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Abstract

This paper examines information exchange in the context of a multi-channel radio network subject to
malicious interference. In each round, up to t channels may be disrupted, preventing successful message
transmission. This disruption models the various forms of electromagnetic interference common in a
radio setting. We focus on the well-known gossip problem, which has participants attempt to disseminate
their initial values.

We present upper and lower bounds on deterministic solutions to the gossip problem. Our results
are based on a new combinatorial tool: the multiselector. This mathematical object helps decompose
reliable multi-channel communication into a problem of simultaneous selection, and, in this sense, is of
independent interest. We demonstrate both upper and lower bounds on the size of multiselectors, and
draw connections between the object and both classic selectors and hash functions.

Using multiselectors as our key tool, we study gossip under two conditions. In the first, the total
number of available channels is much larger than t. We present an optimal O(n) time gossip solution
in this setting. In the second, we assume only t + 1 channels are available, the minimum number of
channels for which the problem is solvable. We present an algorithm that runs in time exponential in
t + 1, and then derive a lower bound of Ω(2t+1/

√
t + 1) rounds—showing an exponential in t to be

unavoidable. We conclude with a brief discussion of how the time complexity evolves as the number
of channels moves between these two extremes. Our results provide a significant improvement over the
best existing multi-channel gossip solution: an oblivious algorithm that runs in time Ω((en/t)t).
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1 Introduction
We study the fundamental problem of information exchange, often called gossip. In this problem, a set of n
processes P = {p1, . . . , pn} are initialized with values {v1, . . . , vn}, respectively. These values are called
rumors. The problem has each process attempt to learn as many rumors as possible.

We study deterministic gossip protocols in the context of a single-hop radio network, i.e., all processes
are within communication range. The network operates in synchronous rounds. In each round, each process
chooses a single channel c ∈ {1, . . . , C} and either transmits or listens on channel c. If exactly one process
transmits on channel c, then every process listening on channel c receives that message. Otherwise, the
listening processes receives nothing. (We do not assume collision detection.)

The network is subject to malicious interference that can prevent the processes from communicating.
This is an important issue in wireless networks where a malicious device can disrupt communication by
broadcasting noise, thus “jamming” the electromagnetic spectrum. Similar effects can be derived from non-
malicious devices accidently contending on the same portion of the spectrum: e.g., the wireless telephone
interfering with the nearby 802.11 base station. We assume a malicious adversary that can disrupt up to t
channels in each round. When the adversary chooses to disrupt some channel c ∈ {1, . . . , C}, none of the
processes listening on channel c receive a message. Throughout this paper, we assume that t is polynomially
smaller than n, that is, for some ε < 1/6, t = O(nε).

For t ≥ 1, the processes cannot learn all the rumors. More precisely, for every algorithm A, there is an
execution of A in which: (1) No process learns more than (n− t) rumors; and (2) at least t processes learn
no more than one rumor each. To see why, let P ′ be an arbitrary set of t processes and consider the case
where the adversary disrupts all communication by processes in P ′. For each pi ∈ P ′, no other process ever
learns rumor vi, and no process in P ′ ever learns any rumor other than its own.

The best we can hope to achieve in this setting is (n− t)-to-(n− t) gossip: eventually, all but t processes
learn all but t rumors.1 We call this variant: almost-complete gossip. This variant is solvable provided t < C.
(Otherwise, the adversary can disrupt every channel in every round preventing all communication.)

To study the problem of gossip, we introduce a new combinatorial object which we call a multiselector.
A multiselector is a non-trivial generalization of a combinatorial object known as a selector [8, 25]. The
selector has proved useful for studying algorithms in a single-channel radio network. Our generalization
extends this utility to the multi-channel setting.

We begin by defining the multiselector concept precisely, deriving some of its constructions by high-
lighting relations to selectors and hashing functions [9], and then proving lower and upper bounds on its
size. To prove the utility of this object in a multi-channel network, we apply these bounds to the study of
the gossip problem. We focus on the two extremal cases that yield the most insight: C � t and C = t + 1.
Case 1. In Section 4, we assume that C � t; i.e., the number of available channels is much larger than the
number of channels that the adversary can disrupt. We describe an algorithm that runs in linear time.
Case 2. In Section 5, we assume that C = t + 1; i.e., the minimum possible number of available channels
for which the problem is solvable. We extend the algorithm of case (a) and show that it has a running
time O

([
n3 + (t + 2)3(t+1)

]
· log n

2t+1

)
. We then prove that Ω(2t+1/

√
t + 1) rounds are necessary in this

setting. (For completeness, we also briefly discuss the intermediate cases between these two extremes.)
In case (1), multiselectors play a key role in coordinating the processes. They allow rumors gathered

at a small number of listener processes to be efficiently disseminated to the remaining participants. The
central difficulty is safely adapting the algorithmic strategy based on the results of previous rounds, without

1It would be possible to generalize further and consider s-to-t gossip; however we do not proceed in this direction both for the
sake of simplicity, and in order to focus on the case wherein the most insight can be discovered.
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engendering disruption from processes that have a different view due to adversarial interference. The mul-
tiselector helps ensure that almost all the processes have the same view of the current status, bounding the
ignorance in the system. In case (2), multiselectors play an additional role in the aggregation of information,
allowing processes with an incomplete view of the system state to efficiently coordinate with an unknown
set of more informed processes. The multiselectors prove crucial for allowing an efficient solution to the
gossip problem. Notice the improvement of our bounds over the best existing solution: an Ω((en/t)t+1)
time algorithm [21] that does not attempt to adapt to the execution in progress.

2 Related Work
Selectors. Selectors were originally introduced by Komlos and Greenberg [25]; the term “selector” was
coined later by [8] in the context of group property testing. Given a set S ⊆ P , we say that a second set
S′ selects an element i ∈ P if S ∩ S′ = {i}. A k-selector is a sequence of sets S1, . . . , Sm where for
each set S of size k, at least 1 of the elements in S is individually selected by some set in the selector. This
definition was generalized by [7] to an (n, k, r)-selector, which guarantees that at least r of the elements are
individually selected by some sets in the selector.2 There are a variety of results on the size of differently
parameterized selectors; for example, in [25], it was shown that there exist (n, k, 1)-selectors of size at most
O(k log n/k), and [23] shows how to explicitly construct k-selectors of size O(kpolylog(n)).

Selectors have been used in a variety of contexts to enable communication in single-channel radio net-
works. For example, in [17, 18], selectors are used to schedule the radio transmissions in such a way
that there is sufficiently low contention on the channel; in [15, 16], selector-like structures, called radio-
synchronizers, are used to synchronize radio transmissions to efficiently wake-up sleeping devices.

Our notion of a multiselector generalizes a selector in that it simultaneously selects a set of elements.
Where a selector ensures that some set of elements are individually selected, a multiselector ensures that
some set (or sets) of elements are selected at the same time by the same set. This proves useful in a multi-
channel radio network, where simultaneous behavior on different channels is a useful tool for increasing
throughput or circumventing interference.
Radio Networks. There exists much research in reliable communication on a multiple-access channel
without malicious interference: initially, in the context of Ethernet networks (c.f., [25,35]), and, later, in the
context of radio networks. (For research on broadcast in radio networks, see, for example [1,2,10,28,29,32];
for research on gossip in radio networks, see [3, 11, 13, 14]). Much of the research in this area assumes the
devices behave correctly. They focus on the problem of channel contention.
Unreliable Radio Networks. Recently, there has been some interest in crash-tolerant communication in
radio networks (c.f., [19, 20, 30, 31]). There has also been some work on Byzantine-resilient broadcast in
radio networks [4,26]; however, the adversary cannot disrupt the channels. For the setting where adversarial
disruption (and corruption) is possible, there exist two common approaches in the literature. The first ap-
proach assumes that messages may be corrupted at random, according to some known distribution; Pelc and
Peleg [34], for example, considered the problem of broadcast in this model. The second approach assumes a
worst-case adversary that can corrupt or block messages, but bounds the number of messages for which this
is allowed; modelling, for example, a limited energy budget. Koo et al. considered the problem of broad-
cast, assuming that the adversary’s budget is known a priori [27]; Gilbert et al. [22] considered a variety of
communication problems (including broadcast) for the case where the adversary’s budget is unknown.
Unreliable Multi-Channel Radio Networks. The data capacity of multi-channel radio networks is studied
studied in [5, 33], but with no malicious behavior. Some existing systems used pre-determined shared
“secrets” to perform pseudo-random frequency hopping (e.g., Bluetooth [6]); these techniques can be used

2Note that unlike a multiselector, the r elements are not selected simultaneously.
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to gossip in the presence of malicious disruption. It is often unreasonable, however, to assume the existence
of shared secrets for all possible sets of wireless devices that might one day attempt to communicate.

The present paper, along with [21], are the first, to our knowledge, to consider multi-channel networks
subject to malicious disruption in which processes do not possess a priori shared secrets. Dolev et al. [21]
considered oblivious algorithms (that is, algorithms that do not adapt to the execution in progress). They
showed for the special case of t = 1, that there exists a tight upper and lower bound for gossip of Θ(n2/C2).
They extended their upper bound for general t, achieving running time O((en/t)t+1). In this paper, we use
multiselectors to produce adaptive solutions that outperform the optimal oblivious solutions in [21].

3 Multiselectors
We introduce multiselectors, a combinatorial tool that generalizes the idea of selectors [8, 25]. We provide
upper and lower bounds on their size, which are then useful in establishing our bounds for gossip.
3.1 Definitions
We begin by defining a basic multiselector that selects exactly one set of size k simultaneously:
Definition 1. An (n,c,k)-multiselector, where n ≥ c ≥ k ≥ 1, is a sequence of functions M1,M2, . . . ,Mm

from P → [1, c] such that:
For every subset S ⊆ P where |S| = k, there exists some ` ∈ [1,m] such that M` maps each element
in S to a unique value in [1, c].

We say that such a multiselector has size m. A more general multiselector can be used to select many sets of
size k simultaneously; a general multiselector is a generalization of a selector, and also of a multiselector:
Definition 2. A generalized (n,c,k,r)-multiselector, where n ≥ c ≥ k ≥ 1 and n ≥ r, is a sequence of
functions M1,M2, . . . ,Mm from P → [0, c] such that:

For every subset S ⊆ P where |S| = r, for every subset S′ ⊆ S where |S′| = k, there exists some
` ∈ {1, . . . ,m} such that (1) M` maps each element in S′ to a unique value in {1, . . . , c}, and (2) M`

maps each element in S \ S′ to 0.

3.2 Upper Bound
We now show that there exist (n, c, k)-multiselectors and determine their size based on the relationship of k
to c. The proof is non-constructive, and relies on the probabilistic method.

Theorem 1. For every n ≥ c ≥ k, there exists an (n, c, k)-multiselector of size at most:

if (c = k) :
kec

√
2πc

ln
en

k

if (c/2 < k < c) : kek ln
en

k

if (k ≤ c/2) : k22k2/c ln
en

k
.

Proof. We include here the proof for the case where k ≤ c/2; the other two cases are similar and can be
found in the appendix. Let m = k22k2/c ln en

k , the bound being proved.
We begin by selecting M = M1, . . . ,Mm at random, and show that with some probability greater than

zero, M is a (n, c, k)-multiselector. For each M` and for each i ∈ P , choose M`(i) at random from [1, c].
Fix an arbitrary set S ⊆ P where |S| = k. Consider a particular M`. We calculate the probability

that each element of S is assigned a unique element in [1, c]. Since there are
(

c
k

)
k! good mappings from k

elements to [1, c], and ck total mappings of k elements to [1, c] sets, we conclude that:

Pr {S is uniquely mapped} =

(
c
k

)
k!

ck
=

c!
(c− k)!ck

.
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Denote this probability by q. Since k ≤ c/2 we get the following estimate for q:(
c− k

c

)k

≥ 4−k2/c .

The probability that S is not well-mapped for all M` is at most (1 − q)m. Since m = q−1 · k ln en
k ,

the probability that S is not well-mapped for all M` is at most e−k ln en
k ≤

(
k
en

)k
. Since there are only(

n
k

)
<
(

en
k

)k possible subsets S of size k, we argue (by a union bound) that the probability of some S being

incorrectly mapped by all M` is at most
(
n
k

)
·
(

k
en

)k
, which is smaller than 1, implying the conclusion. �

We can then conclude that if c is sufficiently larger than k, there are efficient (n, c, k)-multiselectors:

Corollary 2. For every n ≥ c ≥ k2, there exists an (n, c, k)-multiselector of size O(k log(n/k)).

The same argument as in Theorem 1 extends to bound the size of generalized multiselectors:

Theorem 3. For every n ≥ r ≥ c ≥ k where n ≥ 2r, there exists (n, c, k, r)-multiselectors of size
O
(
r (c+1)rek

kk log (en/r)
)

or O
(
r (c+1)r

(c−k)k log (en/r)
)

.

The proof can be found in the appendix.
3.3 Multiselectors and Hashing
There exists a connection between good hash functions and multiselectors when k2 < c. In this section, we
discuss some of these connections and derive some multiselector constructions.

First, we show how to use a universal family of hash functions to construct a (n, c, k)-multiselector. A
(two)-universal family of hash functions is a set of functions from universe P to some domain {1, . . . , c}
such that for each pair x, y ∈ P , at least a (1 − 1/n) fraction of the hash functions map x and y to a
unique value. Carter et al. [9] present such a family of size Θ(n2). This family of hash functions is also an
(n, c, k)-multiselector, for any k <

√
c: consider some set S of k elements; for each of the O(k2) = O(c)

pairs, there are ≤ n hash functions that collide; thus there are at most O(cn) < O(n2) hash functions for
which elements of S collide. The resulting multiselector is of size O(n2).

Next we consider a technique that produces a more efficient construction. Assume that c is suffi-
ciently large such that there exist Θ(k2 log n) prime numbers less than c. Let p1, . . . , pΘ(k2 log n) be a set of
Θ(k2 log n) distinct primes less than c. It is easy to see that for any set S of size k, for every pair x, y ∈ S,
there are at most log n primes pi such that x = y mod pi: otherwise, the difference |x− y| is divisible by
more than log n primes, implying that |x − y| > n, a contradiction. Thus there is some prime pi such that
none of the Θ(k2) pairs in S collide. This results in an (n, c, k)-multiselector of size O(k2 log n).

If k2 = c, i.e., there are not a sufficient number of primes≤ c, then the two techniques can be combined.
Use the second technique to reduce the range to O(k2 log2 n); then use the two-universal hash family of [9]
to reduce the range to c. From this we conclude:

Theorem 4. For every n > c > k2, we can construct a (n, c, k)-multiselector of size O(k6 log6 n).

3.4 Multiselectors and Selectors
It is also possible to construct multiselectors using selectors. The resulting construction is not particularly
efficient, but illustrates the connection between selectors and multiselectors. The construction may be rea-
sonable when k is close to C, in which case the exponential behavior is unavoidable (see Theorem 6). We
assume (from [12, 24]) that for every k, Fk is a selector of size fk = O(k log n).
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Our construction proceeds inductively. As the base case, notice that an (n, c, 1)-multiselector is trivial,
and an (n, c, 2)-multiselector is easily instantiated as an 2-selector. Assume that for every c′ ≤ c, k′ < c′,
M (c, k′) is a (n, c′, k′)-multiselector of size mc′, k′ = O(k′ log2c n). We construct M c, k as follows:

for x = 1 to fk do
for y = 1 to mc−1, k−1 do

let ` = xy
for every i ∈ P do

if Fx(i) = 1 then
M c, k

` (i)← c
else

M c, k
` (i)←M c−1, k−1

y (i)

We prove the following theorem in the appendix:

Theorem 5. M (c ,k) is a (n, c, k)-multiselector of size O(kk logk n).

3.5 Lower Bound
In this section, we prove a lower bound on the size of an (n, c, k)-multiselector.

Theorem 6. Let M = M1, . . . ,Mm be an (n, c, k)-multiselector where n ≥ 2c and c ≥ k. Then M has
size at least:

if (c = k) :
2c

4
√

2πc

if (c/2 < k < c) : ek ln c
c−k

−k2/n ·
√

n(c− k)
4
√

c(n− k)

if (k ≤ c/2) : ek2/c−k2/n ·
√

n(c− k)
4
√

c(n− k)
.

Proof. We consider here the case where k = c; the remaining cases are considered in the appendix. We
begin by choosing a subset S ⊆ P of size c at random. We proceed to calculate the probability that S
is correctly mapped by some M`. We show that if m < 2c

4
√

2πc
, then this probability is smaller than one,

contradicting the assumption that M is a multiselector.
Fix some particular ` ∈ [1,m], and define Sd = {i : M`(i) = d}, that is, the subset of P that M` maps to

d. In order to calculate the probability that M` correctly maps each element of S to a unique element of [1, c],
we first approximate the number of subsets of P that are correctly mapped by M`:

∏c
d=1 |Sd| ≤ (n/c)c .

(The inequality follows by Lemma 12.) Since there are
(
n
c

)
sets of size c, and since (n − c) ≥ n/2, we

conclude (via Stirling’s approximation) that the probability that S is correctly mapped by M` is at most

nc

cc
(
n
c

) ≤ nc

nn

(n−c)n−c·4
√

2πc

=
4
√

2πc(
n

n−c

)n−c ≤
4
√

2πc

2c
.

Thus, the probability that S is correctly mapped by any of the m functions is at most m · 4
√

2πc2−c (by a
union bound). If m < 2c

4
√

2πc
, then with positive probability the set S is not correctly mapped by any of the

M`, resulting in a contradiction. �
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Figure 1: Gossip routine for process pi.

1 Gossip()i

2 L← a partition of the set {1, . . . , c2} into c sets of size c.
3 for e = 1 to |E| do
4 knowledgable ←Epoch(L, knowledgable, E[e])i

5

6 L← a partition of the set {c2 + 1, . . . , 2c2} into c sets of size c.
7 for e = 1 to |E| do
8 knowledgable ←Epoch(L, knowledgable, E[e])i

9

10 // Lastly, do the special epoch which attempts to transmit the final ≤ 5t values.
11 Special-Epoch(knowledgable)i

4 Gossip with Unlimited Channels
We now present an algorithm for solving gossip when C � t. In order to gossip efficiently, the protocol
adaptively chooses the set of processes to transmit in each round based on which processes have already
succeeded in gossiping their value in a previous round. This intuition—that carefully adapting to the past is
crucial—is supported by the lower bounds in [21], which show that oblivious gossip algorithms cannot be
efficient. Adapting to the past proves challenging as processes do not share a uniform view of the current
system state. That is, a process does not know whether or not a transmission succeeded unless told by a
receiver on the channel. The adversary, however, can block this information, leaving the process ignorant.

Our algorithm helps circumvent this problem by using a (n, c, t+1)-multiselector to (efficiently) ensure
that almost all the processes have the same view of the current status. Processes use the multiselector to
guide their channel selection when attempt to receive updates on the system state. Because it guarantees to
simultaneously select any subset of size t + 1, it follows that for any group of size t + 1 processes, there
exists a round during which these processes are receiving on different channels. Therefore, at most t total
can be kept ignorant by the adversary. This bound on ignorance allows efficient adaptation to continue.
Preliminaries. For the remainder of this section, we fix the constant c = (5t+1)2. Of the C available chan-
nels, our algorithm will use exactly c. Recall, we have assumed that n is large compared to t, specifically,
that t = O(nε) for some ε < 1/6. It follows: (a) n ≥ c2(5t + 1) + 5t; and (b) n ≥ c2t + c.

A note on terminology: We refer to rumors as either complete or incomplete. Each rumor is initially
designated as incomplete; when a rumor is received by at least n− t processes, it is designated as complete.
A process whose rumor is complete is itself considered to have completed. Given a set S of integers, we
sometimes use the notation S[k], 1 ≤ k ≤ |S|, to refer to the kth value in S under some fixed ordering of S.
Gossip. The main routine for the gossip algorithm is given in Figure 1. It proceeds in two sets of epochs. In
each set of epochs, a set of listeners is chosen, and they facilitate the dissemination of incomplete rumors.
The listeners’ values are not disseminated, however, as they are busy listening; hence each set of epochs
chooses a disjoint set of listeners: {1, . . . , c2} in the first set of epochs, and {c2 + 1, . . . , 2c2} in the second
set of epochs. After each set of epochs, there are at most 2t non-listener rumors that remain incomplete.
After the two sets of epochs, at most 4t rumors are left incomplete in total. The final call to Special-Epoch
reduces this value of incomplete rumors to t, as required.

We define E—used in the Epoch calls—recursively: let E(1) = dn/ce; i.e., the n initial rumors are
scheduled c per round in the epoch. For all r > 1, let E(r) =

⌈
E[r−1](2t)

c

⌉
; i.e., for each round in the

previous epoch, at most 2t values are not successfully transmitted, and these values are scheduled c per round

6



Figure 2: Epoch routine for process pi.

1 Epoch(L, knowledgeable, rnds)i

2 if knowledgable = true then
3 Let S be the set of processes that are not in L and not completed.
4 Partition S into d|S|/ce sets of size c.
5 for r = 1 to rnds do
6 if (knowledgable = true) and (r ≤ d|S|/ce) then
7 if ∃k ∈ {1, ..., c} : i = S[r][k] then schedule i to transmit on channel k.
8 if ∃k ∈ {1, ..., c} : i ∈ L[k] then schedule i to receive on channel k.
9 knowledgable ←Disseminate(L[1], . . . , L[c])i

10 return knowledgable

in the epoch. The sequence terminates when E(r) = 1. Notice that |E| = O(log n) and
∑

E = O(n/c).
Epochs. In each call to Epoch, some set of incomplete rumors are completed; i.e., disseminated to at least
n − t processes. At the end of an epoch, each process is designated as knowledgeable or unknowledgeable
based on the outcome of the epoch: a knowledgeable process knows the results of all preceding epochs,
including the current set of completed values; an unknowledgeable process does not have this information.

An epoch proceeds in two parts: an aggregation and a dissemination phase. In the aggregation phase,
rumors are collected at a set of c2 listeners, c per channel. In the dissemination phase, each set of c listeners
broadcasts the rumors that it has received to the other processes. A multiselector is used to derive an efficient
sequence of receiving that ensures only a minimal set of receiving processes (i.e., t) can be blocked.

The pseudocode for each epoch is given in Figure 2. For each epoch, we are given (1) a set of listeners
L, (2) a flag knowledgeable , indicating the status of process i executing the epoch, and (3) a number rnds
indicating the length of the aggregation phase of the epoch. Our goal is the following:

Lemma 7. If some epoch begins with s incomplete processes in the set P \ L, then at the end of the epoch,
there are at most 2tbs/cc incomplete processes in P \ L.

We now discuss in more detail how both the aggregation and dissemination phases operate in each epoch.
Aggregation. In the first phase (lines 1−−9), values are transmitted to the listeners in the set L. Let S be
the set of processes that have not yet completed, i.e., their rumors remain unpropagated. The set S is divided
into subsets of size c, each of which is scheduled to transmit in one of the subsequent b|S|/cc rounds. Only
knowledgeable, incomplete processes transmit.

Throughout, c listeners are scheduled to listen on each channel. In each of these rounds, the adversary
can block up to t; moreover, up to t of the processes “scheduled” to transmit in a round may in fact be
unknowledgeable, and hence not transmit. Thus, in each round, at most 2t values are not successfully
received by the listeners. By the end of the aggregation phase, only 2tb|S|/cc rumors remain incomplete.

Dissemination. In the second part of the epoch, the listeners disseminate the values to the other processes.
The pseudocode for disseminate is given in Figure 3. The disseminate routine ensures the following:

Lemma 8. If some rumor v is known to a set of listeners when the disseminate routine begins, then the
rumor is complete at the end of the disseminate routine.

The disseminate routine consists of two parts. In Part 1, each of the c sets of c listeners attempts to
disseminate its set of rumors. For each set, each of the c listeners in the set transmits continually on a unique
channel. An (n, c, t+1)-multiselector M is used to schedule the non-listener processes. While the listeners
are broadcasting, the non-listeners choose which channel to receive on according to M . This ensures that for
any set of t+1 non-listeners, there is some round in which they are all receiving simultaneously on different

7



Figure 3: Disseminate routine for process pi.

1 Disseminate(L[1], . . . , L[c])i

2 let M be a (n, c, t + 1)-multiselector.
3 // Part 1: Ensure that for each listener group, all but some set of t processes receive its value set.
4 knowledgable ← true
5 for k = 1 to c do
6 for each round r = 1 to |M |
7 if ∃j ∈ {1, ..., c} : i = L[k][j] schedule i to transmit on channel j.
8 if i /∈ L[k] then schedule i to receive on channel Mr(i).
9 if i does not receive a message in any of the |M | rounds then knowledgable ← false.

10

11 // Part 2: Ensure that all but some set of t processes receive all the value sets from all the listener groups.
12 L′ ← an arbitrary subset of {1, . . . , n} of size c(ct + 1).
13 Partition L′ into ct + 1 sets L′[1], . . . , L′[ct + 1] of size c
14 for each s = 1 to ct + 1 do
15 for each r = 1 to |M | do
16 if ∃j ∈ {1, ..., c} : i = L′[s][j] schedule i to transmit on channel j
17 if i /∈ L′[s] then schedule i to receive on channel Mr(i).
18 if i receives a message in any of the |M | rounds from a node with knowledgable = true then
19 knowledgable ← true
20 return knowledgabe

channels. As a result, at most t can be disrupted by the adversary. Since there are c sets of listeners, this
results in at most ct processes that do not receive a value from all c sets of listeners.

In Part 2, we select a larger set of c(ct + 1) processes, which we partition into sets of size c. (Recall that
n ≥ c(ct + 1).) At least one of these ct + 1 partitions consists only of processes that received a message
from all c sets of listeners in Part 1. All c processes in this set therefore know all the values known to each
set of listeners. As in the first part, each of these sets transmits its information to the remaining processes in
such a way that at most t processes can fail to learn these values.
Special Epoch. In order to transmit the remaining incomplete rumors, we execute a special epoch. The
pseudocode for Special-Epoch is given in Figure 4. The special epoch operates somewhat differently, as
there are very few rumors left to transmit. As before, we use listeners to collect the values; we need a set
of listeners whose values are already completed. As mentioned, up to 4t rumors might be incomplete after
the two sets of epochs. An additional t processes might be complete but not aware of this because they
were blocked by the adversary in the final epoch. This leaves at most 5t processes that are not complete and
knowledgeable. We choose a set of c2(5t + 1) possible listeners, and divide them into 5t + 1 sets of size c2;
it is easy to see that at least one of these sets contains only processes that are complete and knowledgeable.

Next, we identify the set of the ≤ 5t special processes, i.e., those that are either unknowledgeable or
incomplete. In the special epoch, we use a (n, c, 5t)-multiselector. In some round, this multiselector will
assign the k ≤ 5t special processes that are actually incomplete each to a different channel to transmit
during the same round. Dissemination proceeds as before.
Performance. Each epoch e spends E(e) rounds during the aggregation phase, resulting in O(n/c) rounds
of aggregation. Each epoch e performs c|M | + (ct + 1)|M | rounds of dissemination. By Corollary 2, we
conclude that |M | = O((t + 1) log n/(t + 1)); and thus during O(log n) epochs, there are O(ct2 log2 n)
rounds of dissemination. Finally, we observe that the special epoch aggregation has running time (5t+1)|M |

8



Figure 4: Special Epoch routine for process pi.

1 Special-Epoch(knowledgable)i

2 let M be an (n, c, 5t)-multiselector.
3 if (knowledgable = false) or (i has not completed) then special ← true else special ←false
4 if knowledgable = true then
5 L← set of c2(5t + 1) smallest processes that have completed in a previous epoch.
6 Partition L into (5t + 1) sets L1, . . . , Lt+1 of size c2.
7 Partition each Lk into c sets Lk[1], . . . , Lk[c] of size c.
8 for s = 1 to 5t + 1 do
9 for r = 1 to |M | do

10 if special = true then schedule i to transmit on channel Mr(i)
11 if ∃k : i ∈ Ls[k] then schedule i to receive on channel k.
12 Disseminate(Ls[1], . . . , Ls[c])i

where M is a multiselector of size at most O(t log n/(5t)) (again by Corollary 2). Thus the special epoch
has round complexity O(t2 log n/t), along with O(t) disseminations. Summing these costs and substituting
in for c = O(t2) and t = O(n1/6), we conclude that:

Theorem 9. Within O(n) rounds, all but t rumors are complete. More precisely, the gossip protocol has
round complexity O(n/t2 + t5 log2 n).

5 Gossip with Limited Channels
We consider here the case where C = t + 1: the minimal number of channels for which gossip is possible.
We first describe how to adapt the algorithm of Section 4 to this setting. We then present a lower bound (by
reduction to a multiselector) showing that the time complexity is inherently exponential in t. Finally, for the
sake of completeness, we briefly discuss the intermediate cases where t + 1 < C < (5t + 1)2.
5.1 Algorithm Description
In this section, we modify the gossip routing to use only C = t + 1 channels. The disseminate protocol
described in Section 4 can be used without modification. We replace, however, Epoch and Special-Epoch
with Limited-Epoch (appendix, Figure 5) and Limited-Special-Epoch (appendix, Figure 6), respectively.
The main difficulty addressed by these two new routines is the fact that only t + 1 processes can transmit
concurrently during a given round. It follows that if any of these scheduled processes are unknowledgeable
and therefore choose not to transmit to avoid contention, then≤ t will attempt to transmit, and the adversary
can prevent any values from completing in that round.

In order to circumvent this problem, we use a (n, C, C, 2t + 1)-generalized-multiselector in the aggre-
gation phase of Limited-Epoch. Processes know at the beginning of a round if they are scheduled or if they
are unknowledgeable. Such processes will attempt to transmit according to the schedule described by the
generalized multiselector.3 The multiselector guarantees that one of its partitions will simultaneously select
the t + 1 processes that are actually scheduled to transmit during this round of the epoch (some of which
might be unknowledgeable). From this we conclude that at least 1 incomplete value is transmitted to the
listeners for each round of the schedule. Thus, we modify the definition of E: for r > 1, E(r) = dE(r−1)t

C e.
When Gossip calls Limited-Special-Epoch, there are at most 3t incomplete processes—t from each set

of epochs, and as many as t additional processes that finished the final epoch in an unknowledgeable state
3For simplicity, in the pseudocode, when we say a process transmits on channel Mr(i), if Mr(i) maps to 0—which is possible

with a generalized multiselector—this is equivalent to being scheduled not to transmit.
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and thus act as if they have not completed. In Limited-Special-Epoch, processes that are not complete or
are unknowledgeable are labeled special. A (n, C, C, 3t)-generalized-multiselector is used to ensure that
all subsets of size t + 1 of these up to 3t special processes get an opportunity to transmit concurrently. It
follows that at most t are blocked from transmitting. As before, we attempt many different sets of listeners
to make sure at least one is comprised of c2 processes that are complete and knowledgeable. For this set, the
Disseminate call will work as before, spreading n− t rumors to n− t processes.
Performance. The total running time of the aggregation phases is now O(n|Ma|), where |Ma| = O((2t +
1)(C + 1)2t+1 log n/(2t + 1)) by Theorem 3 and the fact that e < t + 1. Dissemination has running time
(Ct + 1)|Md|, where in this case |Md| = O((t + 1)et+1 log n/(t + 1)) by Theorem 1; the number of
disseminations is bounded by n/t. Finally, the special epoch costs a factor of O(t) more than a regular
epoch. We thus conclude:

Theorem 10. When C = t + 1, the gossip protocol terminates in O
([

n3 + (t + 2)3(t+1)
]
· log n

2t+1

)
, or

more specifically, O
(
t(c + 1)2t+1 log n

2t+1

[
n + t(c + 1)t−1

])
rounds.

5.2 Lower Bound
In this section, we show that if C = t + 1, every gossip protocol is exponential in t.
Theorem 11. Every almost-gossip protocol where C = t + 1 requires at least Ω(2t+1/

√
t + 1) rounds.

Proof. Consider a protocol that solves almost-gossip in m rounds for all executions. We use this protocol
to construct a (n, C, t+1)-multiselector of length m, and then invoke Theorem 6 to conclude the proof. We
construct the multiselector by simulating the gossip protocol in the following way, for each round:
• Every process that is scheduled to listen is simulated as if it receives no messages in that round (as if

the adversary had disrupted the channel).
• Every process that is scheduled to transmit on some channel is simulated as if it transmits its message.

For each round r, we construct a function Mr of the (n, C, t + 1)-multiselector as follows: if a process i
listens on channel k, then Mr(i)← k; otherwise, if process i does not listen on any channel (either because
it transmits or because it does nothing), then Mr maps i to 1, a default.

We argue that M is a (n, C, t + 1)-multiselector: Assume for the sake of contradiction that it is not.
Then, for some set S of size t + 1, no M` maps S to unique channels. We construct a real execution in
which no element in S ever receives a message. Assume that prior to round r, no process in S has received
any message. We can conclude that in round r, the processes in S behave according to the simulation used
in constructing M . Thus the elements in S listen on no more than t channels. (Some may also transmit
in that round; some may do nothing; in any case, they learn nothing.) The adversary blocks exactly these
≤ t channels, maintaining the invariant that no process in S has received a message. This is a contradiction.
Since M is a (n, C, t + 1)-multiselector, the result follows from Theorem 6 with C = t + 1. �

5.3 Gossip with Other Bounded Numbers of Channels
We have discussed the case where C is unlimited and where it was minimal. For completeness, we briefly
addresses the intermediate possible values. When C < 2t+1, the aggregation phase requires the use of gen-
eralized multiselectors as in Limited-Epoch. It follows that the running time does not differ significantly for
t+1 ≤ C ≤ 2t+1. For C ≥ 5t+1, we can use the algorithm described in Section 4 for unlimited channels,
where the multiselectors used by the dissemination routine are sized appropriately; as C grows the running
time decreases, as the more available channels reduces the size of the multiselectors used in Disseminate
and Special-Epoch. For 2t + 1 < C < 5t + 1, we must use a hybrid algorithm in which Disseminate
stays the same, but Special-Epoch must use generalized multiselectors as in Limited-Special-Epoch. It is
straightforward (but tedious) to calculate the associated running times.
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A Appendix
Figure 5: Epoch routine for process pi where C = t + 1.

1 Limited-Epoch(L, knowledgeable, rnds)i

2 let M be a (n, C, C, 2t + 1)-generalized-multiselector.
3 S ← ∅
4 if knowledgable = true then
5 Let S be the set of processes that are not in L and not completed.
6 Partition S into d|S|/ce sets of size C.
7 for r1 = 1 to rnds do
8 if (r1 ≤ d|S|/Ce) then
9 for r2 = 1 to |M | do

10 if i /∈ L and ((i is not knowledgable) or (i ∈ S[r1])) then schedule i to transmit on channel Mr2(i).
11 if ∃k ∈ {1, ..., C} : i ∈ L[k] then schedule i to receive on channel k.
12 knowledgable ←Disseminate(L[1], . . . , L[C])i

13 return knowledgable
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Figure 6: Special Epoch routine for process pi where C = t + 1.

1 Limited-Special-Epoch(knowledgable)i

2 Let M be an (n, C, C, 3t)-multiselector
3 special ← false
4 if (knowledgable = false) or (i has not completed) then special ← true
5 if knowledgable = true then
6 L← set of c2(3t + 1) smallest processes that have completed in a previous epoch.
7 Partition L into (3t + 1) sets L1, . . . , Lt+1 of size c2.
8 Partition each Lk into c sets Lk[1], . . . , Lk[c] of size c.
9 for s = 1 to 3t + 1 do

10 for r = 1 to |M | do
11 if special = true then schedule i to transmit on channel Mr(i)
12 if ∃k : i ∈ Ls[k] then schedule i to receive on channel k.
13 Disseminate(Ls[1], . . . , Ls[c])i
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Theorem 1. For every n ≥ c ≥ k, there exists an (n, c, k)-multiselector of size at most:

if (c = k) :
kec

√
2πc

ln
en

k

if (c/2 < k < c) : kek ln
en

k

if (k ≤ c/2) : k22k2/c ln
en

k
.

Proof. Let m1 = kec
√

2πc
ln en

k , m2 = kek ln en
k , and m3 = k22k2/c ln en

k , the three different bounds.
We begin by selecting M = M1, . . . ,Mm at random, and show that with some probability greater than

zero, M is a (n, c, k)-multiselector. For each M` and for each i ∈ P , choose M`(i) at random from [1, c].
Fix an arbitrary set S ⊆ P where |S| = k. Consider a particular M`. We calculate the probability

that each element of S is assigned a unique element in [1, c]. Since there are
(

c
k

)
k! good mappings from k

elements to [1, c], and ck total mappings of k elements to [1, c] sets, we conclude that:

PrS is uniquely mapped =

(
c
k

)
k!

ck
=

c!
(c− k)!ck

.

Let denote this probability by q. We consider three cases. For k = c, q is at least
√

2πce−c, by Stirling
inequality. For c/2 < k < c we again use Stirling inequality to get the lower estimate

√
2πccc

2
√

2π(c− k)(c− k)c−kekck
≥ e−k

for q. In the remaining case k ≤ c/2 we get the following lower estimate for q:(
c− k

c

)k

≥ 4−k2/c .

Denote the lower estimates on q obtained in the above cases by q1, q2, q3, respectively. The probability
that S is not well-mapped for all M` is at most (1 − qj)mj , for j = 1, 2, 3 depending on the case. Since
in all cases mj = q−1

j · k ln en
k , the probability that S is not well-mapped for all M` is always at most

e−k ln en
k ≤

(
k
en

)k
. Since there are only

(
n
k

)
<
(

en
k

)k possible subsets S of size k, we argue (by a union

bound) that the probability of some S being incorrectly mapped by all M` is at most
(
n
k

)
·
(

k
en

)k
, which is

in turn smaller than 1, implying the desired conclusion. �
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Theorem 3. For every n ≥ r ≥ c ≥ k where n ≥ 2r, there exists (n, c, k, r)-multiselectors of size
O
(
r (c+1)rek

kk log (en/r)
)

or O
(
r (c+1)r

(c−k)k log (en/r)
)

.

Proof. Fix m = 2r (c+1)r

(c−k)k log (en/r). We start with selecting M = M1, . . . ,Mm at random, and show
that with a positive probability, M is a (n, c, k, r)-multiselector. For each M` and for each i ∈ P , choose
M`(i) at random from [0, c].

Fix sets S, S′ where S′ ⊆ S ⊆ P , |S| = r, and |S′| = k. Consider a particular M`. We calculate
the probability that each element of S is assigned a unique element in [1, c], and each element in S \ S′ is
mapped to 0. Since there are

(
c
k

)
k! good mappings from k elements to [1, c], and (c + 1)r total mappings of

r elements in S to [0, c] sets, using Stirling bounds we conclude that:

Pr {S is uniquely mapped by M`} =

(
c
k

)
k!

(c + 1)r
≥ (c− k)k

(c + 1)r
.

Alternatively, with a simpler approximation, we could conclude:

Pr {S is uniquely mapped by M`} =

(
c
k

)
k!

(c + 1)r
≥ kk

ek(c + 1)r
.

Denote by q the probability that S is uniquely mapped by M` (it is the same for all ` ≤ m). The
probability that S is not well-mapped for all M` is at most (1−q)m. Since m = q−1 ·2r ln n

r , the probability
that S is not well-mapped for all M` is at most e−2r ln en

r ≤
(

r
en

)2r. Since there are only
(
n
r

)
·
(
n
k

)
<
(

en
r

)2r

possible subsets S, S′ of size r, k, respectively, we argue (by a union bound) that the probability of some S

being incorrectly mapped by all M` is at most
(
n
r

)
·
(
n
k

)
·
(

r
en

)2r, which is in turn smaller than 1, implying
the desired conclusion. �
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Theorem 6. Let M = M1, . . . ,Mm be an (n, c, k)-multiselector where n ≥ 2c and c ≥ k. Then M has
size at least:

if (c = k) :
2c

4
√

2πc

if (c/2 < k < c) : ek ln c
c−k

−k2/n ·
√

n(c− k)
4
√

c(n− k)

if (k ≤ c/2) : ek2/c−k2/n ·
√

n(c− k)
4
√

c(n− k)
.

Proof. Fix some particular ` ∈ [1,m], and define Sd = {i : M`(i) = d}, that is, the subset of P
that M` maps to d. In order to calculate the probability that M` correctly maps each element of S to a
unique element of [1, c], we first approximate the number of subsets of P that are correctly mapped by M`:(

c
k

)∏k
d=1 |Sd| ≤

(
c
k

)
(n/c)k . (The inequality follows by Lemma 12 in the appendix.) Since there are

(
n
k

)
sets of size k, and since (n − c) ≥ n/2, we conclude (via Stirling’s approximation) that the probability q
that S is correctly mapped by M` is at most(

c
k

)
(n/c)k(
n
k

) ≤ ccnk(n− k)n−k

nnck(c− k)c−k
·
2
√

2πc · 2
√

2π(n− k)
√

2πn ·
√

2π(c− k)
=

cc−k(n− k)n−k

(c− k)c−knn−k
·
4
√

c(n− k)√
n(c− k)

=
cc

(c−k)c

nn

(n−k)n

·
(

c−k
c

)k(
n−k

n

)k · 4
√

c(n− k)√
n(c− k)

<

(
c−k

c

)k(
n−k

n

)k · 4
√

c(n− k)√
n(c− k)

,

where the last inequality follows from the fact that the function f(x) = xx

(x−a)x decreases while x > a goes
to the infinity. Thus for k ≤ c/2 we get the upper bound

e−k2/c+k2/n ·
4
√

c(n− k)√
n(c− k)

,

and for c/2 < k < c we obtain

e−k ln c
c−k

+k2/n ·
4
√

c(n− k)√
n(c− k)

.

Thus, the probability that S is correctly mapped by any of the m functions is at most m·q (by a union bound).
In both cases it is smaller than 1, therefore with positive probability the set S is not correctly mapped by any
of the M`, resulting in a contradiction. �
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Theorem 5. M (c ,k) is a (n, c, k)-multiselector of size O(kk logk n).

Proof. Choose some set S of size k. By definition, there is some x such that Sx selects some i from S.
Let Ŝ = S − {i}. By definition there is some y such that M c−1 ,k−1

y correctly maps Ŝ to channels in the
range [1, c − 1]. M c, k

xy thus satisfies the requisite conditions. The size of M c, k follows immediately by
construction. �
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Lemma 12. Let a1, . . . , a` be a sequence of positive integers, and let a be the average of the ai. Then:

∏̀
j=1

aj ≤ a`

Proof. We show that for any a1, . . . , a` that have average a, their product is maximized when each ai = a.
We use Lagrange multipliers. We maximize the following function:

f(a1, . . . , an) =
n∏

i=1

ai + λ

(∑̀
i=1

ai − `a)

)
.

We then take the derivative with respect to ak, and set the result equal to zero.

∂f

∂ak
=
∏`

i=1 ai

ak
+ λ = 0 .

Solving for ak, we conclude that for all k:

ak =
∏`

i=1 ai

−λ
.

This implies that the maximum is achieved when all the ak are equal, leading to the conclusion that they are
each equal to a. �
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