
Fibonacci Heaps
CS2040 AY2024/25 S1

Slides by Enzio Kam Hai Hong



Binomial heaps

● Fast operations
● Has a “nice” well-defined structure
● Faster merge operation compared to binary heap

Previously ... on heaps

However, the “nice” structure is also a disadvantage

● Very rigid structure, must always maintain the binomial trees
● Is costly to maintain - almost every operation is O(log n)

What if we can make some operations cheaper?



Heaps

Procedure Binary Heap
(worst-case)

Binomial 
Heap

(worst-case)

Fibonacci 
Heap

(amortized)

Leftist Heap 
(worst-case)

Make-Heap Θ(1) Θ(1) Θ(1) Θ(1)

Insert Θ(log n) O(log n) Θ(1) Θ(log n)

Find-Min Θ(1) O(log n) Θ(1) Θ(1)

Extract-Min Θ(log n) Θ(log n) O(log n) Θ(log n)

Merge Θ(n) O(log n) Θ(1) Θ(log n)

Decrease-Key Θ(log n) Θ(log n) Θ(1) O(log n)

Delete Θ(log n) Θ(log n) O(log n) O(log n)



Why Fibonacci Heaps?

● Fast insert and decrease-key operations
● We can be lazy - work only when required
● No need to maintain binomial trees!

Note: The slides will not cover the asymptotic analysis of the operations in detail, which 
requires understanding of amortised analysis and potential functions. Please see CLRS 
Section 19 for the full analysis and detailed description of the algorithms.



Structure of a Fibonacci Heap

Fibonacci heaps, like binomial heaps, are made up of trees maintaining the heap 
property. But these trees need not be binomial trees!



Structure of a Fibonacci Heap

Each Fibonacci heap node has to store some information

● degree - number of child nodes (sometimes called rank)
● mark - whether a particular node is marked

This will be useful to us later.

Degree = 3



Structure of a Fibonacci Heap

Let’s also keep track of some useful information about the entire heap

● t(H) - the number of trees in the fibonacci heap H
● d(n) - the maximum degree in a fibonacci heap with n nodes
● m(H) - the number of marked nodes in the fibonacci heap H

In fact, we can show that d(n) ≤ ⌊logɸ n⌋ = O(log n)! (CLRS Section 19.4)

* ɸ = (1 + √5) / 2, the golden ratio.



It is time to be

LAZY



By the heap property, every tree in the heap will have the smallest element at the root. 
We can maintain a min variable to let us quickly access the minimum value in O(1) 
time.

Find-Min

3

18 52 41

39 44

24

26 46

35

23 177

30

min



For insertion, we add the new node.

And that’s it!

Insert

3

18 52 41

39 44

24

26 46

35

23 177

30

min

21

* Alternatively, use a merge like in binomial heaps.



How do I combine two fibonacci heaps?

Merge

3

18 52 41

39 44

24

26 46

35

23 177

30

minmin



Just … combine!

And update min. 

Merge

3

18 52 41

39 44

24

26 46

35

23 177

30

min



Extract-Min

We can split Extract-Min into three phases:

1. Delete the minimum node and add it’s children to root list
2. Combine trees - make sure no roots of trees have the same degree
3. Update min



Phase 1: Similar to binomial heaps we remove the minimum node, then add it’s 
children into the root list as individual trees.

Extract-Min

3

18 52 41

39 44

24

26 46

35

23 177

30

min



Extract-Min

18 52 41

39 44

24

26 46

35

23 177

30

Phase 1: Similar to binomial heaps we remove the minimum node, then add it’s 
children into the root list as individual trees.



Extract-Min

Phase 2: Combine the trees by merging trees with the same degree.

We can do this efficiently by keeping an array of pointers A, that can each point to a 
tree’s root of each degree.

We iterate through the roots of the trees in the fibonacci heap. When we find the first 
root which has degree d, we will assign that root to A[d]. If we find more than one tree 
of the same degree, we will combine the two trees and update the array, setting A[d] 
to null. (The root list is also updated with the newly combined tree.)



Extract-Min

18 52 41

39 44

24

26 46

35

23 177

30

0 1 2 3

curr



Extract-Min

18 52 41

39 44

24

26 46

35

23 177

30

0 1 2 3

curr



Extract-Min

18 52 41

39 44

24

26 46

35

23 177

30

0 1 2 3

curr



Extract-Min

18 52 41

39 44

24

26 46

35

23 177

30

0 1 2 3

curr

Combine



Extract-Min

18 52 41

39 44

24

26 46

35

23

177

30

0 1 2 3

curr

Combine



Extract-Min

18 52 41

39 44

24

26 46

35 23

17

7

30

0 1 2 3

curr

Combine



Extract-Min

18 52 41

39 4424

26 46

35

23

17

7

30

0 1 2 3

curr



Extract-Min

18 52 41

39 4424

26 46

35

23

17

7

30

0 1 2 3

curr



Extract-Min

18 52 41

39 4424

26 46

35

23

17

7

30

0 1 2 3

curr



Extract-Min

18 52 41

39 4424

26 46

35

23

17

7

30

0 1 2 3

curr

Combine



Extract-Min

1852

41 39

44

24

26 46

35

23

17

7

30

0 1 2 3

curr



Extract-Min

1852

41 39

44

24

26 46

35

23

17

7

30

Phase 3: Update min by iterating through all the roots

min



Analysis of Extract-Min

1. Delete the minimum node and add it’s children to root list
- O(log n) since we add up to d(n) nodes to root list

2. Combine trees - make sure no roots of trees have the same degree
- O(log n + t(H)), since there are at most d(n) + t(H) roots at start of Phase 2, 

and at most O(d(n)) combines
3. Update min

- O(log n), because after Phase 2 there will only be O(log n) trees

The time complexity in the worst-case would be O(log n + t(H)). However, the 
amortised cost of Extract-Min is actually O(log n). The idea here is that we are not 
always going to have exactly d(n) + t(H) trees to merge in Phase 2, at may only need 
less than O(d(n)) combines.



Decrease-Key

Again, we can split Decrease-Key into two phases:

1. Decrease the value of the node to the new value
2. Cuts and marks

a. If node violates heap property, cut it off from the parent and put it into the root list (as a new tree). 
b. Assign the parent node to the variable y. If y was marked, cut off y, put it into the root list, and 

unmark it. Set the new value of y to be the original y’s parent. Repeat this step until y is an 
unmarked node.

c. Mark y if it is not a root.

* Phase 2b-2c is also known as cascading cuts



Decrease-Key

18 38

39 4124

26 46

35

30

17

7

30

Decrease-Key(46, 15)

21

52

min

88



Decrease-Key

18 38

39 4124

26 15

35

30

17

7

30

Decrease-Key(46, 15)
Phase 1: Decrease the value of the node to the new value

21

52

min

88



Decrease-Key

18 38

39 4124

26

15

35

30

17

7

30

Decrease-Key(46, 15)
Phase 2a: If node violates heap property, cut it off from the parent and put it into the 
root list.

21

52

min

88



Decrease-Key

18 38

39 4124

26

15

35

30

17

7

30

Decrease-Key(46, 15)
Phase 2c: Mark y if it is not a root.

21

52

min

88



Decrease-Key

18 38

39 4124

26

15

35

30

17

7

30

Decrease-Key(46, 15)
Done!

21

52

min

88



Decrease-Key

18 38

39 4124

26

15

5

30

17

7

30

Decrease-Key(35, 5)
Phase 1: Decrease the value of the node to the new value

21

52

min

88



Decrease-Key

18 38

39 4124

26

155

30

17

7

30

Decrease-Key(35, 5)
Phase 2a: If node violates heap property, cut it off from the parent and put it into the 
root list.

21

52

min

88



Decrease-Key

18 38

39 4124

26

155

30

17

7

30

Decrease-Key(35, 5)
Phase 2b: Assign the parent node to the variable y. If y was marked, cut off y, put it into the root list, and 
unmark it. Set the new value of y to be the original y’s parent. Repeat this step until y is an unmarked node.

21

52

min

y

88



Decrease-Key

18 38

39 4124

26 155

30

17

7

30

Decrease-Key(35, 5)
Phase 2b: Assign the parent node to the variable y. If y was marked, cut off y, put it into the root list, and 
unmark it. Set the new value of y to be the original y’s parent. Repeat this step until y is an unmarked node.

21

52

min

y88



Decrease-Key

18 38

39 41

24 26 155

30

17

7

30

Decrease-Key(35, 5)
Phase 2b: Assign the parent node to the variable y. If y was marked, cut off y, put it into the root list, and 
unmark it. Set the new value of y to be the original y’s parent. Repeat this step until y is an unmarked node.

21

52

min

y

88



Decrease-Key

18 38

39 41

24 26 155

30

17

7

30

Decrease-Key(35, 5)
Done!

21

52

min

88



Analysis of Decrease-Key

In total, we need to make a total of k ≥ 1 cuts, where k is the number of new trees 
created (including the node with the changed value). The time complexity in the worst 
case would be O(k).

However, the amortised time complexity is O(1) time. The intuition behind this is that 
most of the time, we will not be making a lot of cuts at the start when there are not 
many marked nodes, and there will only be some “expensive” operations where there 
will be several cuts needed in the upwards path towards the root.



Exactly the same as binomial heap: Decrease the key to -∞ and run Extract-Min.

Delete



Before we go

● Fibonacci heaps give good theoretical guarantees on the operations, but are not 
necessarily good in practice

○ Not easy to implement
○ Not fast in practice due to high constant factor
○ High memory usage

● The idea of being “lazy”, or doing things later can be applied in many more 
situations (eg. lazy propagation in BSTs)

● So which heap should I use?
○ Best heap to choose might be input / operation dependent
○ When you do not need decrease-key, array based implementations are good.
○ If you need decrease-key, consider heaps like pairing heaps
○ See https://arxiv.org/pdf/1403.0252.pdf 

https://arxiv.org/pdf/1403.0252.pdf

