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Write up one homework not taken by classmates in the Forum and present it in the
tutorial. Check the post titles for seeing whether a homework is already written up
and put the homework number into the post title when you write up a homework.
Homeworks 2... are for Week 2, Homeworks 3... are for Week 3 and so on.

2.1 Boolean Formulas. Let the function maj(x, y, z) output that value which is
taken up from at least two of the three inputs and let neg(x) map x to 1− x, that is,
neg(0) = 1 and neg(1) = 0. Assume that Boolean constants 0, 1 are given. New func-
tions can be constructed by concatenating old functions and replacing inputs either
by input-variables or constants. Provide definitions for the functions x∧y (AND) and
x ∨ y (OR) using maj, neg and 0, 1. Assume two inputs x, y.

2.2 Majority and Minority. Define maj(x, y, z) returning the more frequent value
of the three inputs and mino(x, y, z) returning the less frequent value of the three
inputs using ∧,∨,¬ and brackets. So maj(1, 1, 0) and maj(1, 1, 1) are both 1 and
mino(1, 1, 0) and mino(1, 1, 1) are both 0.

2.3 Power of Minority. Show that ∧, ∨ and ¬ can be defined using mino and
Boolean constants 0, 1.

2.4 No Constants. Can the tasks from Homework 2.1 and 2.3 be done without
explicitly using 0 and 1? If yes, explain how to do it, if not, explain why it cannot be
done. Assume that two inputs x, y are used.

2.5 Exclusive Or. The function EOR(x1, . . . , xn) is 1 if and only if an odd number
of the inputs is 1 which might be either variables or constants or other terms. If it
are only two terms, one can either write EOR(x1, x2) or x1 ⊕ x2. Show the following:
(a) There is a rule which says that A ∨ B ∨ C = EOR(A,B,C,A ∧ B,A ∧ C,B ∧
C,A ∧ B ∧ C). Prove that rule by case distinction over the number of subfunctions
A,B,C which are 1. Furthermore, explain how this rule generalises to other number
of inputs, say give the formula for the cases of A,A ∨B,A ∨B ∨ C ∨D.
(b) Every Boolean function can be represented as an EOR over terms which are the
conjunctions of some, possibly negated, inputs where the empty EOR takes the value
1.

2.6 More on EOR I. Recall that CNF is one big conjunction over clauses (disjunc-
tions of literals) and a DNF is one big disjunction over conjunctive terms. Replace
(A∧B∧C)⊕(¬A∨¬B) by terms in CNF and DNF which use as few terms (disjunction
terms connected by a conjunction and conjunctive terms connected by a disjunction)
as possible.
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2.7 More on EOR II. Replace (A ∧ B ∧ C) ⊕ (¬A ∧ (B ⊕ C)) by terms in CNF
and DNF which use as few terms (disjunction terms connected by a conjunction and
conjunctive terms connected by a disjunction) as possible.

2.8 Implication I. Define ∧ and ∨ and ↔ using ¬ and → where A → B is 1 if
A = 0 or B = 1; A ↔ B is 1 if A = B. Here note that the brackets in A → B → C
are usually placed as (A → (B → C)). So if one wants (A → B) → C, this pair of
brackets has to be put explicitly.

2.9 Implication II. Define maj and mino using ¬ and →.

2.10 Complexity of formulas I. Let F (x1, x2, . . . , xn) = 1 if and only if the number
of variables which are 1 is a multiple of 3. Assume that n = 4. Write the correspond-
ing DNF explicitly. Furthermore, determine the number of conjunctive terms for
n = 3, 4, 5, 6, 7. Here the number for n = 2 is 1, namely the term x1 ∧ x2.

2.11 Complexity of formulas II. Let F (x1, x2, . . . , x5) = 1 if the binary input
number is a prime number. Compute a formula with as few ∧ and ⊕ as possible. The
constants 0 and 1 can be used. Do not use other connectives.

2.12 Complexity of formulas III. Let F (x1, x2, . . . , x5) = 1 if the binary input
number is a square number. Compute a formula with as few ∧ and ⊕ as possible.
The constants 0 and 1 can be used. Do not use other connectives.

3.1 Worlds. Recall that a world is an entity which assigns a truth-value to every
atom – alternatively, one can also take W as the set of all formulas which are true in
the corresponding world. These two views can be translated into each other.

W |= A means that the world makes the formula A true and W |= X means that
the world makes all formulas in a set X of formulas true. X |= A means that every
world which makes all formulas in X true, also makes the formula A true. Let p, q, r
be atoms.

Now consider the formulas p → ¬q, q → ¬r, r → ¬p. How many worlds are there
which make these formulas simulatneously true? Here two worlds count as one if they
have the same behaviour on p, q, r.

3.2 Two Worlds I. Let V and W be two different worlds, let X = {A : exactly one
of V |= A and W |= A holds}, let Y = {A : both of V |= A and W |= A hold}. Show
the following.
(a) There is an atom pk such that either (V |= pk and W |= ¬pk) or (V |= ¬pk and
W |= pk).
(b) If A,B ∈ Y then A ∧B ∈ Y .

3.3 Two Worlds II. Let V,W,X, Y as in 3.2. Show the following.
(c) There are formulas A,B ∈ X with A ∨B /∈ X.
(d) If A,B,C ∈ X then at least one of the formulas A ∨B, A ∨ C, B ∨ C is in X.

3.4 Two Worlds II. Let V,W,X, Y as in 3.2. Show the following.
(e) If A ∈ Y then there exist B ∈ X and C ∈ X with ∅ |= (A↔ B ∨ C).
(f) If A ∧B,A ∧ ¬B are both in X then A ∈ Y .

3.5 Two Worlds II. Let V,W,X, Y as in 3.2. Show the following.
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(g) Assume (A → B) ∧ (B → C) ∈ Y . Can one choose A,B,C such that A /∈
X ∪ Y,B ∈ X and C ∈ Y ?
(h) Assume (A → B) ∧ (B → C) ∈ Y . Can one choose A,B,C such that A ∈ Y ,
B ∈ X and C /∈ X ∪ Y ?
(Note that this homework was updated to make the formula meet the intention, what
was not the case before.)

3.6 Logical Implication I. Assume that there are infinitely many atoms and that
W |= X for all worlds W which make only finitely many atoms true. Show that
W |= X for all worlds W and that X contains only tautologies.

3.7 Logical Implication II. Construct a set X of formulas such that W |= X is
true iff W makes at most two atoms true and all others false. Note that X can be
infinite.

3.8 Logical Implication III. Assume that X is a set of formulas and Y = {A∨B :
A,B ∈ X and A ̸= B}. Depending on the choice of X, which of the following cases
can occur:
(a) X and Y have the same logical consequences.
(b) There is a formula C such that X |= C and Y ̸|= C.
(c) There is a formula D such that Y |= D and X ̸|= D.
Provide examples of the corresponding X and Y for those cases which can be satisfied.

3.9 Tautologies I. (a) Show that there an infinite sequence A1, A2, . . . such that for
all n, An → An+1 is a tautology and there are worlds V and W such that V |= An

and W |= ¬An.
(b) What happens if one furthermore postulates that for every world U there is an n
with U |= An? Does there such a sequence A1, A2, . . . of formulas exist?

3.10 Tautologies II. Assume that X = {(A → B) → A : A,B are formulas} and
Y = {(A→ B) → B : A,B are formulas}. Are all formulas in X tautologies? Are all
formulas in Y tautologies?

4.1 Implication Proof System I. A proof system consists of a schema which has
place-holders A,B,C, . . . which can be replaced by any propositional formula. Fur-
thermore, one has certain rules how to apply the derivation of a formula. For example,
if only → is used and nothing else, one can derive many formulas using the follow-
ing axiom schemas: A → (B → A), (A → B → C) → (A → B) → (A → C),
((A → B) → A) → A. The rule used is just this one: If A → B and A are de-
rived, one can also derive B (modus ponens). Use these rules to prove the following:
A→ B → B.

4.2 Implication Proof System II. Use the schema from 4.1 to prove A→ A. Hint,
start with A→ B → A and B = (A→ A).

4.3 Implication Proof System III. Use the schema from 4.1 to show that one can
prove p → r from the set X = {p → q, q → r}; when proving some formula using
a set X, one can also use besides the rule given in 4.1 the rule to put A whenever
A ∈ X.

4.4 Implication and Negation I. Enhance the proof system of 4.1 by the rules
¬A → A → B and (A → B) → (¬A → B) → B and (A → B) → (¬B → ¬A). Now
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prove (¬A→ A) → A. You can use the proof from 4.2 without reproducing it.

4.5 Implication and Negation II. Use the rules from 4.4 to make a proof for B
from the set {¬p, p} where p is some atom.

4.6 Proof System for Exclusive Or. Assume that only the connective ⊕ is used
to build the formulas in X inductively from logical constants 0, 1 and atoms p0, p1, . . ..
For the ease of notation, it is assumed that formulas are written without brackets, as
the operation ⊕ is associative. Is there a set of rules which is permits to prove all
formulas of a finite set of exclusive or formulas Y from a set of exclusive or formulas
X whenever X |= Y ? If so, give the set of rules; if not, explain why such a set of rules
cannot exist.

4.7 Axiom Sets I. The following homeworks should describe a structure by a set of
axioms. First make a set of axioms for a structure (U,+) such that the so obtained
group is the same as the set of logic values {0, 1} together with the operation ⊕ (ex-
clusive or). Besides +, also equality = and variables v, w, x, y, z and quantifiers ∀,∃
can be used, variables range always over U .

4.8 Axiom Sets II. Do the same as in 4.7, but for the semigroup of the structure
(U,+) with U = {0, 1, 2} and x+ y = max{x, y}.

4.9 Axiom Sets III. Consider the following set of axioms: ∀x∀y [x + y = y + x],
∀x∀y ∀z [(x + y) + z = x + (y + z)], ∃x ∀y [x + y = x]. Find a three-element set for
this structure which is not isomorphic to the structure from homework 4.8.

4.10 Axiom Sets IV. Provide an axiom set for the set {0, 1/2, 1} of the truth-values
in three-valued fuzzy logic and ∧, ∨ as operations on these values. Here these oper-
ations coincide with min and max of the two input truth values. Furthermore, if A
takes the value q then ¬A takes the value 1 − q. Which of the rules for deduction
in logic with ∧ and ∨ and ¬ are sound in this logic, that is, do always make valid
conclusions from the previous formulas.

5.1 Zorn’s Lemma I. Assume that one has only some of the axioms of set theory,
say that every two sets have a union and an intersection and that B ⊆ C if and only
if B ∪ C = C. Note that it is also true that B ⊆ C if and only if B ∩ C = B.
Furthermore, assume that Zorn’s Lemma is true.
Show that the following is true: Let A be a nonempty set of sets. Show that there is a
largest set C such that C ⊆ B for all B ∈ A. That is, use Zorn’s Lemma to show that
there is a maximal such set C and if there is a set D with D ⊆ B for all B ∈ A then
D ⊆ C. Note that C coincides with the operation

⋂
A in set theory, so the infinite

intersection operator exists in this type of set theory.

5.2 Zorn’s Lemma II. Under the assumptions laid out in 5.1, assume that A is a
set of subsets of a set E. Use Zorn’s Lemma to show that there is a set C such that
C =

⋃
A, that is, C is the union of all sets B with B ∈ A.

5.3 Properties of Order-Relations I. Given a set S with an order-relation R on
S and that every two elements x, y satisfy xRy or yRx or both of these. Show that
every such pair (S,R) is reflexive, that is, satisfies xRx for all x ∈ S. Furthermore,
show that if (S,R) is symmetric then xRy holds for all x, y ∈ S.
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5.4 Properties of Order-Relations II. Consider the relation xRy iff for all prime
numbers p, p divides x if and only if p divides y. Let S = {2, 3, 4, . . .} be the natural
numbers from 2 onwards.
(a) Is this relation R reflexive? Prove your answer.
(b) Is this relation R symmetric? Prove your answer.
(c) Is this relation R transitive? Prove your answer.
(d) Is this relation R antisymmetric? Prove your answer.
Note that here a relation R is transitive if xRy and yRz implies xRz. A relation R is
symmetric if xRy implies yRx. A relation R is antisymmetric if xRy and yRx imply
x = y.

5.5 Symmetry of relations. For the notions of “reflexive”, “symmetric” and “an-
tisymmetric” from 5.4 and the set S = {0, 1, 2}, provide a relation R on S which
satisfies all three properties.

5.6 Irreflexive relations. Let S be a nonempty set. A relation R is called irreflex-
ive if and only if there is no x ∈ S with xRx. Is there a relation R on S which is
irreflexive, symmetric and transitive? If so, provide an example. If not, prove why
such a relation does not exist. For this S can be chosen as desired.

5.7 Finite groups and order-relations I. Let Gk = {0, 1, . . . , k − 1} and for
x, y ∈ G, let x+ y be addition modulo k, that is, if in the natural numbers x+ y ≥ k
then one assigns the value x + y − k in Gk. Furthermore, let k ≥ 3 and xRy if and
only if x + 1 = y or x + 2 = y in Gk. For which k ≥ 3 does it hold that (Gk,+) is
irreflexive and symmetric?

5.8 Finite groups and order-relations II. Let Gk, R as in 5.7 and k ≥ 3. For
which k does it hold that the order-relation R is irreflexive, antisymmetric and con-
nex? Here connex means that all x, y ∈ Gk satisfy either x = y or xRy or yRx or
several of these conditions at the same time.

5.9 Finite groups and order-relations III. Assume on Gk is a relation R which
satisfies xRy if and only if x+1Ry+1. Is there any such R on G2 which is irreflexive,
antisymmetric and connex? What about G3 and G4?

5.10 Properties of logical implication. Recall that X |= Y iff for every A ∈ Y ,
X logically implies A. Here X, Y are sets of propositional formulas as investigated in
Chapter I. Which of the following properties are satisfied by this relation: reflexive,
transitive, connex?

5.11 Properties of logical implication. Recall that X |= Y iff for every A ∈ Y ,
X logically implies A. Here X, Y are sets of propositional formulas as investigated in
Chapter I. Which of the following properties are satisfied by this relation: Does this
ordering have a least and a greatest element? That is, sets X, Y such that all sets Z
of formulas satisfy X |= Z and Z |= Y ? If yes, provide concrete examples for X and
Y ; if not, say why they do not exist.

6.1 Models I. Let m,n be natural numbers. For which combinations of m,n are
the structures (mZ,+, ·), (nZ,+, ·) the same and for which combinations are they dif-
ferent? If they are different, provide a formula which proves that they are different,
these formulas can use integer constants like −1, 0, 1,m, n; if they are the same, then
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say why. However, m,n are not in the logical language but only thought as place
holders for the corresponding terms. For example if m = −1 then m · 3 stands for
(−1 + −1 + −1). Superfluous brackets can be omitted, but the outside brackets for
m,n are part of these in the formula so that m · 4 really means m+m+m+m and
nothing else.

6.2 Models II. Consider the structure (Z, <,+,−, 0, 1, c) where c is a constant sym-
bol and not a term. Now let X be the set of all formulas 1 < c, 1 + 1 < c, 1 + 1+ 1 <
c, . . .; show that every finite subset Y of X has a model isomorphic to the above one
(except for the value of c which might change), but not X itself. Note that X has
also some model (by the compactness theorem), but it cannot have Z as the domain.

6.3 Models III. In what cases do the structures Sm = (Q+
√
m ·Q, 0, 1, ·,+,−) and

Sn = (Q +
√
n · Q, 0, 1, ·,+,−) coincide? Here m,n are positive integers. Here all

integers are available as terms, let 2 abbreviate 1+ 1, 3 abbreviate 1+ 1+1 and m,n
abbreviate the terms representing their values. Give reasons for the answer.

6.4 Models IV. Consider the case n = 2. Provide a formula A such that S2 is the
smallest model which satisfies this formula A and which is a superset of Q.

6.5 Models V. Consider the case n = 3. Provide a formula B such that S3 is the
smallest model which satisfies this formula B and which is a superset of Q.

6.6 Models VI. Let An = ∀x∃y [y · n = x] where n ≥ 1 and y · 1 stands for y, y · 2
stands for y + y, y · 3 stands for y + y + y and so on. Let (Xn,+,−, <, 0, 1) be the
smallest model satisfying An and containing Z as a subset (with the same addition
on this subset) such that the domain Xn satisfies Z ⊆ Xn ⊆ Q. For which n,m does
Xn = Xm hold?

6.7 Fields I. Provide a set X of the axioms of a field with constants 0, 1 for the
neutral elements of addition and multiplication, respectively. Note that 0 ̸= 1 is part
of the field axioms. Then let Y be X augmented by the axiom ∀x [x = 0∨x = 1∨x =
1+1∨x = 1+1+1∨x = 1+1+1+1∨x = 1+1+1+1+1]. How many structures
satisfy the axioms in Y (up to isomorphism)? Explain the answer.

6.8 Fields II. Explain why one must postulate the communativity of multiplication
in the field axioms by providing a structure which satisfies all other field axioms but
not this one.

6.9 Groups I. List all groups with four elements by the corresponding tables (up to
isomorphism) and provide axioms only satisfied by the listed structures but not by
any other ones.

6.10 Groups II. Consider all invertible 3 × 3 matrices over the finite field of size
2; the group operation is the matrix multiplication. Is there a set of axioms which
describes this structure up to isomorphism?

6.11 Groups III. Provide a set of axioms which is satisfied by all infinite groups but
not by finite ones. The axiom set is infnite.

6.12 Groups IV. Show if all finite groups satisfy some set X of axioms then also
some infinite group satisfies it.
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6.13 Groups V. An ordered Abelian group is a group with an order relation < such
that x+ y = y + x holds for all x, y and < is a linear order and 0 < 1 and the group
satisfies

∀x∀y ∀z [x < y ↔ x+ z < y + z].

Are there finite ordered Abelian groups? Are there infinite ordered Abelian groups?
Explain the answers.

7.1 Axioms of Integral Domains. Provide a finite set of axioms for the structure
(U,+, ·, 0, 1) such that all structures are integral domains, that is, (U,+) is an addi-
tive and commutative group with neutral element 0, there is a law of distributivity,
multiplication is associative, 1 is neutral element for multiplication and no product
of nonzero elements is zero. Search for additional properties which enforce infinity
and are first-order definable and are consistent, that is, there is also a model for the
combination of all axioms.

7.2 Terms I. Determine the value of the following terms where first x is substituted
by y + 2 and then y is substituted by 15.
(a) (x+ 3) · (y + 3).
(b) x+ 7 · y + 55.
(c) (x− 1) · (y + 1).
(d) y − x.

7.3 Terms II. Determine the value of the following terms where first x is substituted
by y + 5 and then y is substituted by 23.
(a) (x+ 3) · (y + 3).
(b) x+ 7 · y + 55.
(c) (x− 1) · (y + 1).
(d) y − x.

7.4 Variable Occurrences I. Determine which variables occur bound and which
occur free, some might occur in both forms.
(a) ∀x ∀y [x · x ̸= −1] ∧ (y = 8).
(b) ∀x∃x [x = 0] ∧ (y ̸= 0⊕ y = x).
(c) ∀z ∀y ∃x [y + x = z] ∨ z = 0.
(d) x+ y = z + 3.

7.5 Variable Occurrences II. Determine which variables occur bound and which
occur free, some might occur in both forms.
(a) ∀x ∀y [y · x ̸= −1] ∧ (x = 8).
(b) ∀x∃x [1 = 0]⊕ y ̸= 0⊕ y = x.
(c) ∀z ∀y ∃x [y − x = z] ∧ z = 0.
(d) x+ y + z = 3.

7.6 Formula Truth I. Assume that the underlying structure is the group of integers
with the number constants taking the usual values. The defaults of the variables are
x = 5, y = 8, z = 10. Determine which formulas evaluate to true and which evaluate
to false.
(a) ∀x ∀y [x · x ̸= −1] ∧ (y = 8).
(b) ∀x∃x [x = 0] ∧ (y ̸= 0⊕ y = x).
(c) ∀z ∀y ∃x [y + x = z] ∧ z = 0.
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(d) x+ y = z + 3.

7.7 Formula Truth II. Assume that the underlying structure is the group of integers
with the number constants taking the usual values. The defaults of the variables are
x = 5, y = 8, z = 10. Determine which formulas evaluate to true and which evaluate
to false.
(a) ∀x ∀y [y · x ̸= −1] ∧ (x = 8).
(b) ∀x∃x [1 = 0]⊕ y ̸= 0⊕ y = x.
(c) ∀z ∀y ∃x [y − x = z]⊕ z = 0.
(d) (x+ y + z) · (x+ y + z) = 529.

7.8 Substitutions I. Determine the outcome of a substitution of a variable x by a
term t in the following formulas or say that the subsitution is not allowed and why.
Here u, v, w, x, y, z are distinct variables.
(a) ∀y∃z [x = y + z] and t = y + y;
(b) ∀y∃z [x = y + z] and t = u+ u;
(c) ∃x [x = y] ∨ x = z and t = y + y;
(d) ∃x [x = y] ∨ x = z and t = u+ u.

7.9 Substitutions II. Determine the outcome of a substitution of a variable x by a
term t in the following formulas or say that the subsitution is not allowed and why.
Here u, v, w, x, y, z are distinct variables.
(a) ∀v∃w [x = u+ v + w] and t = y + y;
(b) ∀v∃w [x = u+ v + w] and t = u+ u;
(c) ∃u [x = u+ y] ∨ x = y + z and t = y + y;
(d) ∃u [x = u+ y] ∨ x = y + z and t = u+ u.

7.10 Substitutions III. Determine the outcome of a substitution of a variable x by
a term t in the following formulas or say that the subsitution is not allowed and why.
Here u, v, w, x, y, z are distinct variables.
(a) ∀v∃w∀y [v + w + x = v + w + y] and t = y + y;
(b) ∀v∃w∀y [v + w + x = v + w + y] and t = u+ u;
(c) ∃u [u = x] ∨ x = y + z and t = y + y;
(d) ∃u [u = x] ∨ x = y + z and t = u+ u.

7.11 Substitutions IV. Assume the formula f(x) = −x2+y is given and one makes
a substitution of y by (x+ 5) · (x− 1).
(a) What is the degree of the resulting polynomial?
(b) Can one do the same with the formula ∀x [f(x) = −x2 + y]? If so, what is the
degree?
(c) Is there a function which is equal to a polynomial in several variables such that
substituting one of the variables by a further polynomial results in a function not
being a polynomial?

7.12 Substitution V. Is there a formula α(x, y) such that ∃x ∃y [α(x, y)] is true but
one can find two terms s, t such that when one substitutes x, y by s, t, respectively,
then the formula is false?

7.13 Substitution VI. One has the formula ∀x [f(x) = u · x + v + w]. Now one
can substitute each of u, v, w by 0, 1, 2 or 3. How many different functions can be
created by this method, provided that the underlying structure where the number of
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functions are counted are the integers.

8.1 Truth in Structures I. Which of the following sentences (= fully quantified
formulas) are true in the structure of natural numbers with order and addition?
(a) ∀x ∀y [x < y ↔ ∃z [y = x+ z + 1]].
(b) ∀x∃y [(x = y + y)⊕ (x = y + y + 1)].
(c) ∃x ∀y [x ̸= y + y + y].
(d) ∀x∃y [x+ y = 0].

8.2 Truth in Structures II. Which of the following sentences are true in the struc-
ture of all integers (zero and positive and negative numbers)?
(a) ∀x ∀y [x < y ↔ ∃z [y = x+ z + 1]].
(b) ∀x∃y [(x = y + y)⊕ (x = y + y + 1)].
(c) ∃x ∀y [x ̸= y + y + y].
(d) ∀x∃y [x+ y = 0].

8.3 Truth in Structures III. Which of the following sentences are true in the struc-
ture of rational numbers?
(a) ∀x ∀y [x < y ↔ ∃z [y = x+ z + 1]].
(b) ∀x∃y [(x = y + y)⊕ (x = y + y + 1)].
(c) ∃x ∀y [x ̸= y + y + y].
(d) ∀x∃y [x+ y = 0].

8.4 Truth in Structures IV. Find two finite monoids with neutral element 0 such
that both have at least three distinct elements 0, 1, 2 and the first monoid satisfies all
formulas and the second monoid satisfies none of the formulas.
(a) ∀x ∃y [x+ x = 1 + y + y + y].
(b) ∀x∃y [(x = y + y + 1)⊕ (x = y + y + 2)].
(c) ∃x ∀y [x ̸= y + y + y + y + y].
(d) ∀x∃y [x+ y = 0].

8.5 Truth in Structures V. Find structures ({0, 1},+) in which + is associative
and commutative such that these (1) make all three conditions (a,b,c) true, (2) make
(a,b) true but not (c), (3) make only (b) true but not (a,c), (4) make none of the
conditions true, (5) make only (a,c) true and (b) false. For each such combination,
describe the corresponding structure, that is, provide the definition of + to be used
on the set {0, 1}.
(a) ∀x ∃y [x+ y = 0].
(b) ∀x [x+ x+ x = x].
(c) ∃x ∀y [x+ y ̸= 1].

8.6 First-Order Sentences I. In logic, a sentence is a formula without free occur-
rences of variables. Consider the operation given as x ◦ y = y. List out in first-order
logic the following properties it satisfies:
(a) The structure is associative.
(b) If the structure has at least two elements then it is not commutative.
(c) For every x, z one can find an y such that x ◦ y = z.
(d) If the structure has at least two elements then there are y, z such that there is no
x with x ◦ y = z.

8.7 First-Order Sentences II. Consider the structure (Z, 0, 1,+, ·, <) and recall
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that p is a prime number if and only if p > 1 and whenever q, r > 1 then q · r ̸= p.
Provide a formula which says “there are infinitely many prime numbers”.

8.8 First-Order Sentences III. For the same integer structure as in 8.7, provide
a formula which says that for all x > 1, either x is a square or there are infinitely
many pairs (y, z) such that y2 − x · z2 = 1. Note that there is no single symbol in the
language to denote the function y 7→ y2, so one has to find a way to express this with
the existing symbols.

8.9 First-Order Sentences IV. For the same integer structure as in 8.7, provide
a formula which says that x ≤ y if and only if y is the sum of x and four squares of
integers.

8.10 First-Order Sentences V. For the same integer structure as in 8.7, provide a
formula which says that for all x > 9 either x or x+ 1 is neither a square nor a cube
nor a fifth power of an integer.

8.11 Logical Implication I. Prove that if X |= ∀x [α] and the substitution x by t
is allowed in α giving formula β then X |= β.

8.12 Logical Implication II. Assume that y is neither occurring free in X nor oc-
curs as a variable in α and let β be obtained by substituting x by y. Then X |= β
implies X |= ∀x [α].

8.13 Logical Implication III. Assume that the formula α does not contain any
quantifier. Let α(x) be a formula with free variable x and α(s) and α(t) be the for-
mulas obtained by replacing all occurrences of x in α by s and t, respectively. Prove
that if X |= s = t and X |= α(s) then X |= α(t).

8.14 Logical Implication IV. Prove that if X |= α then X |= ∃x [α].

8.15 Logical Implication V. Provide a set of formulas X and a formula α such
that X |= α is true and X |= ∀x [α] is false.

8.16 More on First-Order Sentences. For the same integer structure as in 8.7,
provide a formula which says that there are infinitely many numbers x such that both
x − 1 and x + 1 are prime numbers. It is unknown whether this statement is true.
(This homework had the same number as an other homework and is therefore moved
to the end for Week 8.)

9.1 Famous formulas I. Consider the formula about integers with + and · given as

x ≥ 0 ⇔ ∃u∃v ∃w [x = u · u+ v · v + w · w ∨ x = u · u+ v · v + w · w + 1].

Say in words what this formula says. Also determine by consulting Mathematics
books or Wikipedia or otherwise, whether the formula is known to be true or known
to be false or considered an open problem.

9.2 Famous formulas II. Consider the formula about integers with + and · and
integer constants given as

∃x ∀y > x ∃v > 1∃w > 1 [y − 1 = v · w ∨ y + 1 = v · w].

10



Say in words what this formula says. Also determine by consulting Mathematics
books or Wikipedia or otherwise, whether the formula is known to be true or known
to be false or considered an open problem.

9.3 Famous formulas III. Consider the formula about integers with + and · and
integer constants given as

∃z ∀x ∃y > x ∀v > 1 ∀w > 1 [v · w ̸= y ∧ v · w ̸= y + z].

Say in words what this formula says. Also determine by consulting Mathematics
books or Wikipedia or otherwise, whether the formula is known to be true or known
to be false or considered an open problem.

9.4 Famous formulas IV. Consider the formula about integers with + and · and
integer constants given as

∀z > 1∃x > 1 ∃y > 1∀v > 1 ∀w > 1 [2z = x+ y ∧ v · w ̸= x ∧ v · w ̸= y].

Say in words what this formula says. Also determine by consulting Mathematics
books or Wikipedia or otherwise, whether the formula is known to be true or known
to be false or considered an open problem.

9.5 Famous formulas V. Consider the formula about integers with + and · and
integer constants given as

∀x ∃y > x ∀v > 1∀w > 1[v · w ̸= y].

Say in words what this formula says. Also determine by consulting Mathematics
books or Wikipedia or otherwise, whether the formula is known to be true or known
to be false or considered an open problem.

9.6 Famous formulas VI. Consider the formula about integers with + and · and
integer constants given as

∀x∀y [(x+ y) · (x− y) = x · x− y · y].

Say in words what this formula says. Also determine by consulting Mathematics
books or Wikipedia or otherwise, whether the formula is known to be true or known
to be false or considered an open problem.

9.7 Derivations I. State the axioms of rings and explain how to derive the following
formula from these axioms:

(x+ y) · (x+ y) = x · x+ x · y + y · x+ y · y.

9.8 Derivations II. Consider the following axioms of groups:

∀x ∀y ∀z [(x+ y) + z = x+ (y + z)]; ∀x [x+ 0 = x ∧ 0 + x = x]; ∀x ∃y [x+ y = 0];

∀x∀y ∀z [x+ y = x+ z → y = z]; ∀x ∀y ∀z [y + x = z + x→ y = z].

Explain how to derive in first-order logic the following formula from these axioms:

∀x ∃y [x+ y = 0 ∧ y + x = 0].

11



Here 0 is the neutral element of the group with group operation +. The group is not
known to be Abelian, so commutativity is not part of the axioms.

9.9 Axioms for Structures I. Provide a finite list of axioms with operations +, ·
and constants 0, 1 so that all structure satisfying these axioms are infinite. The ax-
ioms should be consistent, so also provide some infinite model of it.

9.10 Axioms for Structures II. Provide some axioms for some relation R such
that every structure satisfying these axioms is infinite and that every two countable
structures satisfying these axioms are isomorphic.

9.11 Axioms for Structures III. Provide a list of axioms for a structure with con-
stants a, b, c such that every model of these axioms has exactly three elements in its
domain. Furthermore, for this structure, provide a formula α with two free variables
x, y such that ∃x∃y [α] is valid while substituting x by a and y by b provides a formula
β which is false in the given model.

9.12 Axioms for Structures IV. Provide axioms which enforce that every finite
structure satisfying these axioms has an even number of elements. Here the structure
can use a unary function f , that is, f has one input variable. Is this set of axioms
also satisfied by infinitely structures?

10.1 Proofs in First-Order Logic I. Recall the following rules for proving state-
ments in first-order logic.

1. General Rules:
α ∈ X

X ⊢ α
,

X ⊢ α
X ∪ Y ⊢ α

;

2. Rules for And:
X ⊢ α, β
X ⊢ α ∧ β

,
X ⊢ α ∧ β
X ⊢ α, β

;

3. Rules for Not:
X ⊢ α,¬α
X ⊢ β

,
X, α ⊢ β|X,¬α ⊢ β

X ⊢ β
;

4. Rules for Quantifiers, where all variables in term t do not occur bounded in α at
positions where x occurs free, where y does neither occur free inX nor in α at all:

X ⊢ ∀x [α]
X ⊢ α t

x

,
X ⊢ α y

x

X ⊢ ∀x [α]
,
X ⊢ α t

x

X ⊢ ∃x [α]
,
X ⊢ ∃x [α]
X ⊢ ¬∀x[¬α]

;

5. Rules for Equality, where all variables in terms s, u are not used for quantifiers
in α:

X ⊢ t = t
,
X ⊢ s = u, α s

x

X ⊢ αu
x

.

Use these rules to prove the following:

∀y [x = y] ⊢ ∀v ∀w [v = w].
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10.2 Proofs in First-Order Logic II. Use the rules of Homework 10.1 to prove the
following without any assumptions on X:

X ⊢ ∃x ∃y [x = y].

10.3 Proofs in First-Order Logic III. Use the rules of Homework 10.1 to prove
the following:

∀x ∀y [f(x, y) = 0] ⊢ f(2, 5) = 0.

10.4 Proofs in First-Order Logic IV. Use the rules of Homework 10.1 to prove
the following where x, y do not occur free in X and 0 is a constant:

If X ⊢ x = y then X ⊢ ∀z [z = 0].

10.5 Proofs in First-Order Logic V. Use the rules of Homework 10.1 to prove the
following where x does not occur free in X and y does not occur in α:

If X ⊢ α then X ⊢ αy
x
.

10.6 Proofs in First-Order Logic VI. Use the rules of Homework 10.1 to prove
the following where x, y do not occur free in X:

If X ⊢ α then X ⊢ ∀x [α] ∧ ∀y [α].

10.7 Deciding Logical Implication I. Does the following hold where α is an arbi-
trary formula:

∀x [α],∀y [α] ⊢ ∀x∀y [α].

Either provide a proof using the rules of 10.1 or provide a model where the left side
of ⊢ is satisfied but not the right side.

10.8 Deciding Logical Implication II. Does the following hold where s, t, u are
arbitrary terms and x a variable:

s = t, t = u ⊢ ∀x [s = u].

Either provide a proof using the rules of 10.1 or provide a model where the left side
of ⊢ is satisfied but not the right side.

10.9 Deciding Logical Implication III. Does the following hold where a, b are
constant names and x, y, z are variable names:

∀x [x = a ∨ x = b], y ̸= z ⊢ a ̸= b.

Either provide a proof using the rules of 10.1 or provide a model where the left side
of ⊢ is satisfied but not the right side.

10.10 Deciding Logical Implication IV. Assume that (A,+) satisfies the set X
of the following three axioms:

1. ∀x∀y ∀z [(x+ y) + z = x+ (y + z)],

2. ∀x∀y [x+ y = x ∨ x+ y = y],
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3. ∃x∃y [x ̸= y].

Let
α = ∀x∀y [x+ y = x] ∨ ∀x∀y [x+ y = y]

and decide whether X ⊢ α holds. Either provide a proof using the rules of 10.1 for
X ⊢ α or provide a model satisfying the axioms in X but not α.

11.1 Natural numbers and Successor. Consider the structure (N, 0, Succ) where
Succ(x) = x + 1 in the standard model. Provide any nonstandard model of this
structure with an explicit coding.

11.2 Dense linear order I. Consider the structure (Q, <) of a dense linear order
without endpoints. Provide axioms for this structure such that all countable elements
are isomorphic. Also provide an example of a uncountable non-standard model for
this structure (it can be famous). Does this satisfy any first-order formulas not already
satisfied by the standard model?

11.3 Dense linear order II. For the structure from 11.2, are there any models of it
which do not contain a dense countable subset? If so, explain how to construct one,
if not, say why they do not exist.

11.4 Constant structures I. Assume that there are constants c1, c2, . . . and the
set X of all axioms saysing ci ̸= cj with i ̸= j. Provide a nonstandard model for
this structure which is a subset of all further nonstandard models. Explain why this
property holds. Note that a nonstandard model contains some element which is not
in the standard model given by the structure whose domain consists of all constants.

11.5 Constant structures II. For the model of 11.4, consider the cardinal ℵ1 which
is the first uncountable cardinal. By the Theorem of Löwenheim and Skolem, the
structure from 11.4 and its axiom set X have a model of size ℵ1. How many elements
has this model which are equal to a constant and how many elements has this model
different from all constants.

11.6 Injective functions I. Assume that a structure has exactly three elements
x, y, z with f(x) = y, f(y) = z, f(z) = x and all other elements u satisfy f(u) = u.
Provide a set of axioms X for this structure, the formulas can use f as a mathematical
symbol and =. Furthermore, how many models of sizes ℵ0 and ℵ1 does X have? Does
X have finite models? If yes, of what sizes?

11.7 Injective functions II. Given X and f , introduce a further function g and one
additional axiom: ∀x [f(x) = g(g(x))]. Show that there are various choices of g so
that the several corresponding structures (A, f, g) coincide, when one removes g from
the logical language.

11.8 Injective functions III. Assume that one has as axioms exactly one formula
α: ∀x [f(f(x)) = x ∨ f(f(f(x))) = x]. How many nonisomorphic structures exist for
the cardinalities 1, 2, 3, 4?

11.9 Injective functions IV. Assume that one has as axioms exactly one formula
α: ∀x [f(f(x)) = x ∨ f(f(f(x))) = x]. How many nonisomorphic structures exist for
the cardinalities 5, 6, 7?
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11.10 Addition Machines I. A program is called an addition machine if it can
do the following operations: Read a register from the input, write a register onto
the output, Assign to a register the sum of various other registers and constants
(with perhaps repetitions, the constants have to be integers), Assign to a register the
difference of two terms which are either registers or constants or sums of registers and
constants, Do unconditional or conditional branchings (gotos) where a conditional
branching compares either two registers or one register and one constant with one of
<,=, >,≤,≥, ̸=. The program can have labels (line numbers) as places to jump to
after a conditional branching or unconditional jump. One can also allow at if-then-
else commands that instead of a Goto there is some sequence of commands between a
begin and end to be done if the condition is satisfied (after the then) or not satisfied
(after the else). The command Halt tells the machine to stop after writing the output.
What does the following function compute?

1. Read x; If x < 1 then begin x = −x end; x = x+ x+ x+ 1; z = 0; y = 1;

2. If y < x then begin y = y + y + y; goto 2 end;

3. If x = y then Goto 7;

4. If x ≥ y then begin x = x− y, z = z + 1 end;

5. If x ≥ y then begin x = x− y, z = z + 1 end;

6. x = x+ x+ x; Goto 3;

7. Write z; Halt.

Provide the outputs for inputs 7 (ternary 21) and 28 (ternary 1001).

11.11 Addition Machines II. Provide an addition machine program which outputs
1 for an odd power of 2 and 2 for an odd power of 3 and 0 on all other inputs.

11.12 Addition Machines III. Provide an addition machine program which trans-
lates a binary number of the form a0a1 . . . an into a binary number of the form
a00a10 . . . an. For example, 7 (binary 111) is mapped to 21 (binary 10101).

11.13 Addition Machines IV. Provide an addition machine program which com-
putes the number of binary digits of a positive input number to write down this
number. For 0 and below, the output is 0 as a default. So input 7 gives output 3 and
input 128 gives output 8.

11.14 Addition Machines V. Consider the following program.

1. Read x; Read y;

2. If x < 0 then x = −1− x− x else x = x+ x;

3. If y < 0 then y = −1− y − y else y = y + y;

4. v = 0; w = 0; u = x+ y;

5. If v < u then begin v = v + 1; w = w + v; Goto 5 end;
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6. w = w + y; Write w; Halt.

Prove that this program computes a one-one function from pairs of integers to natural
numbers.

11.15 Addition Machines VI. Assume that the program in 11.4 computed from
input x, y an output z. Provide an addition machine program which on input z ≥ 0
finds out what x, y are and outputs x, y.

12.1 Recursion I. Assume that f, g are functions computed by register machines
such that f has two inputs and g has four inputs. Now define h(0, x, y) = f(x, y) and
h(z + 1, x, y) = g(z, h(z, x, y), x, y). Prove that also h can be computed by a register
machine program. Use this example to explain that all primitive recursive functions
can be computed by a register machine programs.

12.2 Recursion II. Assume that fe(x) is the e-th primitive recursive function with
one input e where the program for fe is generated by some computer from input e.
Now consider the function g(e) = 1 + fe(e). Prove that g is not primitive recursive
but can still be computed by some algorithm.

12.3 Unbounded Search I. Assume that some addition machine computes f(x, y)
on all inputs where this is defined. Now produce an addition machine program using
f as a subprogram that computes a function g(x) as follows: g(x) takes the first value
z ≥ 0 found such that for all y ∈ {0, 1, . . . , z − 1} it holds that f(x, y) is defined and
different from 0 and f(x, z) is defined and equal 0; if the search of the program for
g never finds this z or if it runs onto a z where f(x, z) does not halt then g(z) is
undefined, that is, its program runs forever.

12.4 Unbounded Search II. Given f(x, y) as in 12.3 as a subprogram, write a
function g which does the same search as in 12.3, but instead of z outputs h(x, z) for
some further subfunction h; if either the search described in 12.3 does not terminate
with a z of if the program for h(x, z) runs forever then g(x) is undefined.

12.5 Enumerations of total functions I. Assume that f(e, x, y) is a program
which halts on all inputs. Construct a program g(x, y) so that there is no e with
g(x, y) = f(e, x, y) for all x, y and such that g(x, y) is defined for all inputs.

12.6 Enumerations of total functions II. Show that if there is a function h(e, x, y)
which decides where the e-th partial-recursive function with inputs x, y halts, then
there is also a total function f(e, x, y) such that f(e, x, y) is the output of the e-th
partial-recursive function with inputs x, y whenever this function is defined. Use the
result of Homework 12.5 to show that there is a contradiction and that therefore the
halting problem is undecidable. Besides 12.5, this homework can also use that there
is a partial-recursive function ψ(e, x, y) such that ψ(e, x, y) takes the value of the e-th
partial recursive function with x, y whenever this function is defined and provides
some output.

12.7 Derivation of Formulas I. Assume that T is a consistent theory such that
there is a partial recursive function f such that f(x) = 1 iff the x-th formula α satisfies
T |= α and f(x) = 0 iff the x-th formula α satisfies T |= ¬α; if neither T |= α nor
T |= ¬α then f(x) is undefined. Show that α is axiomatisable if and only if such an
f exists.
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12.8 Derivation of Formulas II. Show that T is decidable if the f from before
exists and has a decidable domain. Furthermore, provide an example of a theory T
where the f just mentioned has a decidable domain but where T is not complete.

12.9 Robinson’s Arithmetic I. Robinson’s Arithmetic Q has these axioms:

1. ∀x [S(x) ̸= 0];

2. ∀x∀y [S(x) = S(y) → x = y];

3. ∀x ̸= 0∃y [S(y) = x];

4. ∀x [x+ 0 = x];

5. ∀x∀y [x+ S(y) = S(x+ y)];

6. ∀x [x · 0 = 0];

7. ∀x∀y [x · S(y) = (x · y) + x].

Check whether the following structure satisfies the axioms of Q where the structure is
defined by the following rules and domain: Domain A = N∪ {∞1,∞2}, S(x) = x+1
for x ∈ N, S(∞1) = ∞1, S(∞2) = ∞2, ∀x, y [x + y = y + x], x + ∞2 = ∞2, for
x ̸= ∞2, x+∞1 = ∞1, ∞i ·∞j = ∞max{i,j}, ∞i · S(x) = ∞i, x ·∞i = ∞i, ∞i · 0 = 0
for i, j ∈ {1, 2} and x ∈ N. Provide a formula which is satisfied by this structure, but
not by the substructure with domain B = N∪{∞1} (that substructure satisfies Q by
Rautenberg’s book).

12.10 Robinson’s Arithmetic II. Is there a structure with the same domain A
as 12.9 which satisfies Q and where the restriction to N is identical with the usual
operations S,+, · on the natural numbers and where this model is not isomorphic to
the one in 12.9, also not by swapping the names of ∞1 and ∞2?

13.1 Categoricity I. Recall that a theory is κ-categorical if the theory, up to iso-
morphism, has exactly one model of size κ. Assume that the logical language has one
function symbol f and a theory T is axiomatised by the following single axiom:

∀x [f(x) ̸= x ∧ f(f(x)) = x].

For which cardinals κ is the theory T κ-categorical?

13.2 Categoricity II. Assume that the logical language has one function symbol f
and a theory T is axiomatised by the following single axiom:

∀x [f(x) ̸= x ∧ (f(f(x)) = x ∨ f(f(f(x))) = x)].

For which cardinals κ is the theory T κ-categorical?

13.3 Categoricity III. Assume that the logical language has one function symbol f
and a theory T is axiomatised by the following single axiom:

∀x∀y [f(f(x)) = x ∧ (y ̸= x→ f(y) = x)].

For which cardinals κ is the theory T κ-categorical?
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13.4 Categoricity IV. Assume that the logical language has one function symbol P
and a theory T is axiomatised by the following single axiom:

∃x ∃y ∀z [P (x) ∧ P (y) ∧ (z ̸= x ∧ z ̸= y → ¬P (z))].

For which cardinals κ is the theory T κ-categorical?

13.5 Number of Models I. Assume the logical language contains constants c0, c1, . . .
and one order predicate <. Let T contain all axioms of a dense linear order without
endpoints and furthermore, for each index k of a constant, the following additional
axioms: ck < ck+1 → ck+1 < ck+2, ¬(ck < ck+1) → ck+1 = ck+2, ck = ck+1 → c1 = c2.
How many countable models does this structure have?

13.6 Number of Models II.Assume the logical language contains constants c0, c1, . . .
and one order predicate <. Let T contain all axioms of a dense linear order without
endpoints and furthermore, for each index k of a constant, the following additional
axioms: ¬(ck+1 < ck), ck = ck+1 → ck+1 = ck+2, ck = ck+1 → c2 = c3. How many
countable models does this structure have?

13.7 Number of Models III. Assume the logical language contains constants
c0, c1, . . . and one order predicate <. Let T contain all axioms of a dense linear or-
der without endpoints and furthermore, for each index k of a constant, the following
additional axioms: ck < ck+1 → ck+1 < ck+2, ¬(ck+1 < ck), ck = ck+1 → ck+1 = ck+2.
How many countable models does this structure have?

13.8 Number of Models IV. Let ◦ be a semigroup operation on a domain D,
that is, D is associative. There are no further requirements. How many models with
|D| = 2 exist (up to isomorphism)?

13.9 Number of Models V. Let ◦ be a monoid operation on a domain D = {0, 1},
that is, D is associative and has neutral element 0. There are no further requirements.
The constants 0, 1 are part of the logical language. How many models with domain
D exist?

13.10 Number of Models VI. Let ◦ be a monoid operation on a domain D =
{0, 1, 2}, that is, D is associative and has a neutral element, here it should be the 0.
The constants 0, 1, 2 are part of the logical language. How many models with domain
D exist?

13.11 Repetition: First-Order Description I. Provide axioms which describe the
requirements for the models in Homework 13.9 in First-Order Logic formally.

13.12 Repetition: First-Order Description II. Provide axioms which describe
the requirements for the models in Homework 13.10 in First-Order Logic formally.
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