also shows that LSTM picks up 
some knowledge that a detach action can either be a ‘mistake’ or a 
‘correction’ (see bottom right corner of confusion matrix). Overall, our 
approach (Fig.  6(b)) is better at detecting the ordering mistakes with 
higher scores along the diagonal.

Spatial and temporal beliefs. We show an example of belief 
building in Fig.  7. The BeliefBuilder processes the action steps from two 
sequences progressively and builds beliefs accordingly. After parsing 
two sequences, an intransitive type of temporal belief is discovered. 
We additionally run our approach on the full set of sequences on the 
Assembly101 dataset and find 54 temporal beliefs. Among these, 28 are 
transitive, and 26 are intransitive. Our empirical observation indicates 
a strong alignment between the temporal rules obtained and the real-
world geometric constraints of certain parts. For example, the inferred 
temporal rule indicates that the body and chassis has to be attached 
after the assembly of interior, chassis and cabin, which relates to the 
geometry constraint as shown by Fig.  4(b).
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Fig. 8. Hybrid temporal belief. The red edge is dependent on the remaining black edges. The hybrid belief can be decomposed into transitive and intransitive subgraphs by performing 
a DFS on the graph with an anchor object as root. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
5.3. Limitations

A limitation of our approach is the potential for error accumulation 
when incorrect belief sets are used during prediction. However, these 
incorrect beliefs are generally a superset of the actual beliefs, and 
as more sequences are observed over time, the belief set gradually 
converges to the correct one by pruning spurious action dependencies. 
Another limitation of our approach is that we only target the ordering 
mistakes. However, within Assembly101, errors extend beyond order-
ing mistakes to include issues related to part orientation and screw 
fastening. Addressing errors in orientation and fastening demands spe-
cialized 3D modeling of components and the estimation of their 6D 
poses. We leave this for further exploration.

6. Conclusion

This work addresses the challenge of identifying ordering mistakes 
in assembly tasks. We propose two types of knowledge-grounded belief 
sets, leveraging the unique characteristics of assembly tasks. The first 
set captures the spatial arrangement of components, while the other 
represents the ordering constraints during assembly. These belief sets 
are generated in a sequence stream with our proposed BeliefBuilder and 
are employed by the Inferencer to detect mistakes from assembly se-
quences. Our approach delivers promising results in detecting ordering 
mistake, consistently surpasses other methods on both synthetic and 
real-world datasets.
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Appendix. My appendix

A.1. Hybrid temporal belief.

The hybrid temporal beliefs are depicted in Fig.  8. Similar to both
transitive and intransitive temporal rules, the anchor action (red edge) 
will only be a correct action once the remaining actions (the black 
edges in the graph) have been completed. While the actions in the 
precondition set 𝑖𝑗 will apply different rules according to the transitiv-
ity of the subgraph they belong. The hybrid belief can be decomposed 
8

using depth-first search (DFS) with the anchor object as the root node. 
Denoting them as  𝑡𝑟

𝑖𝑗  and  𝑖𝑛
𝑖𝑗 , we write the following: 

𝑦̂ ←  𝑡𝑟
𝑖𝑗 (𝑀) ∶ ∀𝑖′𝑗′∈𝑡𝑟

𝑖𝑗
¬𝐴𝑖𝑗 ∈ 𝑀 ⟺ 𝑦̂ (14)

and 
𝑦̂ ←  𝑖𝑛

𝑖𝑗 (𝑀) ∶ ¬𝐴𝑖𝑗 ∈ 𝑀 ∧ (∀(𝑖′′ ,𝑗′′)≠(𝑖′ ,𝑗′)∈𝑖𝑛
𝑖𝑗
𝐴𝑖′′𝑗′′ ∈ 𝑀) ⟺ 𝑦̂ (15)

A.2. Action planning

In addition to detecting the ordering mistakes in assembly se-
quences, it is also possible for us to plan and recommend courses of 
action. Given an action sequence up to 𝑡′-th step 𝐬 = {(𝑣, 𝑖, 𝑗)𝑡}𝑡

′

𝑡=1, we 
wish to generate 𝐩 = {(𝑣, 𝑖, 𝑗)𝑡}𝑇𝑡=𝑡′  that not only corrects mistakes in the 
past but also leads to a successful toy assembly. This is accomplished 
through the interaction between the proposed Inferencer and an action
Sampler. The Sampler utilizes a sampling pool that is comprised of 
unperformed actions and corrections to previous mistakes. The episodic 
memory 𝑀 is first obtained by parsing the observations 𝐬 through the
Inferencer By interpreting 𝑀 , we can create the following action pool
Pool(𝑀): 
Pool(𝑀) = {(𝐴, 𝑖, 𝑗)|(𝑖, 𝑗) ∈  , 𝐴𝑖𝑗 ∉ 𝑀} ∪ {(𝐷, 𝑖, 𝑗)|¬𝐴𝑖𝑗 ∈ 𝑀} (16)

The planner will first randomly select an action (𝑣, 𝑖, 𝑗) from the 
action pool and use the Inferencer to estimate its mistake label 𝑦̂. The 
action will be discarded if the estimated label is a mistake, i.e., ¬𝐴𝑖𝑗 ; 
otherwise, the sampled action will be added to the planning list 𝐩. The 
sampling operation will repeat until the toy is fully assembled, i.e.,
Completed(𝑀) is True. Alg. 3 provides a synopsis of the action planning 
procedure. Note that although this planner only addresses the existing 
mistakes in context 𝑀 and does not permit any mistakes to be included 
in the planned sequence 𝐩, it is possible to extend the planning process 
to sample potential mistake actions and then automatically address 
them.

Algorithm 3 Toy Completion Planner
1: procedure Planner(s)
2:  𝑀 ← ∅,𝐩 = ∅
3:  for 𝑡 ∈ [1 ∶ 𝑡′] do
4:  (𝑣, 𝑖, 𝑗) ← 𝑠[𝑡]
5:  𝑦̂ ← Inferencer(𝑀,𝑣, 𝑖, 𝑗)
6:  while !Completed(𝑀) do
7:  Pool(𝑀) ⊳ (16)
8:  Randomly Sample (𝑣, 𝑖, 𝑗) from Pool(𝑀)
9:  𝑦̂ ← Inferencer(𝑀,𝑣, 𝑖, 𝑗)
10:  if 𝑦̂ = ¬𝐴𝑖𝑗 then
11:  pop(𝑀, 𝑦̂)
12:  continue
13:  else
14:  push(𝐩, (𝑣, 𝑖, 𝑗))
15:  return 𝐩
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