
CS5234: Combinatorial and Graph Algorithms Lecture 3

Tutorial: Week 3
Lecturer: Seth Gilbert September 1, 2017

1 Yao’s Principle: Three Examples

Yao’s Principle says that in order to show a worst-case running time for every randomized algorithm, it is sufficient
to give an input distribution for which every deterministic algorithms performs badly. Or, more formally, let R be the
class of randomized algorithms that solves a given problem and D be the class of deterministic algorithms that solve
(the same) problem. Let X be the set of inputs (for both algorithms in R and X), and let γ be a specific distribution
over the inputs in X . Then:

∀A ∈ R : max
x∈X

(E [cost(A, x)]) ≥ min
B∈D

(E [cost(B, x chosen from γ)]) .

Here cost(A, x) is the time that A takes when it is run on input x. The expectation on the left is over the random
choices made by the algorithm A ∈ R, and the left-hand side is the worst-case expected cost for all randomized
algorithms. The expectation on the right is over the choice of x from the distribution γ, and the right-hand side is the
minimum expected cost of any deterministic algorithm when the input is chosen according to the distribution.

1.1 Example 1. Sorting

Show that comparison-based sorting requires expected Ω(n log n) comparisons using Yao’s Principle.

For the purpose of analyzing sorting, we have to give an input distribution such that every deterministic algorithm has
expected number of comparisons Ω(n log n).

We choose the distribution γ that selects each permutation of the integers from {1, . . . , n} uniformly with probability
1/n!. We need to argue that every deterministic algorithm requires expected Ω(n log n) comparisons.

Fix a deterministic sorting algorithm B ∈ D. Recall that each deterministic sorting algorithm can be represented as
binary decision tree. Each leaf in the decision tree represents a permutation of the input, i.e., each input permutation
terminates at a different leaf. Overall, the decision tree for B has n! leaves. Since our chosen input distribution
selects a random permutation, the algorithm B will terminate at a randomly chosen leaf. Thus, the expected number
of comparisons is equal to the depth of a randomly chosen leaf.

Recall that there are n! leaves in total. Let us look at the depth of the n!/2 leaves with the lowest depth. Since a binary
tree with x leaves must have height at least log(x), we conclude that the n!/2 leaves with the lowest depth must be
part of a subtree of depth at least:

log(n!/2) = log(n!)− 1

≥ ln(n!)− 1

≥ n ln(n)/2− 1

≥ n ln(n)/4

This follows from Sterling’s approximation which states that ln(n!) = n ln(n)− n+O(ln(n)), as long as n > 8.

Since we know that the lowest depth n!/2 leaves have depth at least n ln(n)/4, this means we conclude that there are
at least n!/2 leaves of depth > n ln(n)/4. Therefore, if we choose a leaf at random, the expected depth will be at least
[(n ln(n)/4)(n!/2) + (0)(n!/2)]/n! = n ln(n)/8. (This is obviously an underestimate as it assumes that the smallest
depth n!/2 leaves have depth 0.)

1



We conclude that the expected number of comparisons for algorithm B is Ω(n log n). By applying Yao’s Principle,
we conclude that every randomized comparison-based sorting algorithm takes time Ω(n log n).

1.2 Example 2. Property Testing

Given a binary array A[1, n] where A[i] ∈ {0, 1}, show that it requires time at least Ω(1/ε) to decide whether array
A is all-zero or ε-far from all zero with probability at least 2/3.

First, we specify an input distribution. Assume (for simplicity) that n is a multiple of 1/ε. We divide the array into 1/ε
chunks of size εn. We choose one of these chunks uniformly at random and set every array position in the chunk to 1;
we set all the remaining array positions in the array (in all the other chunks) to zero. Notice that this array is ε-far from
all-zero as there are εn array slots set to one. Now, with probability 1/2 we choose the array just constructed, and with
probability 1/2, we choose the all-zero array. This construction defines a distribution over inputs to the algorithm.

We need to show that any deterministic algorithm B that access the array 1/(3ε) times will fail to correctly classify
this input with probability at least 2/3.

Fix some deterministic algorithm B. Notice that B accesses only one-third of the chunks. There are two cases. First,
if B only accesses slots containing zero, it may output far from all-zero. In this case, algorithm B is wrong with
probability 1/2, i.e., all the times that out input distribution selects the all zero array.

Alternatively, if B only accesses slots containing zero, it may output all zero. In this case, with probability 1/2 our
input distribution selects an array that is far from all-zero. SinceB only accesses one-third of the chunks, it only sees a
one with probability at most 1/3. That is, with probability ≥ 2/3, algorithm B sees only zeros. Thus with probability
(1/2)(2/3) = 1/3, algorithm B outputs all zero.

Thus, in either case, algorithm B fails with probability at least 1/3, as required. By Yao’s Principle, this implies that
every randomized algorithm requires at least 1/(3ε) array accesses to different the all-zero array from an array ε-far
from all-zero.

Notice that here we used a slight variant of Yao’s Principle, in that we did not analyze the expected running time.
Instead, we used the version that was presented in Problem Set 2, i.e.:

Theorem 1 (Yao’s Principle) Assume the following:

There exists a distribution D of the inputs such that: for every deterministic algorithm A of query complexity q,
Pr [A(x) is wrong] > 1/3.

Then we can conclude:

For any randomized algorithm A of query complexity q there exists an input x such that: Pr [A(x) is wrong] >
1/3.

1.3 Example 3. Approximate Minimum Spanning Tree

Show that every randomized algorithm that finds a sufficiently good additive approximation to the MST weight with
probability at least 2/3 requires at least Ω(W ) time.

See the solutions to Problem Set 2.

2


