
PIED: Physics-Informed Experimental Design for Inverse Problems

Apivich Hemachandra * 1 Gregory Kang Ruey Lau * 1 2 See-Kiong Ng 1 Bryan Low Kian Hsiang 1

Abstract
In many inverse problems (IPs) in science and en-
gineering, optimization of design parameters (e.g.,
sensor placement) with experimental design (ED)
methods is performed due to high data acquisition
costs when conducting physical experiments, and
often has to be done up front due to practical con-
straints on sensor deployments. However, existing
ED methods are often challenging to use in practi-
cal PDE-based inverse problems due to significant
computational bottlenecks during forward simula-
tion and inverse parameter estimation. This paper
presents Physics-Informed Experimental Design
(PIED), the first ED framework that makes use
of PINNs in a fully differentiable architecture to
perform continuous optimization of design pa-
rameters for IPs. PIED utilizes techniques such as
learning of a shared NN parameter initialization,
and approximation of PINN training dynamics
during the ED process, for better estimation of
the inverse parameters. PIED selects the optimal
design parameters for one-shot deployment, al-
lows exploitation of parallel computation unlike
existing methods, and is empirically shown to
significantly outperform existing ED benchmarks
in IPs for both finite-dimensional and function-
valued inverse parameters given limited budget
for observations.

1. Introduction
Inverse problems (IP), where the goal is to estimate un-
known latent parameters given the model dynamics and
some observation data (Vogel, 2002; Ghattas and Willcox,
2021), are key challenges in many science and engineering
disciplines such as classical mechanics (Tanaka and Bui,

*Equal contribution 1Department of Computer Sci-
ence, National University of Singapore, Singapore 117417
2CNRS@CREATE, 1 Create Way, 08-01 Create Tower, Sin-
gapore 138602. Correspondence to: Bryan Low Kian Hsiang
<lowkh@comp.nus.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1993; Gazzola et al., 2018), quantum mechanics (Chadan
et al., 1989) or geophysics (Smith et al., 2021; Waheed
et al., 2021). In these settings, we typically have rich do-
main knowledge on the model dynamics, such as the form
of governing partial differential equations (PDEs). Such
knowledge or equations typically allows us to develop for-
ward simulations to predict observation measurements, but
it is still challenging to directly solve the IP of inferring key
parameters of these equations from observation data. This is
especially so given that data acquisition (e.g., measurements
from experiments or field trials) is often very costly in these
settings, making the choice of what data to collect given a
limited budget critical to solving these problems in practice.

Experimental design (ED) methods aim to tackle the data
scarcity problem by optimizing design parameters, such as
sensor placement locations, to yield the most informative
measurements for estimating the unknown inverse param-
eters (Razavy, 2020; Alexanderian, 2021). These methods
typically make use of several forward simulations based on
guesses of the true inverse parameter to find the best design
parameter for the measurements. However, these methods
have been challenging to use in practical PDE-informed IPs
due to significant computational bottlenecks in both forward
simulations and parameter optimization, especially for sys-
tems with complex forward models and PDEs. In particular,
simulators using conventional PDE solvers often are costly
to compute, and returns discretized (mesh-based) approxi-
mate solutions whose derivatives are difficult to compute,
preventing the use of continuous optimization methods for
ED.

Physics-Informed Neural Networks (PINNs) are neural net-
works that incorporate PDEs and their initial/boundary con-
ditions (IC/BCs) into the NN loss function (Raissi et al.,
2019), and have been successfully applied to various prob-
lems. PINNs are especially well-suited to tackle experimen-
tal design for IPs, as they (1) allow easy incorporation of
observation data into the inverse problem solver through
the training loss function, (2) can be used for both running
forward simulations and directly solving IPs with the same
model architecture, (3) are continuous and differentiable
w.r.t. the function inputs, and (4) can amortize training cost,
e.g., through transfer learning. However, to our knowledge,
there has not been an ED framework for IPs that fully uti-
lizes these advantages from PINNs for ED problems.

1

PIED: Physics-Informed Experimental Design for Inverse Problems

In this paper, we present Physics-Informed Experimental
Design (PIED), the first ED framework that makes use of
PINNs in a fully differentiable architecture to perform con-
tinuous optimization of design parameters for IPs for one-
shot deployment. Our contributions are summarized as
follows.

• We propose a novel ED framework comprising of dif-
ferent components, such as the use of PINNs as both
forward simulators and inverse solvers, the parameteri-
zation of sensor placements for constrained configura-
tions, and an ED criteria for evaluating the performance
of the inverse solver (Sec. 3). These components en-
able efficient parallel computation and gradient-based
optimization methods in the continuous optimization
of observation inputs.

• We introduce the use of a learned initial NN parame-
ter which are used for all PINNs in PIED (Sec. 4.1),
based on first-order meta-learning methods, allowing
for more efficient PINN training over multiple PDE
inverse parameters (Sec. 5.1).

• We present effective ED criteria based on novel meth-
ods such as empirical Neural Tangent Kernel regression
for inverse PINNs and analysis based on the training
dynamics of PINN-based inverse solvers (Sec. 4.2).

• We empirically demonstrate that PIED is able to outper-
form other ED methods on inverse problems (Sec. 5.2),
both in the case where the inverse parameters of inter-
est are finite-dimensional and when they are unknown
functions.

2. Background and Related Works
Problem setup. Consider a system described by a set of
PDEs of the form

D[u, β](x) = f(x) ∀x ∈ X , and (1)
B[u, β](x′) = g(x′) ∀x′ ∈ ∂X . (2)

where u : X → Rdout describes the observable function
(solution of the PDE) over a coordinate variable x ∈ X ⊂
Rdin (where time could be a subcomponent), and β ∈ Rdinv

is the PDE inverse parameter1. D is a PDE operator and B is
an operator for the initial/boundary conditions (IC/BCs) at
boundary ∂X ⊂ X 2. Different inverse parameters β results
in different observable function u which satisfies (1), which
for convenience will be denoted by uβ .

1For simplicity we assume β is finite-dimensional. In our
experiments, we demonstrate how our method can also be extended
to cases where β is a function.

2Examples of PDEs, specifically those in our experiments, can
be found in App. C.1.

In the inverse problem (IP), we assume the operators D and
B, and functions f and g are known. However, the true
inverse parameter of interest, β0, is unknown and cannot
be observed directly. We can make measurements at M
observation points3 X = {xj}Mj=1 ⊂ X to get observa-
tion values Y = {uβ0

(xj) + εj}Mj=1, which corresponds
to noisy observations of uβ0 evaluated at points X where
we assume Gaussian noise εj ∼ N (0, σ2). In general, X
could possibly be constrained to a set of feasible configura-
tions S ⊆ XM . To solve the IP, we could use an inverse
solver that finds the inverse parameter β̂ that fits best with
the observed data (X,Y) where

β̂(X,Y) ≈ argmin
β

∥uβ(X)− Y ∥2. (3)

Unfortunately, the observations Y are typically expensive
to obtain due to costly sensors or operations. In many set-
tings, the observation points also have to be chosen in a
one-shot rather than in a sequential, adaptive manner due to
the costs of reinstalling sensors and inability to readjust the
design parameters on-the-fly. Hence, the observation points
X should be carefully chosen before actual measurements
are made. As we do not know the true inverse parameter β0,
good observation points should maximize the average per-
formance of the inverse solver over its distribution p(β). In
the experimental design (ED) problem, the goal is therefore
to select the observation input X ∈ S which minimizes

L(X) = Eβ,Y∼p(β)p(Y |β)

[∥∥β̂(X,Y)− β
∥∥2], (4)

or the expected error of the estimated inverse parameter w.r.t.
the possible true inverse parameters.

Related works. Existing ED methods in the literature in-
clude those that adopts a Bayesian framework (Chaloner and
Verdinelli, 1995; Long et al., 2013; Belghazi et al., 2018;
Foster et al., 2019) and those that aims to construct a pol-
icy for choosing the optimal experimental design (Ivanova
et al., 2021; Lim et al., 2022). These methods are typically
designed for the adaptive setting, where multiple rounds of
observations with different design parameters are allowed.
In each round, the design parameter can be adjusted based
on the data that has already been observed.

However, there are many practical scenarios where non-
adaptive ED are desirable. For instance, field scientists who
may incur significant cost in planning, deployment, and
collection of results for each iteration may strongly prefer
to perform a single round of sensor placement and measure-
ments as opposed to sequentially making few measurements
per round and frequently adjusting sensor placement lo-
cations. Another example is when the phenomena being

3We abuse notations by allowing the set of X to be an argument
for functions which takes in x ∈ X as well.

2

PIED: Physics-Informed Experimental Design for Inverse Problems

observed occurs in a single time period, and all observations
have to be decided beforehand. In these cases, it is more
practical to optimize for a single design parameter upfront
for collecting all observation data needed for the IP in one-
shot. Unlike past works, our work optimizes on one-shot
deployment.

Additionally, many ED methods assume that the observation
generation model exists and can be efficiently queried from.
This is not the case in our problem setting where the ob-
servation is governed by a PDE (1) which may not be easy
nor efficient to solve. While there are proposed ED meth-
ods which are specific for solving PDE-based IPs (Ghattas
and Willcox, 2021; Alexanderian, 2021; Alexanderian et al.,
2022), they typically rely on numerical solvers, which can
be computationally expensive for forward simulations and
inefficient for solving IPs. Furthermore, numerical solvers
often require input discretization and cannot be easily dif-
ferentiated, which makes optimization problems involving
numerical solvers more complex. Further material on re-
lated works are in App. B.

Physics-informed neural networks. In our work, we will
use physics-informed neural networks (PINNs) (Raissi et al.,
2019) to simulate PDEs and solve IPs. PINNs are neural
networks (NNs) ûθ that approximates the solution u to (1)
by minimizing the composite loss4

L(θ, β;X,Y) = Lobs(θ;X,Y) + LPDE(θ, β), (5)

where

Lobs(θ;X,Y) = (2|X|)−1
∥∥ûθ(X)− Y

∥∥2
2

(6)

LPDE(θ, β) = (2|Xp|)−1
∥∥D[ûθ, β](Xp)− f(Xp)

∥∥2
2

+ (2|Xb|)−1
∥∥B[ûθ, β](Xb)− g(Xb)

∥∥2
2
,

(7)

(X,Y) are observation data if available, and Xp ⊂ X and
Xb ⊂ ∂X are collocation points to enforce the PDE and
IC/BC constraints respectively. PINNs can be used both
as forward simulators when β is known but no observation
data is available (Lobs(θ;X,Y) = 0), or as inverse solvers
when observation data is available but β is unknown. For
the latter, β̂ is learned jointly with NN parameters θ during
training.

3. Experimental Design Loop
In this section, we provide an overview of our framework,
PIED, and its key components. Our framework aims to
fully utilize the advantages provided by PINNs for ED prob-

4For simplicity we consider one IC/BC, however the loss can
be generalized to include multiple IC/BCs by adding similar loss
terms for each constraint.

lems, and should allow efficient parallel computation and
differentiability for gradient-based optimization.

3.1. Components Within the Experimental Design Loop

Intuitively, to solve our ED problem given the loss in (4),
we could make use of PINNs, which could perform as both
forward simulator and inverse solver using the same architec-
ture, i.e., mapping from β to uβ and then reconstructing an
estimate β̂. The choice of observation points could then be
viewed as an information bottleneck, where we are querying
a relatively low-dimensional representation of the underly-
ing function uβ to pass to the inverse solver. Our goal would
then be to choose the best points such that reconstruction
error is minimized across possible β values.

To achieve this, we propose an ED framework which is
visualized in Fig. 1. We consider N parallel threads, each
representing sampled inverse parameter values (reference
β) from a prior distribution based on domain knowledge.
Within each thread, we would have (1) a forward simulator
to return an observable function ũβi

which approximates the
PDE solution uβi

with inverse parameter βi, (2) observation
selector which queries the approximated function ũβi(X) at
observation points X (consistent across all threads), and (3)
inverse solver an algorithm that takes in the queried points
to produce estimates of the inverse parameter β̂i. Finally, we
require (4) a criterion that captures how good the estimates
are across all threads, and an input optimization method
to select the single best observation input according to the
criterion. We will first describe these components, before
discussing how to efficiently compute them in Sec. 4.

PINN-based forward simulator (F). The first compo-
nent involves training parallelized PINNs (forward PINNs)
to estimate uβ for each of the N reference β threads i as
mentioned above. For each βi, a forward PINN is trained
with loss LPDE(θ, βi) from (5) to generate ũβi

, an estimate
of uβi

over the input space X , i.e., for each i = 1, . . . , N ,

βi
forward simulator F−−−−−−−−−−−−−−→ ũβi

= ûθi ≈ uβi
. (8)

Note that the trained PINNs ũβi
represent learned functions

that are meshless, and therefore can be queried at and even
differentiated w.r.t. any input x ∈ X . This is unlike tra-
ditional simulators based on numerical integrators which
would require discretization of the input space X .

While it may seem like the parallelized PINNs would be
computationally expensive, in practice this would not be the
case. First, the parameters of PINNs can be initialized from
some pre-trained base model or even from parameters of
PINNs trained on other values of β, which can reduce the
amount of time required for convergence of the PINN during
training. Second, modern software and hardware allows

3

PIED: Physics-Informed Experimental Design for Inverse Problems

Optimal point selection based on criterion

Eqn. 9

Reference Learned

Optimal

Forward
Simulator
(Eqn. 5)

Observation
Selector
(Eqn. 6)

Inverse
Solver

(Eqn. 8)

Thread

Thread

Thread

Figure 1. Overview of the various components composed in PIED for solving the ED problem of observation input optimization for IPs.
This includes the PINN-based forward simulator, the observation selector, the PINN-based inverse solver, and the ED criterion α̂i and its
optimization.

for very efficient training of multiple NNs in parallel (for
example, via the vmap function on JAX). Third, we have
additional training and approximation techniques (described
in Sec. 4) that makes use of the trained forward simulators
to significantly reduce the inverse solver costs.

Observation selector (OX). Given the trained forward
PINNs {ũβi

}Ni=1, the second component applies a “sieve”
that queries all forward PINNs with the same M observation
points X = {xj}Mj=1 ∈ S to produce the respective sets of
predicted observations, i.e., for each i = 1, . . . , N ,

ũβi

obs. selector OX−−−−−−−−−→
(
X, Ỹi

)
=
({

xj

}M
j=1

,
{
ũβi(xj)

}M
j=1

)
.

(9)

In real ED problems, the observation points X often cannot
be set arbitrarily, but instead is restricted due to operational
constraints to some feasible set S ⊂ XM . For example,
the observations may be possible at any spatial location
but must be made at specific time intervals, or must be
placed in a regular grid. Hence, unlike many of the past ED
works, we allow for both freely-chosen observation points
and constrained configurations that can be parameterized
by some design parameter γ ∈ Sγ ⊂ Rd from a closed set
where d ≤Mdin. Specifically, we consider S of the form

S =
{
Xγ : γ ∈ Sγ

}
where Xγ =

{
xγ,j

}M
j=1

. (10)

Finding the optimal X for a criterion (elaborated below)
can then be done by optimizing for γ, which is a continuous
optimization problem in a convex domain. Examples of how
various observation point configurations can be parameter-
ized this way are in App. D.

PINN-based inverse solver (I). For each βi, the predicted
observation data (X, Ỹi) from (9) will then be used to train
an inverse solver PINN (inverse PINN) with loss function
L(θ, β;X, Ỹi) from (5) to return an estimated inverse pa-
rameter β̂i, i.e., for each i = 1, . . . , N ,(

X, Ỹ
i

) inverse solver I−−−−−−−−−−−→ β̂i. (11)

Interestingly, in our ED framework, the forward and in-
verse PINNs have the same architecture. This enables us
to develop effective approximation techniques based on
predicting the dynamics of the inverse PINNs using its cor-
responding forward PINN, significantly reducing compu-
tational cost for the ED process. We elaborate further on
these techniques in Sec. 4.

Criterion and optimal point selection. The components
above allows us to directly consider the ED criterion in (4)
that evaluates how well a chosen set X impacts the average
performance of the inverse solver. Specifically, for a given
X , our criterion evaluates how well the estimates β̂i from
the inverse solvers matches the corresponding reference
parameter values βi across all parallel threads i,

α(X) =
1

N

N∑
i=1

αi(X) =
1

N

N∑
i=1

[
−
∥∥β̂i(X, Ỹi)− βi

∥∥2].
(12)

We can then construct an optimization loop where we search
for the best observation points X that maximizes α(X).
Due to the parameterization of Xγ and the differentiabil-
ity of our inverse solver, we could back-propagate through
α directly to compute ∇γα(Xγ). This allows α to be op-
timized using gradient-based iterative optimization meth-

4

PIED: Physics-Informed Experimental Design for Inverse Problems

ods such as gradient descent, instead of methods such as
Bayesian optimization which do not typically perform well
on high-dimensional problems, or requires combinatorial
optimization over discretized observation points.

3.2. Inference for Inverse Problem

After obtaining the optimal observation input configuration
X∗ from the ED loop, we can conduct actual experiments
to obtain the true observations Y . We can proceed to train
the inverse PINNs like before, but on the true observations
Y , as opposed to the simulated observations, to obtain an
estimate β̂∗ of the true inverse parameter β, i.e.,(

X∗, Y
) inverse solver I−−−−−−−−−−−→ β̂∗. (13)

Inverse
SolverReal

Experiment Real Observations
Estimated

Inverse
Parameter

Inference

Optimal
From Fig. 1

Figure 2. Inference stage for the IP using the inverse solver.

4. Practical Implementation of PIED
In this section, we introduce training and approximation
methods which makes PIED more practical. Specifically,
we adopt a meta-learning approach to learn a NN initial-
ization for efficient fine-tuning of our forward and inverse
PINNs across different threads (Sec. 4.1), and propose ap-
proximations of our criterion in (12) to effectively optimize
for the observation points (Sec. 4.2).

4.1. Learning a Fixed Initialization for PINNs

While it may seem challenging to train multiple forward and
inverse PINNs, each for different reference β, in practice
we can efficiently achieve this with REPTILE (Nichol et al.,
2018; Liu et al., 2021), a first-order meta-learning algorithm.
Each βi could be interpreted as a task, and our goal of using
REPTILE is to learn a fixed PINN initialization, θL-Init, that
allows quick fine-tuning to many different values of βi us-
ing fewer training steps. This improves the efficiency of (1)
forward PINNs as we first train for θL-Init before fine-tuning
θL-Init across different reference β, (2) inverse PINNs as we
can re-use θL-Init for the approximation of inverse PINNs
performance to optimize our ED criterion (elaborated in
Sec. 4.2), and (3) inference as we could also re-use θL-Init for
the final inverse PINN applied to actual experimental data

to find the true β̂∗. Furthermore, θL-Init can also be learned
once and re-used many times on different IP instances with
the same PDE setting, further reducing computational costs
for practical applications. Using a fixed shared NN initial-
ization θL-Init also results in more predictable PINN training
dynamics and more stable forward simulator and inverse
solver behaviors. We demonstrate these benefits empiri-
cally in Sec. 5.1, including indications that the PINN ûθL-Init

at initialization has some common structure shared among
various different uβi

.

4.2. Approximate Criteria for Performance of the
Inverse Solver

Directly optimizing the criterion in (12) while fully train-
ing inverse solvers in all threads requires high computa-
tional resources as it involves differentiating over many
inverse PINN training steps, causing memory issues when
performing back-propagation. Hence, we consider several
approaches to approximate the inverse solver performance
and criterion in (12).

Few-step Inverse Solver Training (FIST) Criterion.
First, we consider a relatively straightforward approach of
reducing computational cost by partially training the inverse
PINN for fewer training steps to get an intermediate esti-
mate of β̂i achievable at convergence – this will require
fewer back-propagation steps when optimizing for the set of
observation points X . Ideally, a set X that will eventually
result in better β̂i should also result in better intermediate
estimates even with fewer training steps, and provide us
with reliable signals for gradient descent optimization. In
practice, we find that this is more likely to be true when
the inverse PINN is closer to convergence, compared to the
early stages of training when most X choices would also
give good performance gains.

Hence, our method FIST initialize the inverse PINNs for
each thread i with NN parameters that are perturbed from
that of the corresponding converged forward PINN for βi,
making the inverse PINNs closer to convergence. With this
initialization, we then perform partial training for r training
steps (where r ∼ 102 in our experiments) to obtain the esti-
mate β̂i which is then compared against the reference βi to
compute the criterion. We present the pseudocode for FIST
in Alg. 1 of the Appendix. While FIST may outperform
benchmarks in some settings as we show in Sec. 5, we found
that its performance is sensitive to hyperparameters, making
it less practical in more complex settings.

Model Training Estimate (MoTE) Criterion. A better
approach may be to approximate the inverse solver output
β̂i at convergence instead of training it directly. To do
so, we can perform kernel regression with the empirical
Neural Tangent Kernel (eNTK) of the PINN (Jacot et al.,

5

PIED: Physics-Informed Experimental Design for Inverse Problems

2018; Wang et al., 2020; Lau et al., 2024), given a set of
observation data X . Specifically, under assumptions that
the PINN is in the linearized regime and trained via gradient
descent with (5), the inverse parameter β̂i at convergence
can be estimated by (IC/BC terms omitted for notational
simplicity)

β̂i(Xγ , Ỹγ) ≈ β(0) − J⊤
β Θ−1

γ Rγ (14)

where

Jβ =
[
0 Jp,β

]
, (15)

Θγ =

[
Jγ,θJ

⊤
γ,θ Jγ,θJ

⊤
p,θ

Jp,θJ
⊤
γ,θ Jp,θJ

⊤
p,θ + Jp,βJ

⊤
p,β

]
, (16)

Rγ =

[
ûθ(0)(Xγ)− Ỹγ

D[ûθ(0) , β(0)](Xp)− f(Xp)

]
, (17)

(θ(0), β̂(0)) are the initialization parameters, Jγ,θ =
∇θûθ(0)(Xγ), Jp,θ = ∇θD[ûθ(0) , β](Xp), and Jp,β =
∇βD[ûθ(0) , β(0)](Xp) (note that ∇β ûθ(0)(Xγ) = 0). This
estimate for β̂ in (14) is adapted from Lee et al. (2018), and
is verified in App. E.2.1, which includes further details on
the assumptions and derivation. Note that while the use of
NTK in PINNs is not new (Wang et al., 2020; Lau et al.,
2024), previous works have not utilized NTK to directly an-
alyze the performance of PINNs in solving inverse problems
as we have done.

In practice, as noted by Lau et al. (2024), finite-width PINNs
have eNTKs that evolves over training before they can better
reconstruct the true PDE solution. Hence, for the MoTE cri-
terion, we first do r steps of training on the θL-Init initialized
inverse PINN before computing the eNTK and performing
kernel regression. We present the pseudocode for MoTE in
Alg. 2 in the Appendix.

Tolerable Inverse Parameter (TIP) Criterion. Another
method to reduce computational cost is to directly approxi-
mate (12) without explicitly approximating β̂i. Intuitively,
we consider the situation where the inverse solver has been
initialized with NN parameters of the corresponding forward
PINN θi and with the correct inverse parameter β̂i = βi.
When trained with a bad choice of X , the parameters of the
inverse solver may drift to other incorrect β̂i which may still
be consistent with the observed data. Meanwhile, a good
choice of X should retain the correct β̂i throughout training.
We formalize this analytically to develop an approximate
criterion to optimize for X .

To formalize this, first note that the forward PINN pa-
rameters θi and its corresponding βi should minimize
L(θ, βi;Xγ , Ỹγ,i) given by (5), and would roughly simulta-
neously minimize Lobs

(
θ;Xγ , Ỹγ,i

)
and LPDE(θ, β). Con-

sider an inverse parameter β′ close to βi. We can derive,
as done in App. E.3 or in other past works (van der Vaart,

2000; Koh and Liang, 2017), that the NN parameter θ̃i(β′)
which minimizes LPDE(θ̃i(β

′), β′) would be given by

θ̃i(β
′) ≈ θi −

(
∇2

θLPDE(θi, βi)
)−1∇θ

(
∆LPDE(θi, β

′)
)
,

(18)
where ∆LPDE(θ

′, β′) = LPDE(θ
′, β′)− LPDE(θ

′, βi). Con-
sequently, the error of the observations at a specific β′ can
be written as

ℓXγ ,i(β
′) ≜ Lobs

(
θ̃i(β

′);Xγ , Ỹγ,i

)
(19)

= (2M)−1∥ûθ̃i(β′)(Xγ)− Ỹγ,i∥2. (20)

Given a choice of Xγ and its observation values Ỹγ,i , we
could characterize how likely the inverse solver would re-
main at βi or drift to a neighbouring β′ after training by
considering the Hessian of ℓXγ ,i(β) – a “larger” Hessian
means a lower chance that β̂i will change as the inverse
solver undergoes training to minimize loss. Hence, to opti-
mize for Xγ we could minimize the criterion

α̂TIP,i(Xγ) = log det∇2
β′ ℓXγ ,i(βi). (21)

Interestingly, we are able to also interpret α̂TIP,i as the infor-
mation gain of β̂i given observation data (Xγ , Ỹγ,i), which
we discuss in App. E.3.3. This provides an explanation of
how TIP could also be viewed with a Bayesian interpretation
as well. This also links TIP to some existing ED methods
for IPs based on Laplace’s approximation (Beck et al., 2018;
Alexanderian et al., 2022). Despite these links, our method
remains novel in that through the use of PINNs, we can con-
sider the Hessian of the PDE solution directly, allowing the
resulting criterion to be differentiable w.r.t. γ. This is unlike
past works which often require more careful analysis of the
specific PDE involved, and relies on discretized simulations
(and therefore are not differentiable w.r.t. the input points).

For completeness, in App. F, we present the full loop for
PIED, which incorporates all the approximation methods
and the full ED loop from Sec. 3.

5. Experiments
In this section, we present experimental results to demon-
strate the performance of PIED. We use multiple physics-
based IP in the setup described in Sec. 2. Details on the
problem setup and PDE definitions are in App. G. For com-
parison, we test our criteria against an approximation of the
expected mutual information criterion (Foster et al., 2019),
and traditional optimal sensor placement criteria (Krause
et al., 2008). We discuss these benchmarks along with others
tested in App. G.5.

5.1. Shared Initial NN Parameters

We first demonstrate the benefits of learning a shared NN
initialization for inverse PINNs. In Fig. 3a, we present the

6

PIED: Physics-Informed Experimental Design for Inverse Problems

(a) Learned Init.

0 5 10
t

0.5

0.0

0.5

1.0
x

(b) Random Init.

0 5 10
t

0.5

0.0

0.5

x

(c) Train Loss

102

Training Steps

0

10 1

100

 T
ra

in
 L

os
s

(d) Test MSE Error

102

Training Steps

100

0

100

101

 T
es

t E
rro

r

Figure 3. Results for learning a NN initialization for PINNs trained on 1D damped oscillator case. Figs. 3a and 3b consists of the NN
initialization (blue line) compared to the PDE solutions uβ for different values of β (faint green lines). Figs. 3c and 3d shows the
improvement of the train and test loss of forward PINNs when using a learned NN initialization as compared to using a random NN
initialization on different cases of β.

plot of the output of the learned NN initialization for the 1D
damped oscillator case. We can see that the learned initial-
ization results in a NN which shares similar structure to the
PDE solutions uβ for different values of β, e.g., replicating
the damping effect observed in the various solutions. In
Figs. 3c and 3d, we plot the improvement in train and test
loss for forward PINNs when initialized from θL-Init versus
when initialized randomly. We can see that in both exam-
ples, using the learned NN initialization consistently leads
to lower training loss and faster convergence to the min-
ima than when random initialization is used. While given
enough training steps we will eventually reach compara-
ble losses regardless of initialization, initializing with θL-Init
allows this convergence to happen in fewer steps. We pro-
vide further empirical results on θL-Init in App. H.1, which
demonstrates that this phenomena also applies for inverse
PINNs and for PINNs trained for other PDEs.

5.2. Experimental Design and Inverse Problem
Experiments

We now consider the ED problem on different IP scenarios
(i.e., different PDEs). Each method computes their optimal
observation points, which are then evaluated on multiple IP
instances (i.e., different ground truth inverse parameters β).
We report the distribution of the error of inverse parameter
estimation across all of these instances. This is because
some inverse parameters can be more easily estimated than
others, and ED methods should optimize the observation
points for the best IP performance across all inverse param-
eters β.

Finite-dimensional inverse parameters. We first present
ED problems on IPs with scalar-valued outcomes. In Fig. 4a,
we present the ED results for the 1D damped oscillator ex-
ample. We see that our proposed criteria all consistently
outperform the other benchmarks. In App. H.2, we report
further experimental results for the different variants of
MoTE and TIP along with other ED benchmarks. In sum-
mary, we find that using a learned NN initialization leads to
better performance in the IP. This is likely due to the quicker

convergence of training as discussed in Sec. 5.1, and also
the reduced harmful effects from bad random parameter
initialization of the inverse PINN. We also find that MoTE
criteria performs better as the number of initial training steps
r increases. We also conduct experiments with the 1D wave
equation, whose results are presented in Fig. 4b. We find
that the results show similar trends compared to the damped
oscillator example.

Function-valued inverse parameters. We also conducted
experiments for more complex scenarios where the inverse
parameter of interest is a function defined over X . For our
experiments, we parameterize the function-valued inverse
parameters using a small NN. Note that in this case the true
inverse function can be represented by many different NN
parameters. Despite this, our criterion still shows strong
performances over the benchmarks.

In Fig. 4c, we present the results for the 2D Eikonal equa-
tion. In this problem, the sensors can be placed freely in
X , yielding a high-dimensional design parameter. The re-
sults show that MoTE and TIP are able to better scale to
these high-dimensional problems compared to benchmarks,
and are able to select better observation inputs. This is fur-
ther demonstrated in Fig. 5 where we plot the observation
points chosen by TIP. We see that TIP selects points further
away from the wave source to obtain more information from
signal propagation, leading to better reconstruction of the
inverse function compared to other methods. Meanwhile,
FIST performs much worse than even random selection,
which may be due to the criterion’s heavy dependence on its
hyperparameter for good performance, and therefore may
not be ideal in complex settings.

In practice, we find that while MoTE can achieve error as
low as TIP, it often requires a larger r (i.e., more initial
training), making it less efficient than TIP. Based on our
empirical results, TIP can achieve low error with less train-
ing or hyperparameter adjustment, making TIP preferrable
over our other criteria. Additional results for the 2D Eikonal
equation example can be found in App. H.3.

7

PIED: Physics-Informed Experimental Design for Inverse Problems

(a) 1D Damped Oscillator

20 40 60 80
Loss Percentile

10 2

10 1

100

In
v.

Pa
ra

m
. E

rro
r

(b) 1D Wave Equation

20 40 60 80
Loss Percentile

10 1

100

In
v.

Pa
ra

m
. E

rro
r

(c) 2D Eikonal Equation

20 40 60 80
Loss Percentile

100

101

102

In
v.

Pa
ra

m
. E

rro
r

FIST (ours) MoTE (ours) TIP (ours) VBOED MI Grid Random

Figure 4. Results from the inverse problems. Figs. 4a and 4b shows examples for finite-dimensional inverse problem, while Fig. 4c shows
an example for function-valued inverse problem. In each plots, we show the distribution (i.e., percentile scores) of the IP error across all
of the experiment trials.

(a) True β0

0 2 40

2

4

0.20
0.32
0.44
0.56
0.68
0.80
0.92
1.04
1.16
1.28

(b) Performance of selected observation inputs

(Xγ , Ỹγ) Predicted β̂ |β̂(x)− β(x)|

TIP

0 2 40

2

4

0.0
0.9
1.8
2.7
3.6
4.5
5.4
6.3
7.2

0 2 40

2

4

0.20
0.32
0.44
0.56
0.68
0.80
0.92
1.04
1.16
1.28

0 2 40

2

4

0.00
0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24

Random

0 2 40

2

4

0.0
0.9
1.8
2.7
3.6
4.5
5.4
6.3
7.2

0 2 40

2

4

0.20
0.32
0.44
0.56
0.68
0.80
0.92
1.04
1.16
1.28

0 2 40

2

4

0.00
0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24

Figure 5. Results from one instance of the IP on Eikonal equation problem. Fig. 5a: true inverse function. Fig. 5b: demonstration of
observation inputs selected by TIP and Random methods, and how the observation inputs affect the resulting inverse solver.

6. Conclusion
We have introduced PIED, the first ED framework that uti-
lizes PINNs as both forward simulators and inverse solvers
in a fully differentiable architecture to perform continuous
optimization of design parameters for IPs. PIED selects
optimal design parameters for one-shot deployment, and
allows exploitation of parallel computation unlike existing
methods. We have also designed effective criteria for the
framework which are end-to-end differentiable and hence
can be optimized through gradient-based methods.

A limitation of our work is that it is focused on one-shot
selection of design parameters, and hence do not cater to
adaptive settings that allow for iterative incorporation of
new information from additional trials to choose subsequent
design parameters. We chose to focus on this to address
the many practical scientific settings where one-shot deploy-
ment is preferred. However, future work could extend PIED
to the adaptive setting, possibly using adopting a Bayesian
approach. Future work could also apply PIED to other dif-

ferentiable physics-informed architectures, such as operator
learning methods.

Acknowledgements
This research/project is supported by the National Research
Foundation, Singapore under its AI Singapore Programme
(AISG Award No: AISG2-PhD/2023-01-039J). This re-
search is part of the programme DesCartes and is supported
by the National Research Foundation, Prime Minister’s Of-
fice, Singapore under its Campus for Research Excellence
and Technological Enterprise (CREATE) programme. This
research/project is supported by the National Research Foun-
dation Singapore and DSO National Laboratories under the
AI Singapore Programme (AISG Award No: AISG2-RP-
2020-018).

References
Curtis R. Vogel. Computational Methods for Inverse

Problems. Society for Industrial and Applied Math-

8

PIED: Physics-Informed Experimental Design for Inverse Problems

ematics, January 2002. ISBN 978-0-89871-550-7
978-0-89871-757-0. doi: 10.1137/1.9780898717570.
URL http://epubs.siam.org/doi/book/10.
1137/1.9780898717570.

Omar Ghattas and Karen Willcox. Learning physics-
based models from data: perspectives from inverse
problems and model reduction. Acta Numer-
ica, 30:445–554, May 2021. ISSN 0962-4929,
1474-0508. doi: 10.1017/S0962492921000064.
URL https://www.cambridge.org/core/
product/identifier/S0962492921000064/
type/journal_article.

Masataka Tanaka and Huy Duong Bui, editors. In-
verse Problems in Engineering Mechanics: IUTAM
Symposium Tokyo, 1992. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1993. ISBN 978-3-642-52441-7
978-3-642-52439-4. doi: 10.1007/978-3-642-52439-4.
URL https://link.springer.com/10.1007/
978-3-642-52439-4.

M. Gazzola, L. H. Dudte, A. G. McCormick, and L. Ma-
hadevan. Forward and inverse problems in the mechanics
of soft filaments. Royal Society Open Science, 5(6):
171628, June 2018. doi: 10.1098/rsos.171628. URL
https://royalsocietypublishing.org/
doi/10.1098/rsos.171628. Publisher: Royal
Society.

K. Chadan, P. C. Sabatier, and R. G. Newton. In-
verse Problems in Quantum Scattering Theory.
Springer Berlin Heidelberg, Berlin, Heidelberg,
1989. ISBN 978-3-642-83319-9 978-3-642-
83317-5. doi: 10.1007/978-3-642-83317-5. URL
http://link.springer.com/10.1007/
978-3-642-83317-5.

Jonathan D. Smith, Kamyar Azizzadenesheli, and
Zachary E. Ross. EikoNet: Solving the Eikonal equa-
tion with Deep Neural Networks. IEEE Transactions on
Geoscience and Remote Sensing, 59(12):10685–10696,
December 2021. ISSN 0196-2892, 1558-0644. doi:
10.1109/TGRS.2020.3039165. URL http://arxiv.
org/abs/2004.00361. arXiv:2004.00361 [physics,
stat].

Umair bin Waheed, Ehsan Haghighat, Tariq Alkhal-
ifah, Chao Song, and Qi Hao. PINNeik: Eikonal
solution using physics-informed neural networks.
Computers & Geosciences, 155:104833, October 2021.
ISSN 0098-3004. doi: 10.1016/j.cageo.2021.104833.
URL https://www.sciencedirect.com/
science/article/pii/S009830042100131X.

M Razavy. An Introduction to Inverse Problems in
Physics. WORLD SCIENTIFIC, July 2020. ISBN

9789811221668 9789811221675. doi: 10.1142/
11860. URL https://www.worldscientific.
com/worldscibooks/10.1142/11860.

Alen Alexanderian. Optimal experimental design for
infinite-dimensional Bayesian inverse problems governed
by PDEs: a review. Inverse Problems, 37(4):043001,
March 2021. ISSN 0266-5611. doi: 10.1088/1361-6420/
abe10c. URL https://dx.doi.org/10.1088/
1361-6420/abe10c. Publisher: IOP Publishing.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-
informed neural networks: A deep learning frame-
work for solving forward and inverse problems in-
volving nonlinear partial differential equations. Jour-
nal of Computational Physics, 378:686–707, February
2019. ISSN 0021-9991. doi: 10.1016/j.jcp.2018.10.
045. URL https://www.sciencedirect.com/
science/article/pii/S0021999118307125.

Kathryn Chaloner and Isabella Verdinelli. Bayesian
Experimental Design: A Review. Statistical Science,
10(3), August 1995. ISSN 0883-4237. doi: 10.1214/
ss/1177009939. URL https://projecteuclid.
org/journals/statistical-science/
volume-10/issue-3/
Bayesian-Experimental-Design-A-Review/
10.1214/ss/1177009939.full.

Quan Long, Marco Scavino, Raúl Tempone, and Suo-
jin Wang. Fast estimation of expected information
gains for Bayesian experimental designs based on
Laplace approximations. Computer Methods in Ap-
plied Mechanics and Engineering, 259:24–39, June
2013. ISSN 0045-7825. doi: 10.1016/j.cma.2013.02.
017. URL https://www.sciencedirect.com/
science/article/pii/S0045782513000492.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajesh-
war, Sherjil Ozair, Yoshua Bengio, Aaron Courville, and
Devon Hjelm. Mutual Information Neural Estimation.
In Proceedings of the 35th International Conference on
Machine Learning, pages 531–540. PMLR, July 2018.
URL https://proceedings.mlr.press/v80/
belghazi18a.html. ISSN: 2640-3498.

Adam Foster, Martin Jankowiak, Elias Bingham, Paul
Horsfall, Yee Whye Teh, Thomas Rainforth, and Noah
Goodman. Variational Bayesian Optimal Experimental
Design. In Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/hash/
d55cbf210f175f4a37916eafe6c04f0d-Abstract.
html.

9

http://epubs.siam.org/doi/book/10.1137/1.9780898717570
http://epubs.siam.org/doi/book/10.1137/1.9780898717570
https://www.cambridge.org/core/product/identifier/S0962492921000064/type/journal_article
https://www.cambridge.org/core/product/identifier/S0962492921000064/type/journal_article
https://www.cambridge.org/core/product/identifier/S0962492921000064/type/journal_article
https://link.springer.com/10.1007/978-3-642-52439-4
https://link.springer.com/10.1007/978-3-642-52439-4
https://royalsocietypublishing.org/doi/10.1098/rsos.171628
https://royalsocietypublishing.org/doi/10.1098/rsos.171628
http://link.springer.com/10.1007/978-3-642-83317-5
http://link.springer.com/10.1007/978-3-642-83317-5
http://arxiv.org/abs/2004.00361
http://arxiv.org/abs/2004.00361
https://www.sciencedirect.com/science/article/pii/S009830042100131X
https://www.sciencedirect.com/science/article/pii/S009830042100131X
https://www.worldscientific.com/worldscibooks/10.1142/11860
https://www.worldscientific.com/worldscibooks/10.1142/11860
https://dx.doi.org/10.1088/1361-6420/abe10c
https://dx.doi.org/10.1088/1361-6420/abe10c
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://projecteuclid.org/journals/statistical-science/volume-10/issue-3/Bayesian-Experimental-Design-A-Review/10.1214/ss/1177009939.full
https://projecteuclid.org/journals/statistical-science/volume-10/issue-3/Bayesian-Experimental-Design-A-Review/10.1214/ss/1177009939.full
https://projecteuclid.org/journals/statistical-science/volume-10/issue-3/Bayesian-Experimental-Design-A-Review/10.1214/ss/1177009939.full
https://projecteuclid.org/journals/statistical-science/volume-10/issue-3/Bayesian-Experimental-Design-A-Review/10.1214/ss/1177009939.full
https://projecteuclid.org/journals/statistical-science/volume-10/issue-3/Bayesian-Experimental-Design-A-Review/10.1214/ss/1177009939.full
https://www.sciencedirect.com/science/article/pii/S0045782513000492
https://www.sciencedirect.com/science/article/pii/S0045782513000492
https://proceedings.mlr.press/v80/belghazi18a.html
https://proceedings.mlr.press/v80/belghazi18a.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/d55cbf210f175f4a37916eafe6c04f0d-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/d55cbf210f175f4a37916eafe6c04f0d-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/d55cbf210f175f4a37916eafe6c04f0d-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/d55cbf210f175f4a37916eafe6c04f0d-Abstract.html

PIED: Physics-Informed Experimental Design for Inverse Problems

Desi R Ivanova, Adam Foster, Steven Kleinegesse,
Michael U. Gutmann, and Thomas Rainforth. Im-
plicit Deep Adaptive Design: Policy-Based Exper-
imental Design without Likelihoods. In Advances
in Neural Information Processing Systems, vol-
ume 34, pages 25785–25798. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/hash/
d811406316b669ad3d370d78b51b1d2e-Abstract.
html.

Vincent Lim, Ellen Novoseller, Jeffrey Ichnowski, Huang
Huang, and Ken Goldberg. Policy-Based Bayesian Ex-
perimental Design for Non-Differentiable Implicit Mod-
els, March 2022. URL http://arxiv.org/abs/
2203.04272. arXiv:2203.04272 [cs, stat].

Alen Alexanderian, Ruanui Nicholson, and Noemi Pe-
tra. Optimal design of large-scale nonlinear Bayesian
inverse problems under model uncertainty, Novem-
ber 2022. URL http://arxiv.org/abs/2211.
03952. arXiv:2211.03952 [cs, math, stat].

Alex Nichol, Joshua Achiam, and John Schulman.
On First-Order Meta-Learning Algorithms, October
2018. URL http://arxiv.org/abs/1803.
02999. arXiv:1803.02999 [cs].

Xu Liu, Xiaoya Zhang, Wei Peng, Weien Zhou, and
Wen Yao. A novel meta-learning initialization
method for physics-informed neural networks. Neu-
ral Computing and Applications, 34:14511 – 14534,
2021. URL https://api.semanticscholar.
org/CorpusID:236318461.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural
Tangent Kernel: Convergence and Generalization in
Neural Networks. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/hash/
5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.
html.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and
why PINNs fail to train: A neural tangent kernel perspec-
tive, July 2020. URL http://arxiv.org/abs/
2007.14527. arXiv:2007.14527 [cs, math, stat].

Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong
Ng, and Bryan Kian Hsiang Low. PINNACLE: PINN
Adaptive ColLocation and Experimental points selec-
tion, April 2024. URL https://arxiv.org/abs/
2404.07662v1.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S.
Schoenholz, Jeffrey Pennington, and Jascha Sohl-

Dickstein. Deep Neural Networks as Gaussian Pro-
cesses. arXiv:1711.00165 [cs, stat], March 2018. URL
http://arxiv.org/abs/1711.00165. arXiv:
1711.00165.

A. W. van der Vaart. Asymptotic Statistics. Asymptotic
Statistics. Cambridge University Press, 2000. ISBN
9780521784504.

Pang Wei Koh and Percy Liang. Understanding Black-
box Predictions via Influence Functions. In Pro-
ceedings of the 34th International Conference on Ma-
chine Learning, pages 1885–1894. PMLR, July 2017.
URL https://proceedings.mlr.press/v70/
koh17a.html. ISSN: 2640-3498.

Joakim Beck, Ben Mansour Dia, Luis FR Espath, Quan
Long, and Raul Tempone. Fast Bayesian experi-
mental design: Laplace-based importance sampling
for the expected information gain. Computer Meth-
ods in Applied Mechanics and Engineering, 334:523–
553, June 2018. ISSN 00457825. doi: 10.1016/j.
cma.2018.01.053. URL http://arxiv.org/abs/
1710.03500. arXiv:1710.03500 [math].

Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-
Optimal Sensor Placements in Gaussian Processes: The-
ory, Efficient Algorithms and Empirical Studies. The
Journal of Machine Learning Research, 9:235–284, June
2008. ISSN 1532-4435.

Lorenz T. Biegler, Omar Ghattas, Matthias Heinkenschloss,
and Bart van Bloemen Waanders. Large-Scale PDE-
Constrained Optimization: An Introduction. In Lorenz T.
Biegler, Matthias Heinkenschloss, Omar Ghattas, and
Bart van Bloemen Waanders, editors, Large-Scale PDE-
Constrained Optimization, pages 3–13, Berlin, Heidel-
berg, 2003. Springer. ISBN 978-3-642-55508-4. doi:
10.1007/978-3-642-55508-4_1.

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha,
and Lu Lu. A comprehensive study of non-adaptive
and residual-based adaptive sampling for physics-
informed neural networks. Computer Methods in Ap-
plied Mechanics and Engineering, 403:115671, Jan-
uary 2023. ISSN 00457825. doi: 10.1016/j.cma.2022.
115671. URL https://linkinghub.elsevier.
com/retrieve/pii/S0045782522006260.

Tom Rainforth, Adam Foster, Desi R. Ivanova, and Fred-
die Bickford Smith. Modern Bayesian Experimental
Design, February 2023. URL http://arxiv.org/
abs/2302.14545. arXiv:2302.14545 [cs, stat].

Jay I. Myung, Daniel R. Cavagnaro, and Mark A. Pitt.
A tutorial on adaptive design optimization. Jour-
nal of Mathematical Psychology, 57(3):53–67, June

10

https://proceedings.neurips.cc/paper_files/paper/2021/hash/d811406316b669ad3d370d78b51b1d2e-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/d811406316b669ad3d370d78b51b1d2e-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/d811406316b669ad3d370d78b51b1d2e-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/d811406316b669ad3d370d78b51b1d2e-Abstract.html
http://arxiv.org/abs/2203.04272
http://arxiv.org/abs/2203.04272
http://arxiv.org/abs/2211.03952
http://arxiv.org/abs/2211.03952
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1803.02999
https://api.semanticscholar.org/CorpusID:236318461
https://api.semanticscholar.org/CorpusID:236318461
https://proceedings.neurips.cc/paper_files/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
http://arxiv.org/abs/2007.14527
http://arxiv.org/abs/2007.14527
https://arxiv.org/abs/2404.07662v1
https://arxiv.org/abs/2404.07662v1
http://arxiv.org/abs/1711.00165
https://proceedings.mlr.press/v70/koh17a.html
https://proceedings.mlr.press/v70/koh17a.html
http://arxiv.org/abs/1710.03500
http://arxiv.org/abs/1710.03500
https://linkinghub.elsevier.com/retrieve/pii/S0045782522006260
https://linkinghub.elsevier.com/retrieve/pii/S0045782522006260
http://arxiv.org/abs/2302.14545
http://arxiv.org/abs/2302.14545

PIED: Physics-Informed Experimental Design for Inverse Problems

2013. ISSN 0022-2496. doi: 10.1016/j.jmp.2013.05.
005. URL https://www.sciencedirect.com/
science/article/pii/S0022249613000503.

Quan Long, Mohammad Motamed, and Raúl Tempone.
Fast Bayesian optimal experimental design for seis-
mic source inversion. Computer Methods in Ap-
plied Mechanics and Engineering, 291:123–145, July
2015. ISSN 0045-7825. doi: 10.1016/j.cma.2015.03.
021. URL https://www.sciencedirect.com/
science/article/pii/S0045782515001310.

Adam Foster, Desi R. Ivanova, Ilyas Malik, and Tom
Rainforth. Deep Adaptive Design: Amortizing Se-
quential Bayesian Experimental Design. In Pro-
ceedings of the 38th International Conference on
Machine Learning, pages 3384–3395. PMLR, July
2021. URL https://proceedings.mlr.press/
v139/foster21a.html. ISSN: 2640-3498.

J.R. Taylor. Classical Mechanics. Information and Inter-
disciplinary Subjects Series. University Science Books,
2005. ISBN 9781891389221.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman
Bahri, Roman Novak, Jascha Sohl-Dickstein, and Jeffrey
Pennington. Wide Neural Networks of Any Depth Evolve
as Linear Models Under Gradient Descent. Journal of
Statistical Mechanics: Theory and Experiment, 2020(12):
124002, December 2020. ISSN 1742-5468. doi: 10.1088/
1742-5468/abc62b. URL http://arxiv.org/abs/
1902.06720. arXiv: 1902.06720.

Sacha Binder. Wave equation simulations 1d/2d (équa-
tion de d’alembert). https://github.com/
sachabinder/wave_equation_simulations,
2021.

Malcolm C. A. White, Hongjian Fang, Nori Nakata, and
Yehuda Ben-Zion. PyKonal: A Python Package for
Solving the Eikonal Equation in Spherical and Cartesian
Coordinates Using the Fast Marching Method. Seismo-
logical Research Letters, 91(4):2378–2389, June 2020.
ISSN 0895-0695. doi: 10.1785/0220190318. URL
https://doi.org/10.1785/0220190318.

Peter I. Frazier. A tutorial on bayesian optimization, 2018.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018.
URL http://github.com/google/jax.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel
Daulton, Benjamin Letham, Andrew Gordon Wilson, and

Eytan Bakshy. BoTorch: A Framework for Efficient
Monte-Carlo Bayesian Optimization. In Advances in
Neural Information Processing Systems 33, 2020. URL
http://arxiv.org/abs/1910.06403.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy
Frostig, Stephan Hoyer, Felipe Llinares-López, Fabian
Pedregosa, and Jean-Philippe Vert. Efficient and modular
implicit differentiation. arXiv preprint arXiv:2105.15183,
2021.

11

https://www.sciencedirect.com/science/article/pii/S0022249613000503
https://www.sciencedirect.com/science/article/pii/S0022249613000503
https://www.sciencedirect.com/science/article/pii/S0045782515001310
https://www.sciencedirect.com/science/article/pii/S0045782515001310
https://proceedings.mlr.press/v139/foster21a.html
https://proceedings.mlr.press/v139/foster21a.html
http://arxiv.org/abs/1902.06720
http://arxiv.org/abs/1902.06720
https://github.com/sachabinder/wave_equation_simulations
https://github.com/sachabinder/wave_equation_simulations
https://doi.org/10.1785/0220190318
http://github.com/google/jax
http://arxiv.org/abs/1910.06403

PIED: Physics-Informed Experimental Design for Inverse Problems

A. Notations

Table 1. List of notations used throughout the paper
Symbol Meaning Example
D PDE operator (1)
B Boundary condition operator (1)
X Input domain (1)
∂X Boundary of input domain (1)
S Set of feasible observation inputs
β Inverse parameter (1)
uβ Solution for (1) with inverse parameter β (3)
β̂ Estimate of inverse parameter from inverse solver (3)
θ NN parameter (5)
ûθ NN with parameters θ (5)
L PINN training loss (5)
Lobs Observation loss for PINN (5)
LPDE Collocation points loss for PINN (5)
F Forward simulator (8)
ũβi PINN, with NN parameter θi, which estimates uβi (8)
OX Observation selector with input X (9)
Ỹ Mock observation output from ũβi

(X) (9)
γ Parameterization for observation input (10)
Xγ Observation input corresponding to parameter γ (10)
Sγ Set of valid observation input parameterization (10)
I Inverse solver (11)
α ED criterion without inverse ensemble approximation (12)
αi ED criterion computed based on outputs of thread i of framework (12)
∇x Derivative or Jacobian w.r.t. x
∇2

x Hessian w.r.t. x
[a, b] Closed interval between a and b

B. Related Works
Inverse problems. Inverse problem (IP) (Vogel, 2002; Ghattas and Willcox, 2021) is an commonly studied class of
problem in many science and engineering disciplines such as classical mechanics (Tanaka and Bui, 1993; Gazzola et al.,
2018), quantum mechanics (Chadan et al., 1989) or geophysics (Smith et al., 2021; Waheed et al., 2021).

Many methods of solving IPs have been proposed, often involving minimizing the objective as stated in (3), possibly with
addition of some regularization terms. One such method is by using the Newton-conjugate gradient method (Biegler et al.,
2003; Ghattas and Willcox, 2021) to optimize the objective as stated in (3). However, the method relies on finding the
optimal β through gradient update steps, which requires computing the gradient and Hessian of the objective function with
respect to β. The computation of the gradient and hessian is often done by reformulating the IP (which can be viewed as
a constrained optimization problem) to instead be based on the Lagrangian, then using adjoint methods to compute the
corresponding gradient or Hessian (Ghattas and Willcox, 2021). This typically results in gradient and Hessian computations
requiring only some finite rounds of forward simulations instead. The computed Hessian can often also be used in Laplace’s
approximation in order to obtain a posterior distribution p(β|X,Y) for the inverse parameter (Long et al., 2013; Beck et al.,
2018; Ghattas and Willcox, 2021). However, this method is still restrictive since it may involve careful analysis of the PDE
that is involved in the IP in order to form the correct Lagrangian and compute the adjoint.

Physics-informed neural networks. In recent years, physics-informed neural networks (PINNs) have been proposed as
another method used to both perform forward simulations of PDE-based problems (Raissi et al., 2019) and for solving IPs
(Raissi et al., 2019). PINNs solve PDEs by parameterizing the PDE solution using a neural network (NN), then finding the
NN parameter such that the resulting NN obeys the specified PDE and the IC/BCs. This is done so via collocation points,
which are pseudo-training points for enforcing the PDE and IC/BC soft constraints.

12

PIED: Physics-Informed Experimental Design for Inverse Problems

PINNs are difficult to train in many PDE instances, such as when the solution is known to have higher frequencies (Wang
et al., 2020). As a result, many works have been proposed in improving the trianing of PINNs by rescaling the loss functions
of PDEs (Wang et al., 2020), or through more careful selection of collocation points (Wu et al., 2023; Lau et al., 2024).

Experimental design. Typically, in solving IPs, the observation data will not be available right away, but instead has to be
measured from some physical system. Due to the costs in making measurements of data, it is important that the observations
made are carefully chosen to maximize the amount of information that can be obtained from the observations. Experimental
design (ED) is a problem which attempts to find out what the best data to observe in order to gather the most information
about the unknown quantity of interest (Rainforth et al., 2023).

Bayesian ED (BED) has been one of the frameworks used for solving ED (Chaloner and Verdinelli, 1995; Myung et al.,
2013). BED considers the IP in a Bayesian framework, where Bayesian inference is used in the IP. In this case, the IP would
result in a posterior distribution p(β|X,Y). In BED, the criterion to be maximized would be some function of the posterior
distribution, such as the A-optimality (based on the trace of the posterior covariance matrix) or the D-optimality (based on
the expected information gain). Many works have proposed schemes to approximate the criteria in BED (Myung et al., 2013;
Long et al., 2015; Beck et al., 2018; Foster et al., 2019). We elaborate on criteria used in BED in App. C.2. Other methods
for solving ED aside from bayesian frameworks have also been proposed, such as policy-based methods (Foster et al., 2021).

C. Additional Background Information
C.1. Examples of PDEs

For more ideas behind the PDE problem setup, we provide multiple examples of PDEs and how the IP can be formulated
based on the PDEs. These examples are also used in the experiments of the paper as well, as further elaborated in App. G.2.

Damped oscillator. The damped oscillator is one of the introductory second-order ordinary differential equation (ODE) in
classical mechanics (Taylor, 2005). We consider the example due to the existence of a closed-form solution and its nice
interpretation under our ED framework.

Imagine a mass-spring system which is laid horizontally. The spring has spring constant k and experiences a resistive force
which is proportional to its current speed, where the constant of proportionality is µ. We let the attached mass have a mass
of M . We also assume the case where there are no external driving forces on the system. By applying the relevant forces
into Newton’s law of motion, the displacement of the mass x(t) can be expressed by the differential equation

M
d2x

dt2
+ µ

dx

dt
+ kx = 0. (22)

Given the IC of x(0) = x0 and
dx

dt
(0) = v0, we can write the solution as (Taylor, 2005)

x(t) =

Ae−γt cos(

√
ω2
0 − γ2t+ ϕ) if γ < ω0,

(Bt+ C)e−ω0t if γ = ω0,

De−(γ+
√

γ2−ω2
0)t + Fe−(γ−

√
γ2−ω2

0)t if γ > ω0,

(23)

where γ = µ/2M , ω0 =
√
k/M , and A, ϕ,B,C,D, F are constants which depends on x0 and v0.

Wave equation. For simplicity, we consider the 1D wave equation, which is given by

∂2u

∂t2
= v2

∂2u

∂x2
(24)

where v represents the speed of wave propagation, which may be a scalar or a function of x. In the inevrse problem setup,
one may be required to recover the wave velocity v given measurements of u(x, t).

Eikonal equation. Consider the Eikonal problem setup, which is often use to reconstruct material composition of some
region based on how waves propagated through the medium reacts. Its equation relates the wave speed v(x) at a point and

13

PIED: Physics-Informed Experimental Design for Inverse Problems

the wave propagation time T (x) at a point with PDE given by (Smith et al., 2021)

T (x) =
(
∇v(x)

)−1
with T (x0) = 0 (25)

where x0 is where the wave propagates from.

The goal of the experiments are to recover the true function v. However, this involves conducting seismic activities at
different set values of x0, and obtaining the corresponding reading for T (x) at specified values of x.

C.2. Bayesian Experimental Design

A certain variant often considered in ED is Bayesian experimental design (BED). In the BED framework, we assume a prior
p(β) on the inverse parameter to compute. For a given design parameter d, the system observes some output y.

p(β|d, y) = p(y|β, d) p(β)
Eβ∼p(β)

[
p(y|β, d)

] . (26)

Given the inference we can compute the expected information gain (EIG), which is sometimes also known as the Bayesian
D-optimal criterion. EIG criterion is defined as the expected Kullback-Leibler divergence between the prior p(β) and the
posterior p(β|d, y), averaged over the possible observations y. More formally, this can be written as

EIG(d) = Ey∼p(y|d)
[
DKL

(
p(β|d, y)∥p(β)

)]
= H[p(β)]− Ey′∼p(y|d)

[
H[p(β|d, y = y′)]

]
(27)

where the posterior is defined in (26). A naive approximation technique is to perform a nested Monte Carlo (NMC)
approximation (Myung et al., 2013).

EIG(d) ≈ 1

N

N∑
i=1

log
p(yi|βi,0, d)

1
M

∑M
j=1 p(yi|βi,j , d)

(28)

where βi,0, βi,1, . . . , βi,j ∼ p(β) and yi ∼ p(y|βi,0, d). In [Appendix], we demonstrate that the estimate approaches the
true EIG as N,M →∞. In practice, however, using the NMC estimator results in a biased estimtor for finite N and M , and
results in slow convergence with N and M . To improve on the NMC estimator, various schemes have been proposed mainly
to remove the need to perform two nested MC rounds, including variational methods (Foster et al., 2019) and Laplace
approximation methods (Long et al., 2015; Beck et al., 2018).

D. Parameterization of Input Points
To demonstrate the flexibility of the input points parameterization, we provide some examples of possible methods to
constrain the input points and how they be expressed in the appropriate forms. Fig. 6 graphically demonstrate what some of
these observation input constraints may look like.

(a) Free point placement

0 2 4
x1

0

2

4

x 2

(b) Regular time intervals

0 1 2 3 4
x

0

2

4

t

(c) Regular grid (1D)

0 1 2 4
x

Figure 6. Examples of observation input placements.

14

PIED: Physics-Informed Experimental Design for Inverse Problems

Points placed freely in input space. In this case, the points can be placed anywhere in X without restriction. To
parameterize this, we define d = Mdin, and define

Xγ =
{(

γ1 γ2 · · · γdin

)
,
(
γdin+1 γdin+2 · · · γ2din

)
, . . . ,

(
γMdin−din γMdin−din+1 · · · γMdin

)}
(29)

Points placed at regular time intervals. In this case, we assume the points are placed at chosen spatial locations, and
makes measurements at fixed time intervals t1, t2, . . . , tf . This is realistic in the case where the PDE solution evolves over
time, and so it makes sense to fix the location of the sensor but allow it to make readings throughout the evolution of the
system over time. In this case, γ only needs to encode the spatial location where the sensors should be placed. Specifically,
if there is one spatial dimension, then the parameterization for the sensors can be chosen as

Xγ =
{
(x, t) : x ∈

{
γ1, γ2, . . . , γd

}
and t ∈

{
t1, t2, . . . , tf

}}
. (30)

Points placed in a regular grid. In this case, the points are placed in a regular grid at regular intervals. This provides one
way to add extra constraints for sensor configurations to reduce the dimension of the problem. For demonstration, in 1D
problems, if we want to allow placement of s sensors in total, we can let d = 2 and parameterize the sensor placements as

Xγ =

{
γ1, γ1 +

γ2 − γ1
s− 2

, γ1 + 2 · γ2 − γ1
s− 2

, . . . , γ2

}
. (31)

E. Further Details About The Experimental Design Criterion
E.1. Few-step Inverse Solver Training Criterion

E.1.1. PSEUDOCODE FOR CRITERION COMPUTATION

Algorithm 1 Criterion estimation by Few-step Inverse Solver Training

1: function α̂FIST,i(Xγ)
2: // Perturbation of NN and estimated inverse parameters
3: θ̄ ← θi + εθ where εθ ∼ N (0, σ2)
4: β̄ ← βi + εβ where εβ ∼ N (0, σ2)

5: Ỹγ ← ũβi(Xγ)
6: // Partial training stage
7: Initialize (θ(0), β(0))
8: for j = 1, . . . , r do
9: // The training may be replaced with other gradient-based methods as well in practice

10: θ(j) ← θ(j−1) − η∇θL(θ(j−1), β̂(j−1);Xγ , Ỹγ)

11: β̂(j) ← β̂(j−1) − η∇βL(θ(j−1), β̂(j−1);Xγ , Ỹγ)
12: end for
13: return −∥β̂(r) − βi∥2
14: end function

E.1.2. LIMITATIONS OF FEW-STEP INVERSE SOLVER TRAINING

A limitation of the criterion is that it contains two hyperparameters, the perturbation noise level σ2 and the number of
training steps r, which can vary the performance level of the criterion. This causes a problem since it may be difficult to find
the correct set of hyperparameters which maximizes the ED method performance.

Furthermore, a large value of r can also make the criterion not differentiable in practice due to the need to perform
back-propagation over the gradient descent update steps. Fortunately, we find that in our experiments, using r in the order of
102 is sufficient given the correct perturbation noise level is set.

15

PIED: Physics-Informed Experimental Design for Inverse Problems

E.2. Model Training Estimate Criterion

E.2.1. ASSUMPTIONS AND PROOF OF (14)

In this section, we will consider PINNs in the linearized regime to demonstrate the validity of the approximation given in
(14). The results will be an extension from that given in (Lee et al., 2020). For convenience, we will drop the subscript and
write the learnable inverse parameter as β̂ and the NN parameters as θ.

We first recall the assumptions for the linearized regime of NNs. Following past works on the NTK for NNs (Jacot et al.,
2018; Lee et al., 2020) and PINNs (Lau et al., 2024), we assume that

ûθ(x) ≈ ûθ(0)(x) + J
(0)
γ,θ(θ − θ(0)) (32)

and

D[ûθ, β̂](x) ≈ D[ûθ(0) , β̂(0)](x) +
[
J
(0)

p,β̂
J
(0)
p,θ

] [
β̂ − β̂(0)

θ − θ(0)

]
. (33)

We briefly discuss the consequences of this approximation. The linearized regime only holds when the learned parameters
are similar to the initial parameters, which based on past works will hold when the NN is wide enough or when the NN is
near convergence. This is unlikely to hold in the real training of PINNs, except in the case where the initialized parameters
are already close to the true converged parameters anyway. Nonetheless, in our work, we do not use the assumptions to
make actual predictions on the inverse parameters in the IP, however only use it to predict the direction of descent for γ,
which would only use the local values anyway. Furthermore, we can also perform some pre-training in order to get closer to
the converged parameters first as well to make the assumptions more valid.

Let β̂(t) and θ(t) be the learned inverse parameter and NN parameter respectively at step t of the GD training. We will write
J
(t)
γ,θ = ∇θûθ(t)(Xγ), J

(t)
p,θ = ∇θD[ûθ(t) , β̂(t)](Xp), and J

(t)

p,β̂
= ∇βD[ûθ(t) , β̂(t)](Xp) (note that ∇β ûθ(t)(Xγ) = 0). We

can then write the GD training step as

∂

∂t

[
β̂(t)

θ(t)

]
= −η

[
∇βL(θ(t), β̂(t);Xγ , Y)

∇θL(θ(t), β̂(t);Xγ , Y)

]
(34)

= −η

[
0 J

(t)
p,β

J
(t)
γ,θ J

(t)
p,θ

]
︸ ︷︷ ︸

J (t)
γ

[
ûθ(t)(Xγ)− Ỹγ

D[ûθ(t) , β̂(t)](Xp)− f(Xp)

]
. (35)

Under the linearized regime, we can see that, J (t)
γ,θ ≈ J

(0)
γ,θ , J (t)

p,β̂
≈ J

(0)

p,β̂
and J

(t)
p,θ ≈ J

(0)
p,θ . We can use these approximations

to obtain

∂

∂t

[
β̂(t) − β̂(0)

θ(t) − θ(0)

]
=

∂

∂t

[
β̂(t)

θ(t)

]
(36)

≈ −ηJ (0)
γ J (0)

γ

⊤
[
β̂(t) − β̂(0)

θ(t) − θ(0)

]
− ηJ (0)

γ

[
ûθ(0)(Xγ)− Ỹγ

D[ûθ(0) , β̂(0)](Xp)− f(Xp)

]
(37)

which can be solved to give[
β̂(t) − β̂(0)

θ(t) − θ(0)

]
= −J (0)

γ

⊤
(J (0)

γ J (0)
γ

⊤
)−1
(
I − e−ηJ (0)

γ J (0)
γ

⊤
t
) [ûθ(0)(Xγ)− Ỹγ

D[ûθ(0) , β̂(0)](Xp)− f(Xp)

]
. (38)

At convergence, i.e., when t→∞, we can reduce the results for β̂(∞) − β̂(0) as

β̂(∞) − β̂(0) ≈

[
0

J
(0)
p,β

⊤

]
(J (0)

γ J (0)
γ

⊤
)−1

[
ûθ(0)(Xγ)− Ỹγ

D[ûθ(0) , β̂(0)](Xp)− f(Xp)

]
(39)

as claimed in (14).

16

PIED: Physics-Informed Experimental Design for Inverse Problems

E.2.2. PSEUDOCODE FOR CRITERION COMPUTATION

Algorithm 2 Criterion estimation by Model Training Estimate

1: function α̂MOTE,i(γ)
2: Initialize (θ(0), β(0)) ▷ Can set θ(0) to θL-Init as well
3: Ỹγ ← ũβi(Xγ)
4: for j = 1, . . . , r do
5: // The training may be replaced with other gradient-based methods as well in practice
6: θ(j) ← θ(j−1) − η∇θL(θ(j−1), β̂(j−1);Xγ , Ỹγ)

7: β̂(j) ← β̂(j−1) − η∇βL(θ(j−1), β̂(j−1);Xγ , Ỹγ)
8: end for
9: // To prevent backpropagation over the GD training

10: Set ∇γθ
(r) = 0 and ∇γ β̂

(r) = 0
11: Perform estimation

β̂(∞) = β̂(r) −

[
0

J
(r)
p,β

⊤

]
(J (r)

γ J (r)
γ

⊤
)−1

[
ûθ(r)(Xγ)− Ỹγ

D[ûθ(r) , β̂(r)](Xp)− f(Xp)

]
(40)

12: return −∥β̂(∞) − βi∥2
13: end function

Note that in Line 10 of Alg. 2, we set the gradients ∇γθ
(r) and ∇γ β̂

(r) to zero. This is done since when implementing
the function, it will be possible to write θ(r) and β̂(r) as explicit functions in terms of θ, meaning that when performing
back-propagation over the Model Training Estimate criteria, it will also consider these derivatives as well. This can cause
memory issues due to the need of back-propagating over many GD steps. Therefore, by explicitly stating that the gradient
is zero, it avoids problems during the back-propagation phase. In practice, this can be done via the stop_gradient
function on JAX, for example.

A speedup that can be applied on MoTE is to instead of performing initial pretraining to obtain the eNTK, we could reuse
the NN parameters from the forward PINN in order to compute the eNTK instead. We find that this trick is useful since it
gives performance almost as good as performing initial training in each criterion computation, while being more efficient
since no additional training needs to be done.

E.2.3. LIMITATIONS OF MODEL TRAINING ESTIMATE

MoTE relies on estimation of β̂ via the eNTK, which as experiments demonstrate, becomes better when the eNTK used
comes from a more “trained” NN. This means that while we could make our criterion more accurate, more NN training (i.e.,
higher r) per query and hence more computational resources would be required.

E.3. Tolerable Inverse Parameter Criterion

E.3.1. ASSUMPTIONS AND ROUGH PROOF OF (18)

In this section, we demonstrate the validity of (18), which is adapted from the proof in van der Vaart (2000). For convenience,
we will drop the subscript and consider the NN parameters θ and inverse parameters β.

Suppose we fix a β, and let θ = argminθ′ LPDE(θ
′, β). Since (θ, β) is a minima of LPDE, we can see that∇θLPDE(θ, β) = 0.

Let θ̃(β′) = argminθ′ LPDE(θ
′, β′). Our goal is to approximate θ̃(β′) when β′ ≈ β.

17

PIED: Physics-Informed Experimental Design for Inverse Problems

Let ∆LPDE(θ
′, β′) = LPDE(θ

′, β′)− LPDE(θ
′, β′) and ∆θ̃(β′) = θ̃(β′)− θ̃(β) = θ̃(β′)− θ. We can use this to write

∇θLPDE(θ̃(β
′), β′) = ∇θLPDE(θ +∆θ̃(β′), β′) (41)

≈ ∇θLPDE(θ, β
′) +

(
∇2

θLPDE(θ, β
′)
)
∆θ̃(β′) (42)

= ∇θLPDE(θ, β) + ∆LPDE(θ, β
′) +

(
∇2

θLPDE(θ, β
′)
)
∆θ̃(β′) (43)

= ∆LPDE(θ, β
′) +

(
∇2

θLPDE(θ, β
′)
)
∆θ̃(β′) (44)

where (42) arises from performing Taylor expansion on∇θLPDE(θ̃(β
′), β′) around θ.

Since (θ̃(β′), β′) is a minima of LPDE, we know that ∇θLPDE(θ̃(β
′), β′) = 0, and therefore we can solve for ∆θ̃(β′) to

obtain

∆θ̃(β′) ≈ −
(
∇2

θLPDE(θ, β
′)
)−1

∆LPDE(θ, β
′) (45)

which can be rewritten to match the form in (18).

Some readers may question whether (18) is valid for NNs where the learned NN parameter may not be a global minima.
We note that despite this, we are only interested in the curvature around a minima anyway, and so we can still inspect the
change of that minima as the loss function changes regardless. Furthermore, this technique has been used for NNs in other
applications as well, one notable instance being the influence function (Koh and Liang, 2017) which aims to study how the
test performance of supervised learning tasks changes as certain training examples are upweighed. In the paper, they are
able to design a scoring function based on the same mathematical tool and successfully interpret performances of NNs. In
our work, we find that despite the assumptions on the global minima is not met, we are still able to achieve good empirical
results as well.

E.3.2. CHOICE OF LOSS FUNCTION USED IN (18)

Note that in (18), we compute the Hessian w.r.t. the forward PINN loss. Some readers may wonder why the overall PINN
loss from (5) is not used instead.

This choice is due to two main reasons. First, it is more computationally efficient. Notice that the change in NN parameter
in (18) depends on LPDE, and therefore are independent of the observations and hence independent of the design parameters
γ. This leads to the optimizing of the final criterion to not require differentiating (18) with respect to γ, reducing the
computational load during optimization. We find that doing so does not cause significant effect in the obtained design
parameter γ∗.

Second, this matches more closely to the inverse problem setup as described in Sec. 2. In the IP as described, the objective
(3) is usually to find the β whose output matches that of Y . In TIP, the tolerable parameters is the Hessian based on the
objective (20), which can also be interpreted in a similar way as (3). Furthermore, through this interpretation, TIP also
exhibits a stronger connection to Bayesian methods, as discussed in App. E.3.3.

E.3.3. BAYESIAN INTERPRETATION OF TIP

Interestingly, it is possible to provide a Bayesian viewpoint for the TIP criterion. In brief, TIP can be seen as the application
of the Laplace approximation on the posterior distribution of β after observing data (Xγ , Y), assuming a uniform prior and
Gaussian observation noise.

Assume that the observed data is generated from the true underlying function with added Gaussian noise. Then, the
likelihood function can be written as

p(Y |β,Xγ) = N (Y |uβ(Xγ), σ
2I) =

M∏
j=1

N (yj |uβ(xγ,j), σ
2). (46)

If we assume a uniform prior over B (i.e., assume p(β) = c for some constant c), then it is simple to show that p(β|Xγ , Y) =

18

PIED: Physics-Informed Experimental Design for Inverse Problems

p(Y |β,Xγ)/p(Y |Xγ), where p(Y |Xγ) can be treated as a constant. In this case, we can write the log posterior as

log p(β|Xγ , Y) =

[
N∑
j=1

logN (yj |uβ(xγ,j), σ
2)

]
− log p(Y |Xγ) (47)

=

N∑
j=1

[
1

σ
√
2π
− (uβ(xγ,j)− yj)

2

2σ2

]
− log p(Y |Xγ) (48)

= −∥uβ(Xγ)− Y ∥2

2σ2
+ constant. (49)

To make (49) tractable, we can apply Laplace’s approximation on the posterior. To do so, we perform a Taylor expansion
on log p(β|Xγ , Y) around the MAP of the distribution. In this case, we would expect the MAP to be at the true inverse

parameter β0, where
∂

∂β
log p(β|Xγ , Y) = 0. Once expanded, this would give

log p(β|Xγ , Y) ≈ log p(β0|Xγ , Y) + (β − β0)
⊤
[
∇2

β log p(β0|Xγ , Y)

]
(β − β0) (50)

= log p(β0|Xγ , Y)− 1

2σ2
(β − β0)

⊤
[
∇2

β

∥uβ0(Xγ)− Y ∥2

2σ2

]
(β − β0). (51)

Note that this can also be written as

p(β|Xγ , Y) ≈ p(β0|Xγ , Y) exp

(
− (β − β0)

⊤
[
∇2

β

∥uβ0
(Xγ)− Y ∥2

2σ2

]
(β − β0)

)
(52)

which confirms that the Taylor expansion approximates the posterior distribution as a Gaussian distribution with mean

µLaplace = β0 and covariance matrix ΣLaplace = ∇2
β

∥uβ0
(Xγ)− Y ∥2

2σ2
. Since the posterior is approximated as a multivariate

Gaussian distribution, it is simple to approximate the entropy of β as distributed by p(β|Xγ , Y) using the entropy of
multivariate Gaussian distribution as

H[β|Xγ , Y] ≈ 1

2
log detΣLaplace +

M

2
log 2πe (53)

=
1

2
log det∇2

β∥uβ0
(Xγ)− Y ∥2 + constant. (54)

Finally, from (27), we can approximate the EIG as

EIG(γ) = −EY ′∼p(Y |Xγ)

[
H[β|Xγ , Y = Y ′]

]
(55)

= H[β]− Eβ0∼p(β),Y ′∼p(Y |β0,Xγ)

[
H[β|Xγ , Y = Y ′]

]
(56)

≈ H[β]− 1

2
Eβ0∼p(β),Y ′∼p(Y |β0,Xγ)

[
log det∇2

β∥uβ0
(Xγ)− Y ′∥2

]
+ constant (57)

where (57) uses the approximation of entropy in (54). Note that H[β] is a constant independent of γ and therefore can be
ignored.

Note that in the derivation so far, we have assumed that we are able to compute the PDE solution uβ and be able to compute
how the solution output changes w.r.t. β. This, fortunately, is made possible using PINNs. Specifically, in the likelihood
distribution p(Y |β,Xγ) from (46) and as sampled from in the expectation in (57), we can replace the uβ with a NN ûθ̃(β)

with parameter θ̃(β) as defined in Sec. 4.2. Similarly, inside the expectation term of (57), we can replace uβ0(Xγ) with
ûθ̃(β0)

, and Y ′ with a noisy reading of ûθ̃(β0)
. Ultimately, ignoring additive constants, this gives

EIG(γ) ≈ −1

2
Eβ0∼p(β),ε∼N (ε|0,σ2I)

[
log det∇2

β

[
∥ûθ̃(β)(Xγ)− ûθ̃(β0)

(Xγ) + ε∥2
]
β=β0

]
(58)

19

PIED: Physics-Informed Experimental Design for Inverse Problems

For simplicity, we can ignore the additive Gaussian noise in the approximation of Y , i.e., ignore the ε term, and the term
inside the expectation is the same as that in (21).

While the Laplace approximation has been used in prior ED works (Beck et al., 2018; Alexanderian et al., 2022), our
method is novel in that it incorporates PINNs which allows for the resulting criterion involving Laplace approximation to be
differentiable and generic enough for any inverse problems which can be modelled using PINNs.

We comment about the assumptions required to arrive at the approximation in (58).

• We assume that the data is generated with random Gaussian noise. This is a standard assumption as done in other IP
and ED methods in the literature.

• We assume that the posterior distribution is unimodal. Note that this assumption does not always hold. One example
where this assumption does not hold would be in the case where multiple values of β may represent the same inverse
parameter (e.g., β represents NN parameterization of an inverse function). In our experiments, we find that the perfor-
mance of the method remains good regardless. Furthermore, we believe that the issue can be mitigated by considering
the problem under some embedding space ϕ(β) where two embeddings are similar when their parameterizations
represent similar functions. This is likely possible by adjusting our criterion to incorporate ϕ through Lagrange
inversion theorem, however we will defer this point to a future work.

Another case where this assumption may not hold is when there are some degeneracy in the inverse problem solution.
In this case, the problem cannot be alleviated anyway unless more observations data are acquired (a simple way to think
about this is when there is only one observation reading is allowed, and therefore a good inverse parameter solution
will not be obtainable regardless of the ED method).

• We assume that the unimodal distribution is maximal at β0. Given that the distribution is unimodal, this point would
likely hold since the pseudo-observation from the NN is already obtained from using inverse parameter of β0.

E.3.4. APPROXIMATION OF HESSIAN IN (18)

Instead of computing the Hessian of LPDE directly, we can also employ a trick which avoids computing the Hessian directly,
but instead approximates the Hessian based on the first-order derivatives.

Suppose we define

R(θ, β) =

[
|Xp|−1/2

(
D[ûθ, β](Xp)− f(Xp)

)
|Xb|−1/2

(
B[ûθ, β](Xb)− g(Xb)

)] . (59)

We can see that
LPDE(θ, β) =

1

2
R(θ, β)⊤R(θ, β). (60)

We can then write

∇θLPDE(θ, β) = ∇θR(θ, β)⊤R(θ, β) (61)

and

∇2
θLPDE(θ, β) = ∇θR(θ, β)⊤∇θR(θ, β) +∇2

θR(θ, β)⊤R(θ, β). (62)

In the case that (θ, β) are obtained after PINN training has converged, we would have R(θ, β) ≈ 0, which means we can
write

∇2
θLPDE(θ, β) ≈ ∇θR(θ, β)⊤∇θR(θ, β). (63)

We therefore can approximate the Hessian as used in (18) using first-order derivatives instead.

E.3.5. LIMITATIONS OF TOLERABLE INVERSE PARAMETER

A limitation of the criterion is based on the approximation required in (18), which considers the change in the training loss
minima as β changes, where the result may not reflect a global minimal for loss functions that are non-convex, such as that
for NNs. Nonetheless, we find that this is fine in practice, as demonstrated by our criteria in the experiments and by other
works which relies on similar approximations (Koh and Liang, 2017).

20

PIED: Physics-Informed Experimental Design for Inverse Problems

F. Complete Algorithm For PIED
We summarize PIED via a pseudocode presented in Alg. 3. The ED procedure consists of three main phases – learning of the
shared PINN parameter initialization, the criterion generation phase which consists of performing forward simulations and
consequently defining the criteria, and the criterion optimization phase which proceeds to perform constrained continuous
optimization on the criterion.

Note that in our framework, the forward simulation only has to be ran once per ED loop, and can all be ran in parallel using
packages which allows for parallelization such as vmap on JAX. We also find that the forward simulation can be used
without explicitly injecting artificial noise, while still giving observation inputs which work well for IPs involving noisy
data.

In the criterion optimization phase, we use projected gradient descent to ensure the resulting design parameter is in the
bounded space. However, other constrained optimization algorithms could be used as well, e.g., L-BFGS-B. We repeat the
optimization loop over many runs due to the potential non-convexity of the criteria, to obtain a better estimate of the optima.

Algorithm 3 PIED

// Learning shared NN parameters
1: Randomly initialize θL-Init
2: for s rounds do
3: Randomly sample β′

1, . . . , β
′
k

4: for j = 1, . . . , k do
5: θ′j ← NN parameter after training θL-Init with training loss LPDE(θ, β

′
j)

6: end for
7: θL-Init ← 1

k

∑k
j=1 θ

′
j ▷ Used as initialization for all proceeding forward and inverse PINNs

8: end for
// Criterion generation phase

9: for i = 1, . . . ,M do
10: Randomize inverse parameter βi

11: ũβi
← F(βi) ▷ Forward simulation

12: if use FIST criterion then
13: Define α̂i to FIST criterion from Alg. 1
14: else if use MoTE criterion then
15: Define α̂i to MoTE criterion from Alg. 2
16: else if use TIP criterion then
17: Define α̂i to TIP criterion from (21)
18: end if
19: end for
20: Define aggregated criterion α(Xγ) =

1
N

∑N
i=1 α̂i(Xγ)

// Criterion optimization phase
21: Initialize γbest ∈ Sγ randomly
22: repeat
23: Initialize γ′ ∈ Sγ randomly
24: for p training steps do ▷ Gradient-based optimization
25: γ̃′ ← γ′ + η∇γα(Xγ′) ▷ Gradient ascent since the criterion should be maximized
26: γ′ ← projSγ

(γ̃′) ▷ Perform projection s.t. γ′ ∈ Sγ
27: end for
28: if α(Xγ′) > α(Xγbest) then
29: γbest ← γ′

30: end if
31: until computational limit hit
32: return γbest

21

PIED: Physics-Informed Experimental Design for Inverse Problems

G. Details About The Experimental Setup
G.1. General ED Loop and IP Setup

Our experiment consists of two phases. In the first phase, we perform the ED loop using PIED or with the other benchmarks.
Here, we allow a fixed number of forward simulations using PINNs, which the ED methods can query from as many times
as it wants. Each ED methods have time restrictions, where they are allowed to run either for a certain duration, or until they
have completed some fixed number of iterations.

After the ED methods have selected the optimal design parameters, the same design parameters are used to test on multiple
instances of the IP (we run at least 10 of such instances depending on how much computation resources the specific problem
requires). In each instance of the IP, we draw a random ground-truth inverse parameter, and generate the observations
according to the model and the random ground-truth inverse parameter. The IP is solved using inverse PINNs to obtain a
guess of the inverse parameter. For each instance, we can obtain an error score, which measures how different the inverse
parameter estimate is from the ground-truth value.

For each problem, we repeat the ED and IP loop five times, where in each time we obtain multiple values for the IP error. In
our results, we report the distribution of all the error scores obtained through the percentile values of the error (i.e., p percent
of all IP instances using a certain ED methods have errors of at most x), removing some of the extreme values (in the main
paper, we remove the top and bottom ten percent, while in the Appendix we show the distribution via a boxplot removing
the outliers). This is done since some inverse parameters result in IPs which are easier than others, and to demonstrate the
performance of each ED methods across all possible inverse parameters.

G.2. Specific Problem Setup For Each PDE Scenarios

In this section we describe the PDEs used and the problem setup involved. The definitions of the PDE can be found in
App. C.1, and this section will be focused on describing the problem setup for each of the PDEs used in our experiments.

1D damped oscillator example. In this case, we assume we know the system follows the PDE as in (22), with some
known value of x0 ∈ [0, 1] and v0 ∈ [−1, 1]. We set M = 1, and would like to compute the values for µ ∈ [0, 4] and
k ∈ [0, 4]. In our IP, we are allowed to make three noisy observations at three timesteps t1, t2, t3 ∈ [0, 10], which can be
chosen arbitrarily. We note that while it is unrealistic for these measurements to be made arbitrarily, we do so in order to be
able to construct a simple toy example which can be experimented with. The resulting true observation were computed
using the closed form solution in (23), and has added noise with variance 10−3. Each ED benchmarks are given 10 minutes
to find the optimal design parameter, or are allowed to run at least 5 rounds of gradient descent optimization or 1k rounds of
Bayesian optimizaion, whichever takes longer. Each ED are given 10 forward simulations.

1D wave equation example. Assume a system which follows the wave equation given by (24) over the domain x ∈ [0, 6]
and t ∈ [0, 6]. We assume the IC u(x, 0), and the wave velocity in the form

v(x) =

0 if x = 0,

v1 if 0 < x < 4,

v2 if 4 ≤ x < 6,

0 if x = 6.

(64)

In this case, v1, v2 ∈ [0.5, 2] are the inverse parameters to be recovered in the IP. In the ED problem, we restrict
the points to be placed only at regular time intervals, i.e., following (30) where we restrict γ1, γ2, γ3 ∈ [0, 6] and let
t ∈ {0, 0.2, 0.4, . . . , 6}. The true observations are numerically generated using code from Binder (2021), with outputs
interpolated on continuous domain and truncated to the nearest 6 decimal places to simulate cases where measurements
can only be made up to a finite precision. Each ED benchmarks are given 60 minutes to find the optimal design parameter
(including the forward simulation of PINNs), or are allowed to run at least 3 rounds of gradient descent optimization or 1k
rounds of Bayesian optimizaion, whichever takes longer. Each ED methods are given 5 forward simulations.

2D Eikonal equation example. Assume that the system follows the equation specified in (25), and the goal is to recover
the values of v(x) for the entire domain. For each IP instance, we draw a random ground truth v(x) using a NN with a
random initialization. For the ED problem, the aim is to find 30 random observations from the 2D input domain [0, 5]× [0, 5]

22

PIED: Physics-Informed Experimental Design for Inverse Problems

to observe values of T (x). The observation points are only required to be within the input domain. The true observations are
generated using PYKONAL package (White et al., 2020), with outputs interpolated on continuous domain and truncated
to the nearest 3 decimal places to simulate cases where measurements can only be made up to a finite precision Each ED
benchmarks are given 30 minutes to find the optimal design parameter (including the forward simulation of PINNs), or are
allowed to run at least 3 rounds of gradient descent optimization or 1k rounds of Bayesian optimizaion whichever takes
longer. Each ED methods are given 10 forward simulations.

G.3. PINN and PINN Training Hyperparameters

The architectures of the PINNs and other NNs used are listed in Table 2. Note that we only use multi-layer perceptrons in
our experiments. The training process hyperparameters for the forward and inverse PINNs are listed in Table 3.

Table 2. Architectures of used NNs
Problem Depth Width Activation Output transformation

Damped oscillator 6 8 tanh None
1D wave 3 16 sin None

2D Eikonal (modelling uβ) 6 8 tanh (x, y)→ y∥x− x0∥
2D Eikonal (modelling β) 1 16 sin (x, y)→ |y|+ 0.2

Table 3. Training hyperparameters
Problem Training steps # PDE Col. Pts. # IC/BC Col. Pts. Optimizer

Damped oscillator 30k 300 1 Adam (lr= 0.01)
1D wave 200k 15k 2k L-BFGS

2D Eikonal 50k 10k 1 Adam (lr= 0.001)

G.4. Scoring Metric

To judge how well our ED methods perform, we will use the error L(β̂, β) of the inverse parameter β. When β has finite
dimensions (i.e., represented as a scalar value or as a vector value), then the loss is simply the MSE loss, i.e.,

L(β̂, β) =
∥∥β̂ − β

∥∥2
2
. (65)

For the case where β is a function, we select some number of test points {xT,i}Ntest
i=1 and compute the MSE loss of the

estimated function on those test points, i.e.

L(β̂, β) =

Ntest∑
i=1

∥∥β̂(xT,i)− β(xT,i)
∥∥2
2
. (66)

G.5. Benchmarks for the Scoring Criterion

In this section we describe a few scoring criteria we use as a benchmark. We first describe the benchmarks which are based
on methods of estimating the expected information gain (EIG).

• Nested Monte Carlo (NMC) estimator (Myung et al., 2013). The estimator estimates the double integral with nested
summations as given in (28).

• Mutual Information Neural Estimator (MINE) (Belghazi et al., 2018). The estimator utilizes Donsker-Varadhan
representation of the KL Divergence to show that we can provide a lower bound to the EIG as

EIG(Xγ) ≥ LDV(Xγ) (67)

≜ E(y,β)∼p(β)p(Y |β,Xγ)

[
Tϕ(Y, β|Xγ)

]
− logE(Y,β)∼p(β)p(y|Xγ)

[
eTϕ(Y,β|Xγ)

]
(68)

where Tϕ is a parametrized family of functions.

23

PIED: Physics-Informed Experimental Design for Inverse Problems

Note that while the estimator LDV(Xγ) relies on sampling p(Y |β,Xγ) and p(Y |Xγ) directly, this would require
running many forward simulations for different β samples. Instead, to sample from these two distributions, we draw M
random samples of β and approximate p(β) with a mixture of Dirac-delta distributions, i.e.,

p(β) ≈ p̂(β) ≜
1

M

M∑
i=1

δ(β − βi) where β1, . . . , βM ∼ p(β). (69)

In this case, the forward simulation only needs to be ran for M samples of β and the distributions p(Y |β,Xγ) and
p(Y |Xγ) can be efficiently approximated.

• Variational Bayesian Optimal ED (VBOED) estimator (Foster et al., 2019). The original paper desicribes multiple
estimators for the EIG, however we will use the variational marginal estimator. The estimator utilizes the fact that we
can provide an upper bound to the EIG as

EIG(Xγ) ≤ Umarg(Xγ) ≜ E(Y,β)∼p(β)p(Y |β,Xγ)

[
log

p(Y |β,Xγ)

qϕ(Y |Xγ)

]
(70)

where qϕ is a variational family parametrized by ϕ. To compute the EIG, we find the ϕ which minimizes Umarg(Xγ).
Instead of computing the upper bound exactly, we use an empirical estimation based on samples of (Y, β) generated
from the PINNs with added noise. Similar to MINE, we approximate p(β) with a mixture of Dirac-delta distributions
(69) such that only a limited number PINN forward simulations are required.

Note that while Foster et al. (2019) does propose a variational NMC (VNMC) estimator as well, this requires computing
p(Y, β|Xγ) = p(β)p(Y |β,Xγ) for a randomly sampled β. It is not feasible to compute p(Y |β,Xγ) on the fly since
this would require running a costly forward simulation for the randomly sampled β, and therefore the method is not
included for this benchmark.

We also use other benchmarks which are not based on the EIG, listed as follows.

• Random. The design parameters are chosen randomly.

• Grid. The design parameters are chosen such that the sensor readings are placed regularly in some fashion. For the 1D
examples, the sensors are placed such that they all regularly spaced out. For the 2D examples, the sensors are placed
such that they are shaped in a regular 2D grid with each sides having as equal number of sensors as possible. Note that
no optimization is done, but instead the observation input configuration is fixed per problem.

• Mutual information (MI) (Krause et al., 2008). The criterion considers the outputs YXγ
of the chosen observation

input Xγ and the outputs YXt
of some test set Xt, and defines the score to be the mutual information between YXγ

and
YXt

, i.e.,
αMI(Xγ) = MI(YXt\Xγ

;YXγ
) = H[YXt

]−H[YXt\Xγ
|YXγ

]. (71)

In our experiments, we approximate the observation outputs via a Gaussian process (GP) whose kernel is the covariance
of the PDE solutions, i.e., K(x, x′) = Covβ∼p(β)[uβ(x), uβ(x

′)], where we approximate the covariance using the
forward simulations. By approximating the output using a GP, the entropies H[YXt\Xγ

] and H[YXt\Xγ
|YXγ] can be

written directly in terms of the approximate kernel function. Also, since we do not perform discretization and treat the
problem as a combinatorial optimization one due to the additional point constraints, we chose to let Xt \Xγ = Xt for
simplicity.

We also run the three criteria proposed as the benchmark, listed below.

• Few-step Inverse Solver Training (Alg. 1). For each of the trial, we note the value of parameter perturbation σ2
p and

training steps r used.

• Model Training Estimate (Alg. 2). For each trial, we note how many initial training steps r are used, or if we just
re-use the NN parameters from the forward PINN for the eNTK.

24

PIED: Physics-Informed Experimental Design for Inverse Problems

• Tolerable Inverse Parameter (21). For each trial, we note whether we use the approximation for the Hessian as
discussed in App. E.3.4.

In the results, we add “+ LI” suffix to indicate the benchmark where the learned NN initialization is used for all of
the forward and inverse PINNs involved during ED and IP phases. MINE and VBOED are optimized using Bayesian
optimization (Frazier, 2018), while NMC and MI are optimized via gradient descent due to criteria which are efficient
enough for gradient computations.

G.6. Implementation and Hardware

All of the code were implemented based on the JAX library (Bradbury et al., 2018), which allows for NN training and
auto-differentiation of many mathematical modules within. Criteria which are optimized by Bayesian optimization are
done so using BOTORCH (Balandat et al., 2020), while criteria optimized using gradient-based methods are done so using
JAXOPT (Blondel et al., 2021).

For the 1D damped oscillator experiment, each ED loop and IP solves were done on a machine with AMD EPYC 7543
32-Core Processor CPU and NVIDIA RTX A5000 GPU. The remaining experiments were done on AMD EPYC 7763
64-Core Processor CPU and NVIDIA L40 GPU.

H. Additional Experimental Results
H.1. Additional Results From Experiments on Learned NN Initialization

In Fig. 7, we present examples of the learned NN initialization and also its performance for forward PINNs for the 2D
Eikonal equation example. We see that this shows similar trends to the examples from before as shown in Fig. 3.

In Fig. 8, we show the test error for an individual forward PINN when performing forward simulation for a value of β, when
using and not using a learned NN initialization. We see that when using a learned NN initialization, the test loss typically is
already lower than that from random initialization at the start, and also tends towards convergence much faster. Even when
the test loss is higher at the start, it is able to catch up to the performance of the randomly initialized PINN under much
fewer training steps.

In Fig. 9, we present the results for using a learned NN initialization for inverse PINNs. We see that, similar to the forward
PINNs, when using a learned NN initialization, the training loss is either lower than or converges faster than when using
a random initialization. We find that the convergence of inverse parameter error shows a less clear trend, which may be
because it is not an objective being minimized directly during the PINN training and hence is harder to account for with our
chosen NN initialization.

(a) Learned Init.

0 2 40

2

4

0
1
2
3
4
5
6
7
8
9

(b) Random Init.

0 2 40

2

4

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

(c) Train Loss

102

Training Steps

100

0

100

 T
ra

in
 L

os
s

(d) Test MSE Error

102

Training Steps

101

0

101

102

 T
es

t E
rro

r

Figure 7. Results for learning a NN initialization for PINNs trained on 2D Eikonal equation case. The interpretation is the same for that in
Fig. 3.

H.2. Additional Finite-Dimensional Inverse Problem Experiment Results

In Figs. 10 and 11, we present the IP error for all benchmarks ran for the damped oscillator example and the 1D wave
equation example respectively. Note that for the 1D wave equation case we ran the experiments on fewer benchmarks due to
time constraints. We can make several observations from the results.

• In our criteria, using a learned NN initialization is able to give slightly better performances, as seen in the damped
oscillator case and to a lesser extent in the 1D wave equation case. We believe that the difference is not as dramatic in

25

PIED: Physics-Informed Experimental Design for Inverse Problems

(a) Damped Oscillator

102

Training Steps

0

5

10
Te

st
 M

SE
 L

os
s

101 103

Training Steps

0.0

2.5

5.0

7.5

Te
st

 M
SE

 L
os

s

101 103

Training Steps

0

2

4

6

Te
st

 M
SE

 L
os

s

(b) 2D Eikonal Equation

102

Training Steps

0

50

100

150

Te
st

 M
SE

 L
os

s

102

Training Steps

0

100

200

300

Te
st

 M
SE

 L
os

s

102

Training Steps

0

100

Te
st

 M
SE

 L
os

s

Figure 8. Examples of test error of forward PINNs for each problems for different values of β. Each plot represents the PINN training for
one random random value of β. The dotted blue lines represent when the PINN is initialized with a random NN parameters, while the
solid yellow lines represent when the PINN is initialized form the learned initialization.

(a) Damped Oscillator

102

Training Steps

0

10 1

100

 T
ra

in
 L

os
s

102

Training Steps

0

100
 In

v.
 P

ar
am

. E
rr.

(b) 2D Eikonal Equation

102

Training Steps

100

0
100

101

 T
ra

in
 L

os
s

102

Training Steps

101

0

101

102

 In
v.

 P
ar

am
. E

rr.

Figure 9. Performances of the inverse PINN when using a learned NN initialization for each of the IP examples. In each case, we present
both the training loss for the inverse PINN (left plots) and of the inverse parameter error (right plots). In all plots, we show the difference
in loss/error value between using learned NN initialization as compared to using a random initialization.

our experiments since in the PINN training, we do allow for enough training steps already such that the model will
likely converge anyway, and so the effects from using a good initialization is less noticeable.

• Performance of the FIST criterion can vary differently according to the noise level and the amount of inverse PINN
training that is done. This means that even though FIST can potentailly reach good performance in some instances (as
seen in the damped oscillator example), the performance is too sensitive to hyperparameters for it to be practical.

• We see that the optimal observation input may not be trivial even for simple examples. For example, for the damped
oscillator case, it is less beneficial to select points which are spread out, as seen in the case for Grid, which purposefully
select points that are spread out, having poor performances in this experiment.

To elaborate, we present observation selection for TIP and Grid method in Fig. 12. As seen in the Grid case, even
though the trained inverse PINN may result in a function which is close to the true solution anyway, the learned inverse
parameter is more spread out than in the case of TIP for multiple inverse solver runs with the same β.

H.3. Additional Function-Valued Inverse Problem Experiment Results

In Fig. 13, we present results for the additional benchmarks in the 2D Eikonal equation problem. We see that we notice similar
trends to the finite-dimensional inverse problem case, where our criteria outperforms most benchmarks and improvements
from using a learned NN initialization is more clearly present. As discussed in the main paper, FIST method performs poorly
likely due to suboptimal hyperparameters. We also see that TIP shows strong performance compared to the other criteria.

We note that in this case, the Grid benchmark also shows very strong performances. We note that this is likely due to the fact
that the inverse function to be estimated is a local quantity, where small changes in the inverse function in one region does
not cause large effects on the PDE solution across the whole input domain. In these cases, it is beneficial to select points that
are more spread out, which is what the Grid benchmark does. We find that this is not always the case, as demonstrated in the
IPs with finite-dimensional inverse parameters, meaning that using a method that can make these judgements on observation
inputs automatically is still beneficial.

H.4. Discussions on General Limitations and Societal Impacts

In our experiments, we have mostly conducted experiments based on vanilla PINN architectures. We have not done
verification of whether PIED works well for other more complex architectures such as physics-informed deep operators.

26

PIED: Physics-Informed Experimental Design for Inverse Problems

FI
ST

 (
2 p
=1

, r
=5

0)
FI

ST
 (

2 p
=0

.5
, r

=5
0)

FI
ST

 (
2 p
=0

.1
, r

=5
0)

FI
ST

 (
2 p
=1

, r
=1

00
)

FI
ST

 (
2 p
=0

.5
, r

=1
00

)
FI

ST
 (

2 p
=0

.1
, r

=1
00

)
FI

ST
 (

2 p
=1

, r
=2

00
)

FI
ST

 (
2 p
=0

.5
, r

=2
00

)
FI

ST
 (

2 p
=0

.1
, r

=2
00

)
M

oT
E

(r=
0)

M
oT

E
(r=

1k
)

M
oT

E
(r=

5k
)

M
oT

E
(F

or
. P

ar
am

)
TI

P
TI

P
+

H-
Ap

pr
ox

NM
C

(N
=2

, M
=4

)
M

IN
E

VB
OE

D M
I

Gr
id

Ra
nd

om
FI

ST
 (

2 p
=1

, r
=5

0)
 +

 L
I

FI
ST

 (
2 p
=0

.5
, r

=5
0)

 +
 L

I
FI

ST
 (

2 p
=0

.1
, r

=5
0)

 +
 L

I
FI

ST
 (

2 p
=1

, r
=1

00
) +

 L
I

FI
ST

 (
2 p
=0

.5
, r

=1
00

) +
 L

I
FI

ST
 (

2 p
=0

.1
, r

=1
00

) +
 L

I
FI

ST
 (

2 p
=1

, r
=2

00
) +

 L
I

FI
ST

 (
2 p
=0

.5
, r

=2
00

) +
 L

I
FI

ST
 (

2 p
=0

.1
, r

=2
00

) +
 L

I
M

oT
E

(r=
0)

 +
 L

I
M

oT
E

(r=
1k

) +
 L

I
M

oT
E

(r=
5k

) +
 L

I
M

oT
E

(F
or

. P
ar

am
) +

 L
I

TI
P

+
LI

TI
P

+
H-

Ap
pr

ox
 +

 L
I

NM
C

(N
=2

, M
=4

) +
 L

I
M

IN
E

+
LI

VB
OE

D
+

LI
M

I +
 L

I
Gr

id
 +

 L
I

Ra
nd

om
 +

 L
I

ED Method

10 4

10 3

10 2

10 1

100

In
ve

rs
e

Pa
ra

m
et

er
 L

os
s

Figure 10. Distribution of error of estimated inverse parameter for each ED methods in the damped oscillator experiments. The thick blue
line shows the median error for the Random benchmark, while the dashed line shows the lowest median error obtained.

Future work on this area would be interesting.

We find that by design, FIST and MoTE scales with more training, which means that more computational resources may be
required for better results, which we find in our experiments. In some one-shot settings where it is critical to get optimal
results, it may be worth dedicating more resources for the ED problems. Meanwhile, TIP and MoTE which reuses the
forward PINN parameters do not exhibit this.

The work also relies on the use of PINNs as the forward simulators and IP solvers, and are not applicable to other forward
simulators or IP solvers. While PINNs are well-suited for both tasks, they also still pose practical problems such as difficulty
in training for certain problems. The problem can be mitigated through more careful selection of collocation points (Wu
et al., 2023; Lau et al., 2024), which will be interesting to consider in future works to further boost the performance of PIED.

We believe the work has minimal negative and significant positive societal impacts, since they can be used in many science
and engineering applications where costs of data collection from experiments can be prohibitive. This means that the cost
barrier in performing effective scientific experiments can be lowered allowing for further scientific discoveries. We note that
our work could potentially be applied for a range of scientific research, which may include unethical or harmful research
done by malicious actors. However, this risk applies to all tools that accelerate scientific progress, and we believe that
existing policies and measures guarding against these risks are sufficient.

27

PIED: Physics-Informed Experimental Design for Inverse Problems

FI
ST

 (
2 p
=0

.5
, r

=1
00

)

FI
ST

 (
2 p
=0

.1
, r

=1
00

)

M
oT

E
(r=

5k
)

TI
P

+
H-

Ap
pr

ox M
I

Gr
id

Ra
nd

om

FI
ST

 (
2 p
=0

.5
, r

=1
00

) +
 L

I

FI
ST

 (
2 p
=0

.1
, r

=1
00

) +
 L

I

M
oT

E
(r=

5k
) +

 L
I

TI
P

+
H-

Ap
pr

ox
 +

 L
I

M
I +

 L
I

Gr
id

 +
 L

I

Ra
nd

om
 +

 L
I

ED Method

10 2

10 1

100

In
ve

rs
e

Pa
ra

m
et

er
 L

os
s

Figure 11. Distribution of error of estimated inverse parameter for each ED methods in the 1D wave equation experiments. The thick blue
line shows the median error for the Random benchmark, while the dashed line shows the lowest median error obtained.

(a) TIP

0 t1 t2 t3 10
t

0.2

0.4

x

2 4
1

2

3

4

k

(b) Grid

0 t1 t2 t3 = 10
t

0.25

0.00

0.25

0.50

x

2 4
1

2

3

4

k

Figure 12. Results from the inverse problems on the damped oscillator problem. We demonstrate the observation input selection for MoTE
(Fig. 12a) and Grid (Fig. 12b) methods on a single ground truth inverse parameter but on multiple IP runs. In the left plots, we present
the output of the inverse PINNs (green lines) as compared to the true underlying function (blue line). In the right plots, we present the
estimated inverse parameter (blue dots) as compared to the true ground truth inverse parameter (orange dot).

28

PIED: Physics-Informed Experimental Design for Inverse Problems

FI
ST

 (
2 p
=0

.5
, r

=1
00

)
FI

ST
 (

2 p
=0

.1
, r

=1
00

)
M

oT
E

(r=
1k

)
M

oT
E

(r=
5k

)
M

oT
E

(F
or

. P
ar

am
)

TI
P

TI
P

+
H-

Ap
pr

ox
NM

C
(N

=2
, M

=4
)

M
IN

E
VB

OE
D M
I

Gr
id

Ra
nd

om
FI

ST
 (

2 p
=0

.5
, r

=1
00

) +
 L

I
FI

ST
 (

2 p
=0

.1
, r

=1
00

) +
 L

I
M

oT
E

(r=
1k

) +
 L

I
M

oT
E

(r=
5k

) +
 L

I
M

oT
E

(F
or

. P
ar

am
) +

 L
I

TI
P

+
LI

TI
P

+
H-

Ap
pr

ox
 +

 L
I

NM
C

(N
=2

, M
=4

) +
 L

I
M

IN
E

+
LI

VB
OE

D
+

LI
M

I +
 L

I
Gr

id
 +

 L
I

Ra
nd

om
 +

 L
I

ED Method

100

101

102

In
ve

rs
e

Pa
ra

m
et

er
 L

os
s

Figure 13. Distribution of error of estimated inverse parameter for each ED methods in the 2D Eikonal equation experiments. The thick
blue line shows the median error for the Random benchmark, while the dashed line shows the lowest median error obtained.

29

