
NATIONAL UNIVERSITY OF SINGAPORE

CS 5230: Computational Complexity

Semester 2; AY 2023/2024; Final Exam

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. Please write your Student Number. Do not write your name.

2. This assessment paper consists of TEN (10) questions and comprises TWENTY-
ONE (21) printed pages.

3. Students are required to answer ALL questions.

4. Students should answer the questions in the space provided.

5. This is a CLOSED BOOK assessment with one helpsheet of A4 size.

6. You are not permitted to communicate with other people during the exam and
you are not allowed to use additional material beyond the helpsheet.

7. Every question is worth SIX (6) marks. The maximum possible marks are 60.

STUDENT NO:

This portion is for examiner’s use only

Question Marks Remarks Question Marks Remarks
Question 1: Question 6:
Question 2: Question 7:
Question 3: Question 8:
Question 4: Question 9:
Question 5: Question 10:

Total:



Question 1 [6 marks] CS 5230 – Solutions

Assume that a addition machine runs the following program:

Line 1: Read x;

Line 2: y = 1; z = 0;

Line 3: If y >= x Then Goto Line 5;

Line 4: y = y+y; z = z+1; Goto Line 3;

Line 5: v = 0;

Lint 6: w = 0;

Line 7: y = y+y; w = w+1; If w < z Then Goto Line 7;

Line 8: y = y+y; v = v+1; If v < z Then Goto Line 6;

Line 9: Write y.

It is assumed that the input x is a positive integer. Let n = min{m : 2m ≥ x} be the
size of x. Recall that addition machines have integer variables and can add, subtract,
compare, assign and excecute goto-commands in unit time. Find a function F in
terms of n such that the runtime of the above program is Θ(F (n)).

Is there a faster program for an addition machine with runtime o(F (n)) producing
the same output y for each input x > 0? Prove the answer.

Solution. The program computes in the first loop the size n in the variable z and
has y = 2n. In Lines 5-8, it goes through a nested loop. After that, the size of y is
Θ(n2) at the output and also the run time used so far is Θ(n2). Then the program
outputs y.

An addition machine can which each operation increase the size of the largest register
at most by 1. Thus it needs Θ(n2) operations to get an output of the same size as
the output of this program. Therefore there is no faster program computing the same
output and running in time o(n2).

2



Question 2 [6 marks] CS 5230 – Solutions

Is there a Turing machine computing something in space LINSPACE what cannot be
computed in NLOGSPACE?

Please answer as follows: YES, NO, Unknown by current
knowledge.

Give reasons for your answer.

Solution. The answer is YES. By Savich’s Theorem, NLOGSPACE is contained in
SPACE(log2(n)). This bound is space constructible and strictly below the much larger
space constructible bound n. Thus one can provide a function which is computable by
a LINSPACE Turing machine which is not computable by an NLOGSPACE machine.

3



Question 3 [6 marks] CS 5230 – Solutions

Let P be the class of polynomial time decidable languages, PH be the polynomial hier-
archy (P, NP, NP[NP], ...) and PSPACE be the class of languages decided by Turing
machines using polynomial space. Find for each of these classes a characterisation
using alternating computations and explain these characterisations in detail.

Solution. P is the class of problems recognised by an alternating LOGSPACE ma-
chine. This is a two-tape Turing machine with one input tape and one work tape,
where the Turing machine uses on all inputs of length n at most space c · (log(n+2))
on the work tape for some constant c. This two-tape machine has sometimes several
options to branch and a player (Anke or Boris) has to decide which option is taken.
An input word is in a language L recognised such a machine if the player Boris can
enforce that the machine accepts; an input word is outside L if the other player Anke
can enforce with her decision that the machine rejects.

PSPACE is the class of alternating time computations where the time constraint is
some polynomial in n and again two player, depending on the situation, decide how
the computation goes on. Independent of their decisions, the computation comes
after p(n) steps to a halt and the machine says either ACCEPT or REJECT. Again
a word w is in the language L of the machine iff Boris can enforce that the machine
says ACCEPT; a word is outside the language L if Anke can enforce that the machine
says REJECT.

The class PH is defined similarly with only one additional constraint: That for each
language L there is a constant c how often the right to choose is transferred from one
player to the other. In the case of NP, the right to choose always stays with Boris; in
the case of NP[NP], the right to choose is initially with Boris, but the machine might
at some point decide that the right is transferred to Anke and then it never comes
back. Similarly for higher levels in the hierarchy.

4



Question 4 [6 marks] CS 5230 – Solutions

Is the problem SAT (Boolean Satisfiability of CNF formulas) complete for EXPSPACE?
Give reasons for your answer.

Solution. The problem SAT is in LINSPACE, as one can make an algorithm which
stores the current Boolean values of the n variables as an n-bit word on the work
tape and which then goes lexicographically through all n-bit words and checks for
each combination, whether it satisfies all clauses. However EXPSPACE allows to
use much more space than LINSPACE and therefore one can construct problems in
EXPSPACE which do not many-one reduce to any problem in LINSPACE.

5



Question 5 [6 marks] CS 5230 – Solutions

Provide an algorithm which counts all solutions of a kSAT instance in time O((2k −
1)n/k) where n is the number of variables. What is the limit of the branching factors
(2k − 1)1/k of this algorithm for k → ∞? Why can this limit not be better than the
value computed under assumption of the Strong Exponential Time Hypothesis?

Solution. A kSAT instance is given by a set of k-clauses. The idea is that every
kSAT clause provides for k variables to occur in this clause (if occur less, one can add
unrelated variables) there is at least one choice of truth-values of these k variables
which cannot occur. Thus one branches these k variables simultaneously and makes
2k − 1 recursive calls of the algorithm for the 2k − 1 possible choices for these k
variables which make the clause true. Note that the branching factor is (2k − 1)1/k

as one does in every way from the start to the end exactly n/k branchings and not
n branchings. Each recursive call returns the number of solutions in this branch and
the calling instance returns the sum of all these numbers as its output.

The Strong Exponential Time Hypothesis says that there is no c < 2 such that one
can, for all k, decide kSAT in time O(cn). If one counts the number of solutions, then
one can decide also the solvability of the instance, as the instance is solvable iff the
number of solutions is at least 1.

6



Question 6 [6 marks] CS 5230 – Solutions

The Unique Exponential Time Hypothesis says that there are constants c3, d3 such
that for every correct 3SAT algorithm which is correct on instances with up to one
solution there are infinitely many n for which there is an instance with n variables
and up to d3n clauses and up to one solution such that the 3SAT algorithm takes
longer than time cn3 .

Use this to construct 2SAT instances with n′ = (1 + 5d3)n variables such that, when
counting the number of 2SAT solutions modulo 17, a correct counting algorithm uses
at least time (c

1/(2+5d3)
3 )n

′
on infinitely many input instances.

Solution. One does this by translating the 3SAT instances. One uses variables
x1, . . . , xn plus yk,1, . . . , yk,5 for the k-th clause for k = 1, 2, . . . , d3n. For each z
occurring in the k-th clause, one puts the implications z → yk,h for h = 1, 2, 3, 4, 5.
Furthermore, for each k one puts the implications ¬yk,1 → yk,h for h = 2, 3, 4, 5.
Thus if no literal in the k-th clause is 1 then (yk,1, . . . , yk,5) can take any of the
values 01111, 10000, 10001, . . . , 11110, 11111 which are 17 possible values for this five-
bit tuple in total. If some literal z in the k-th clause is true then this literal implies that
every solution of the 2SAT system takes the values 11111 for the corresponding five
variables yk,1, . . . , yk,5. Thus each satisfying assignment of the coded 3SAT instance
contributes 1 number of 2SAT solutions while each nonsatisfying assignment of the
3SAT instance contributes a multiple of 17 of solutions to the constructed 2SAT
instance. Thus if the coded 3SAT instance has a unique solution than the number
of solutions of the 2SAT instance modulo 17 is 1 and if it has no solution than the
number of solutions of the 2SAT instance modulo 17 is 0. It follows that counting
the 2SAT solutions decides coded 3SAT instances with at most one solution and
thus the overall runtime of the 2SAT solution counter including the time to make the
translation of the instances is at least (c

1/(1+5d3)
3 )n

′
on infinitely many input instances.

As one has to exclude the translation time for making the 2SAT instance, one makes
the base of the exponent a bit smaller by giving the lower bound (c

1/(2+5d3)
3 )n

′
.

7



Question 7 [6 marks] CS 5230 – Solutions

Karatsuba provided an algorithmic method to multiply two n-bit numbers by split-
ting them into numbers of the form a + b · 2n/2 and c + d · 2n/2 such that he then
computed with three multipliction of n/2-bit numbers values e, f, g for which (a+ b ·
2n/2) · (c+ d · 2n/2) = e+ 2n/2 · f + 2n · g.

Which three multiplications of n/2-bit numbers are needed to compute e, f, g to-
gether with some operations like adding and subtracting and shifting bits by n/2 or
n positions. Provide the formulas for e, f, g explictly using a, b, c, d. What are the
complexity of those operations?

Provide the recursion-formula for the time complexity of the algorithm as Time(n) =
i · Time(n/2) + O(nj). What are i and j? The solution to the recursion formula is
O(nlog(i)) when log(i) > j and O(nj) when log(i) < j. Say which of these two cases
arises. The logarithm is base two with log(1) = 0, log(2) = 1, log(4) = 2.

Solution. The lecture provides methods which give every c with c > 1; however,
the nearer the c is to 1, the more complicated the method. The easiest method is
Karatsuba’s Algorithm from 1960, which is done by recursive splitting of the input
numbers in half portions (first n/2 bits and second n/2 bits). So if the input is
(a+b·2n/2)·(c+d·2n/2) then one first computes a·c, b·d and (a+b)·(c+d), all of these go
with half amount of digits. After that, using that adding, subtracting and comparing
are O(n) and multiplication with powers of 2 is just shifting and thus also O(n), one
computes e = a · b, g = c · d and f = (a+ b) · (c+ d)− e− g and outputs the number
e+f ·2n/2+g·2n. This gives the following recurrence: Time(n) = 3·Time(n/2)+O(n).
The overall performance is then Time(n) ∈ O(nlog(3)) ⊆ O(n1.58497).

8



Question 8 [6 marks] CS 5230 – Solutions

Let 3EOR be the problem to check whether in a set of n m-bit strings there are
three strings such that their bitwise exclusive or gives the null-string. Provide an
O(n2 log(n)m) algorithm for this task.

Solution. The idea for the algorithm is this: First write each of the strings into a
data base. This is O(n log(n) ·m). Then for each two strings compute in time O(m)
the bit-wise exclusive or and check then in time log(n) ·m whether it is in the data
base. This is time O(n2 · log(n) ·m) by standard data base techniques, as there are
Θ(n2) pairs to deal with.

9



Question 9 [6 marks] CS 5230 – Solutions

Recall that an integer expression is formed by starting with finite sets (given as explicit
lists of binary numbers) and then forming either the union or the sum of two integer
expressions to get a further one. Answer the following questions and give reasons for
the answers.

(a) Is there an integer expression describing a set with infinitely many integers in it?

(b) Let the size of an integer expression be how many number constants are used in
it; using a number constant twice counts twice and so on. Give an integer expression
of size as small as possible for the set {0, 1, 2, 3, 4, 5, 6, 7, 8}.

Solution. (a) There is no integer expression describing an infinite set. The base
expressions describe only finite sets. The union of two finite sets is finite. If A has
a and B has b elements, then A + B = {x + y : x ∈ A, y ∈ B} has at most a · b
elements, thus is also finite. So one can prove by induction over all expressions that
each expression is finite.

(b) One possibility is to write {0, 1, 2} + {0, 3, 6}, this expression has six elements
and generates the full set. Furthermore, the expression {0, 1}+ {0, 2}+ {0, 4} ∪ {8}
has seven numbers, so it is suboptimal. If one combines a finite set of four or five
elements with a further set, then this further set needs to have at least two elements
for generating a set with at least seven elements, thus it is not better. A combination
of expressions with three and with two elements, respectively, has at most six elements
and needs to be combined with a further expression having at least two numbers, thus
is also suboptimal. Thus the first expression is the best, no strictly smaller expression
generates the same set.

10



Question 10 [6 marks] CS 5230 – Solutions

What is the complexity of integer expression containment? Here the size of an ex-
pression is (in contrast to the last question) the number of symbols to write it down
(set brackets, commas, digits of binary numbers, union and sum symbols, brackets to
order the priority of operations). What is the complexity class of comparing two inte-
ger expressions with respect to the relation “subset or equal”? No proof is required.
Furthermore, show (by a suitable reduction) that one can first reduce the question
“Is H ⊆ L?” by a many-one reduction to a question of the type “Is H ′ ⊂ L′?” for
suitable H ′, L′ and second reduce “Is H ̸⊆ L?” also to an equivalent question of the
form “Is H ′′ ⊂ L′′?” for suitable H ′′, L′′. The reductions have to be polynomial time
computable.

Solution. The complexity of the relation “subset or equal” is ΠP
2 -complete, that is,

CoNP [NP ]-complete. Assume now that a question whether H ⊆ L is given and one
wants to reduce it to the question whether a proper subset holds.

Now one first constructs two expressions H ′, L′′′ such that H ′ = {2x : x ∈ H}
and L′′′ = {2y : y ∈ L}. This is done by appending a single digit 0 to all binary
numbers occurring in the expressions. One has that H ⊆ L iff H ′ ⊆ L′′′. Now one
let L′ = (L′′′) ∪ {1}. Thus the same question becomes equivalent to “Is H ′ ⊂ L′?”.
Note that 1 cannot be a member of H ′ which contains only even numbers, thus the
subset relation, whenever it holds, must be proper. Furthermore, if x witnesses that
H ̸⊆ L then 2x witnesses that H ′ ̸⊆ L′′ and thus that H ′ ̸⊂ L′. Thus the reduction
given is a many-one reduction. Furthermore H ̸⊆ L iff H ′′ ⊂ L′′ with H ′′ = L and
L′′ = H∪L, thus both ⊆ and ̸⊆ are many-one reducible to ⊂; the many-one reduction
is polynomial time computable and does not increase the size more than doubling the
length of the formula in the worst case.

END OF QUESTION PAPER.

11


