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ABSTRACT
This report outlines the objectives, methodology, challenges, and
results of the first Automated Program Repair Competition held at
the APRWorkshop 2024. The competition utilized Cerberus, a pro-
gram repair framework, to evaluate the program repair tools using
different repair configurations for each track in the competition.
The competition was organized in three phases: first the partici-
pants integrated their tools with Cerberus, second the integrated
tools were tested using public benchmarks and participants were
able to fix any identified issues. In the last phase, the submitted
tools and baseline comparison tools were evaluated against private
benchmark programs.
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1 INTRODUCTION
We report the organization of the first automated program repair
competition [9] (APR-COMP) at the 5th International Workshop
on Automated Program Repair (APR) held on April 2024 in Lis-
bon, Portugal. The objectives of the APR Competition were (i) to
evaluate the performance of program repair tools submitted on
new benchmarks, (ii) to compare state-of-the-art using standard
configurations, and (iii) to improve the set of standard benchmarks
beyond the already studied benchmarks for repair tools.

The competition was organized in 3 tracks focusing on three
popular areas of research in the community: (a) fixing logical er-
rors, (b) repairing student assignments, and (c) fixing bugs in auto-
generated code. Participants were given a few public benchmarks
to develop, integrate, and test their repair tools. New challenges
and benchmarks were curated but kept hidden from the partici-
pants until the end of the competition. For each track, in addition
to the participating tools, we also compare the performance against
two baseline tools. One of the tools is empowered by GPT4, while
the other is a classical (non-learning) repair tool. The results were
publicly announced on the competition website 1 after the teams
have inspected them.
1https://apr-comp.github.io/
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The competition evaluates 15 repair tools, including ten tools
submitted by participants and five tools used as a baseline. The par-
ticipant submitted repair tools are RepairLLAMA, RepaitCATJava,
APRER, ET, GRT5, RepairCatPython, Brafar, F1X, ARJA, and ARJA-
e. The five baseline tools are Darjeeling, VeriFix, TBar, Refactory,
and LLMR. LLMR is a custom-made tool by the organizers, which
is empowered by the OpenAI GPT4 model.

2 CERBERUS: COMPETITION PLATFORM
Cerberus [8] is a language-agnostic program repair framework
that standardizes the evaluations of repair tools. It is a research ac-
celeration platform [2] that enables researchers who are interested
in evaluating their program repair tools against other state-of-the-
art repair tools to launch large-scale experiments in a controlled
and reproducible manner.

Cerberus consists of a large number of publicly available bench-
mark programs in C/C++, Java, and Python programming lan-
guages, taken from existing literature and have been integrated
with multiple state-of-the-art tools. Benchmark programs cover
a wide variety of repair tasks, including logical errors, security
vulnerabilities, student assignments, concurrency bugs, and bugs
reported by static analysis tools. Cerberus implements Configura-
tion as Code, allowing all resource constraints (i.e., number of GPUs,
memory limit), runtime configurations (i.e., experiment timeout),
benchmark settings (i.e., fault localization) and repair tool parame-
ters (i.e., optimization values) to be encoded in a configuration file
which can be used to reproduce and replicate the results.

For each experiment run, all artifacts, including log files, are
captured and compressed to facilitate post-analysis inspection or
artifact evaluations. All collected artifacts from the competition,
including the configuration files to re-run the evaluation, are made
available for the community in Zenodo2.

3 COMPETITION SETUP
The competition was announced [9] at the 4th International Work-
shop on Automated Program Repair held on May 16, 2023 in Mel-
bourne, Australia. Upon consultation with many researchers in
the community, the setup and the program were formulated. The
competition was organized in multiple phases. In the first phase,
participants were requested to integrate their repair tools into Cer-
berus. Participants were provided with sample benchmarks, which
were publicly made available via Cerberus, to test and run local
experiments. In the second phase, the organizers ran the integrated
tools against the publicly available benchmarks on the competition
platform (i.e., hardware) and shared the results with feedback on
the performance, allowing participants to fix any issues with the
integration. In the final phase, all integrated tools were executed
on private benchmarks to compute the final results.

2https://doi.org/10.5281/zenodo.10531850
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Table 1: Summary of the competition tracks

Repair Track Language Public Repository Repair Tasks Avg. Tests Timeout Resources Provided
Functional Errors Java https://github.com/APR-Comp/functional-java 50 161 / 100 1 hour 8 CPU, 2 GPU, 64GB Memory

C/C++ https://github.com/APR-Comp/functional-c 25 119 / 100 1 hour 8 CPU, 2 GPU, 64GB Memory
Errors in AI-generated Code Java https://github.com/APR-Comp/autocode-java 100 13 / 100 15 mins 4 CPU, 1 GPU, 32GB Memory

Python https://github.com/APR-Comp/autocode-python 100 14 / 100 15 mins 4 CPU, 1 GPU, 32GB Memory
Student Assignments C https://github.com/APR-Comp/education-c-benchmark 100 19 / 100 15 mins 4 CPU, 1 GPU, 32GB Memory

Python https://github.com/APR-Comp/education-python-benchmark 100 19 / 100 15 mins 4 CPU, 1 GPU, 32GB Memory

3.1 Repair Tracks
The competition has three tracks - functional errors, student assign-
ments, and errors in AI-generated code, each having two sub-tracks
representing two popular languages in that domain. Table 1 sum-
marizes the details of each track. Column “Avg. Tests” captures
the average number of test cases per repair task in the format x/y,
where x is the number of public tests, and y is the number of pri-
vate tests. All files necessary to reproduce the results and reuse the
benchmarks are provided in their repository (see Table 1).

Functional Errors. The functional errors track consists of in-product-
ion codebases written in C/C++ or running on the JVM infrastruc-
ture, with Java being the predominant language for developing the
project. Some subjects are from the ManyBugs [6] and Defects4J [5]
benchmarks. Examples of the C code bases are the CPython3, PHP4
interpreter, and LibTIFF5 among others. The Java codebases are
mostly from the Apache Foundation which includes Apache Com-
mons Compress6, Apache Commons Lang7, and projects such as
Google’s GSON8 among others. The majority of the bugs have
recently been disclosed and fixed, which addresses the data leak-
age problem with pre-trained models. As the projects have a large
enough test suite, we provide a subset of them as public and the
rest as private.

Student Assignments. The student assignments track consists of
incorrect student submissions, taken from the Refactory [4] and
ITSP [10] benchmarks, which contain Python and C assignments,
respectively. For both tracks, we deterministically selected 100 sub-
missions for the public and private benchmarks. To avoid the risk
of tools being pre-trained on the benchmarks, we create an obfusca-
tion tool for both sub-tracks. The tool changes local variable names
and applies syntactic transformations, which keep the solution se-
mantically equivalent to the original submission. In addition, new
submissions were generated by injecting faults into the correct
solution. To create a sufficient public and private test suite, we take
the default benchmark examples and provide more test cases by
random testing the reference implementation to create concrete
input-output examples.

Errors in AI-generated Code. The errors in the AI-generated code
track comprises Python and Java sub-tracks. The code for these
tracks is generated by OpenAI’s GPT-3.5 and GPT-4 models as solu-
tions for algorithmic problems in the LeetCode platform, following
the work by Fan et al. [3]. All selected subjects have at least one
3https://github.com/python/cpython/
4https://github.com/php/php-src
5https://gitlab.com/libtiff/libtiff/
6https://github.com/apache/commons-compress
7https://github.com/apache/commons-lang/
8https://github.com/google/gson/

passing and one failing test to help fault localization. Upon tool
submission, we selected the most recent problems from LeetCode
to generate partially correct programs using GPT-3.5 and GPT-4.
The problems are of 3 categories - Easy, Medium, and Hard with
a 1:2:1 distribution. To create a sufficient public and private test
suite, we take the default benchmark examples and provide more
test cases by random testing the reference implementation to create
concrete input-output examples.

3.2 Baseline Tools
For each track, we select a state-of-the-art repair tool. For the Java
language, we selected TBar [7] - a template-based Java repair tool.
For the education Python track, we selected the Refactory [4]
tool; for the education C track, we selected verifix [1]. For the AI-
code Python and functional Python track, we selected Darjeeling.
Alongside these tools, we created a shadow repair tool called LLMR,
which uses OpenAI’s chat completion models.

LLMR employs spectrum-based fault localization to infer possible
fix locations, which is used to prompt a large language model for
bug fixing. LLMR uses a simple prompt - "Here is the following file Y
with name X. There is a bug Z. I would like you to repair the file and
respond with a patched version. Here is the code: A" where X, Y, Z,
A represent the file name, programming language, a bug description
and the context of the file, respectively. In addition, for the education
track the reference solution is also included in the input prompt.
For larger context such as the bugs in the functional track, LLMR
uses a context window around the fix location computed in the
localization step. For the competition, we have chosen a context
window n=10.

3.3 Platform and Configurations
All experiments were run in Docker containers to ensure a con-
trolled environment. For the AI-generated code and student assign-
ments track, we provide 4 CPU cores, 1 GPU core, and a max usage
of 32GB of RAM to the tool, while for the functional errors track,
we provide 8 CPU cores, 2 GPU cores, and a maximum usage 64GB
of RAM. The difference in the resources is due to the considerably
smaller subjects provided to the tools. To evaluate tools that are
running locally and do not depend on a third-party service, we
disable network access. All experiments were run on a 192-core
Intel(R) Xeon(R) Platinum 8468V machine with 512GB of Memory
and 8 Nvidia A40 GPUs, running Ubuntu 22.04.03 LTS.

3.4 Evaluation Criteria
We evaluate the tools according to the effectiveness of the patches
they produce, and the efficiency of the entire repair process. Should
a tie occur, we consider resource usage a secondary criterion. All
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Table 2: Patch classification table

Patch Effectiveness Score Remarks
ill-formed -4 refused by validation
invalid -2 syntactically incorrect
incorrect -1 does not pass the public tests
no patch 0
incorrect overfitting 1 fails passing tests
overfitting 2 passes only public tests
correct 4 passes all private tests

patches undergo evaluation in an isolated container, ensuring a
pristine environment for each subject.

Evaluation setup. Tools are executed for each repair task in their
corresponding track, generating at most five patches per task. Each
patch is applied to the original program in the repair task and exe-
cuted against a public test suite – test cases made publicly available
for all the tools – and a private test suite – test cases generated
using a reference program (the expected correctly fixed version)
not disclosed to any of the tools.

Patch Score. Table 2 summarises the different effectiveness cate-
gories a patch may fall into and their corresponding score. Patches
that fail in the validation environment are deemed as “ill-formed”.
Those that are applicable yet render the file syntactically incor-
rect or the project non-compilable fall under the “invalid” category.
Patches that do not pass the failing tests in the public test suite
are marked as “incorrect”. A patch that rectifies the failing tests in
the public test suite but invalidates a previously successful test is
labeled as “incorrect overfitting”. We classify patches that succeed
in the full public test suite but not in the private one as “overfit-
ting”. The highest score, “correct”, is given to patches that pass both
public and private test suites. It may seem odd to award incorrect
overfitting or overfitting patches, but we consider that such par-
tially correct patches have the potential to offer further insights
with regard to what a correct patch is.

Task Score. Assuming a tool generates 𝑛 patches for a task 𝑖 , 𝑛 ≤ 5,
the score 𝑆𝑖 for task 𝑖 is computed as 𝑆𝑖 = (∑𝑛

𝑘=1 𝑠𝑘 )/𝑛, where 𝑠𝑘 is
the score for patch𝑘 ,𝑘 ≤ 𝑛. Our goal is to identify the most effective
tools – produce the most correct patches – that also strive for
efficiency – they not only produce correct patches but also minimize
the manual effort required to validate the results. In other words, for
a given repair task, a tool that produces three patches, all correct,
scores higher than one that produces three correct patches and two
overfitting or incorrect ones for the same task, 4 = (4 + 4 + 4)/3 vs.
3.2 = (4 + 4 + 4 + 2 + 2)/5 vs. 2 = (4 + 4 + 4 − 1 − 1)/5.

Ranking Criteria (Track). For each track, the candidate tools are
ranked according to their total score for the tasks in the considered
track, computed as 𝑇𝑗 = (∑𝑚

𝑖=1 𝑆𝑖 ) for a track 𝑗 consisting of 𝑚
repair tasks. The quality of the validation discussed above tallies
with the overall tool ranking, i.e., tools that consistently produce
incorrect patches may not rank high even if they produce correct
patches. For example, for a track with 100 tasks:

• a tool which correctly solves 40 tasks will score 160 (60 tasks
have no solutions).

Table 3: Summary of the auto-generated code track

Language Tool #IP #PP CP Score

Java

ARJA-e 0 0 25 20
ET 19 2 13 10
APRER 0 18 5 8
LLMR 25 0 0 -5.6
TBar 6 0 0 -24
RepairLLAMA 379 0 1 -105.7

Python
RepairCatPython 0 56 0 16
Darjeeling 0 0 0 0
LLMR 401 12 64 -26.3

IP: incorrect patches, PP: partially-correct patches, CP: correct patches

• a tool which correctly solves 50 tasks, and incorrectly solves
the rest of 50 tasks will score 150.

• a tool which correctly solves 40 tasks, and incorrectly solves
the rest of 60 tasks will score 100.

• a tool which correctly solves 20 tasks, and incorrectly solves
the rest of 80 tasks will score 0.

4 EVALUATION RESULTS
We discuss the results of each track and share important and inter-
esting insights learned from the competition evaluation.

4.1 Errors in Auto-generated Code
We first focus on the repair task of fixing errors in AI-generated
code. The track consists of two sub-tracks for Python and Java pro-
gramming languages. Table 3 summarizes the performance of the
tools in both sub-tracks. Columns “#IP”, “#PP”, and “#CP” depict the
number of incorrectly generated patches, partially correct patches,
and correct patches, respectively. For partially correct patches, we
include both overfitting and incorrect overfitting. For the Java pro-
grams, ARJA-e, an evolutionary repair system, scored the highest.
A notable distinction is that ARJA-e correctly fixed five bugs where
all generated patches are correct (25 patches with five patches for
each bug). For the Python programs, RepairCatPython, an LLM-
based repair tool, scored the highest. Notably, LLMR scored lowest
for the Python sub-track, although it generated 64 correct patches,
which is more than the highest-scoring tool RepairCatPython. The
reason for the lowest score is the large number (401) of incorrect
patches generated by LLMR. Our scoring schema penalizes a tool
for generating incorrect patches, which would decrease trust in the
tool and increase the manual efforts a developer has to invest. For
both sub-tracks, the performance of LLMR reduced, with more than
84% of the patches generated being incorrect.

4.2 Student Assignments
Next, we focus on the repair task of providing useful feedback
for incorrect student assignments. In this task, the repair tool is
provided with an incorrect student-written program for a given
assignment, a test suite to validate the program, and a reference
solution. The objective of the repair tool is to provide a “fix” for
the incorrect student program, which is custom feedback to the
student. In the competition, we ran two sub-tracks for Python and
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Table 4: Summary of the student assignments track

Language Tool #ST #CP Accuracy Score

Python
LLMR 87 367 75% 339.6
Brafar 74 74 75.5% 308
Refactory 23 23 71.8% 92

C
LLMR 44 144 46.3% 153.3
VeriFix 7 7 100% 28
F1X 1 2 28.5% 6

ST: successful tasks, CP: correct patches

C. For each sub-track, participant tools are evaluated against a
state-of-the-art tool and LLMR. Table 4 summarizes the results of
this track. Column “#ST” depicts the number of assignments the
tool was able to find a correct fix. Notably, for the Python track,
the competing tool Brafar outperformed the state-of-the-art tool
Refactory with a significant margin, correctly fixing 230% more
assignments. However, the GPT4-powered tool LLMR outperformed
all tools in correctly fixing student assignments in both sub-tracks,
with more than 75% of the generated patches passing the public
tests. This observation indicates that GPT4 is capable of providing
feedback for student assignments by generating the correct fix for
the incorrect program.

4.3 Functional Errors
Lastly, we analyze the performance of the repair tools in fixing
functional errors from real-world programs. The competition eval-
uated the tools for programs written in Java and C programming
languages. For the Java programs ET, an LLM-based repair tool
emerged as the winner. For C programs, F1X, a search-based repair
tool, scored the highest. We notice a considerable degradation in
the performance of the repair tools in this track compared with the
previous two tracks.

We attribute this observation to incorrect fault localization that
fails to identify the fix location correctly. Evaluated tools could
not find a fix location, and generate a plausible patch for most of
the bugs in the track. Some of the tools used old versions of fault
localization, which did not perform well on real-world applications
that use more recent versions of the execution environment and
dependent libraries. For example, most of the programs are com-
piled on Java-11 and higher versions, which are not supported by
the underlying fault localization tools used by the competing tools.
In addition, the usability and scalability of the repair tools need
improvement to repair bugs in large-scale real-world programs.

Similar to the previous two tracks, we evaluated the efficacy of
LLMR in this track. Given the restriction on context limit, we only
provide the n(=10) lines as the context window for the program. For
each location in the top-5 candidate fix locations computed using
fault localization, LLMR will be provided with a context of n lines
before and after the faulty line. Interestingly, however, we observed
that LLMR could not fix any of the real-world programs.

5 CONCLUSION AND FUTUREWORK
The first international competition on Automated Program Repair
evaluated 15 repair tools consisting of 10 participant tools and

five baseline tools. The competition assessed the tools on three
repair tracks, each consisting of 2 programming languages, totaling
up to 475 repair tasks. The benchmarks were curated with new
unforeseen repair challenges, and all tools were evaluated in a
uniform environment that enforced strict resource constraints.

Future editions of the competition aim to incorporate more input
from the community with proposals for new competition tracks,
more tool submissions, as well as proposing new benchmarks. More
benchmarks with diverse repair challenges across many program-
ming languages can help the community provide a basis for fair
assessments to identify the state-of-the-art repair tools.
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