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" Growing Memory Demands

 Data driven application
o high performance computing
o video processing
o large language model

 More data - more memory
o larger capacity
o faster memory access
o lower TCO



" Hitting the Memory Wall

* Memory capacity

Memory Capacity per Core and CPU Core Count Over Time
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" Hitting the Memory Wall

* Memory bandwidth

Growth in CPU Cores and Memory Bandwidth (2018-2024)
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" Hitting the Memory Wall

* Memory bandwidth

Growth in CPU Cores and Memory Bandwidth (2018-2024)
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"8 CXL: Compute Express Link

* New protocols based on PCle Compute
o CXL.cache (cache coherence) ‘ E <press
o CXL.mem (memory expansion) Link

o CXL.io (peripheral configuration)

« CXL specifications
o CXL 1.1 — single machine
o CXL 2.0 — 2-16 machines (single switch)
o CXL 3.0 — 100+ machines (multiple switches)
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/Type 1: accerlators w/o memory. \ ﬂ/pe 2: accerlators w/ memory. \

Usage: Protocol: Usage: Protocol:
* PGAS NIC * CXL.cache * GPU * CXL.cache
* NIC atomics ¢ CXL.io * FPGA e CXL.mem

%] % ¢ CXL.io
\& )
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" CXL End-Point Devices

/Type 1: accerlators w/o memory. \
Usage: Protocol:

e PGAS NIC * CXL.cache

* NIC atomics * CXL.io

&
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ﬂ/pe 2: accerlators w/ memory. \

Usage: Protocol:

* GPU * CXL.cache

* FPGA * CXL.mem
* CXL.io

memory

ﬁype 3: memory buffer.

Usage:
* capacity extension
* tiered memory system

CXL memory

~

Protocol:
¢ CXL.io
e CXL.mem

«=)
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I8 Scale-Out vs. Scale-Up

« Scale-out
o CXL 2.0/3.0
o resource pooling
o economical cost CXL Memory Pool

« Scale-up
o CXL1.1
o capacity expansion
o bandwidth expansion Local Memory
o lower TCO

© Copyright National University of Singapore. Al Rights Reserved.



8 CXL Scale-Up Expansion

« Expansion via tiering



8 CXL Scale-Up Expansion

A Three-Tier Buffer Manager Integrating CXL
Device Memory for Database Systems

« Expansion via tiering
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Abstract—Compute Express Link (CXL) is 3 new interconnect

o 8 CPU. The inferconnect allows 2 database sytem o place
data on local ‘memory, and persistent disk

Tndex Terms—CSL, buffe page management,
daiahase system, Vsl memary, PrObAnIIt page migraion

1. INTRODUCTION

Compute Express Link (CXL) is a new interconnect hased
on the physical layer of PCle. CXL can connect a peripheral
device with a CPU. allowing cache-coherent access o the
device memory [1]. Accessing memory over CXL cxhibits
different memory characteristics, such as higher latency than
Iocal memary conmected via Doble Data Rate (DDR) {1, (2]

Traditional disk-hased database management  sysiems
(DBMSs) use secondary disk storage as primary data location.
For query processing. a buffer manager loads data into Jocal
memoey Wik siioral CXL. dvie memeny, dna on be
Tocated o three tiers: on byte-addressable Jocal and device
memory and on persistent disk stwrage. While 1l|ue4v= uffer
managers exist for DRAM, persistent memory (PMem), and
solid-sizie drive (SSD) [3], [4]. CXL device memory has not

HyMem is a single-threaded buffer manager using PMem
ad DRAM a5 selective caches on top of the SSD level (3],
Zhou et al. 4] extended the work on HyMem with Spifire,
a concurrent buffer manager. It uses a probabilisic migration
policy {0 determine on which fier pages are located and has
superior performance over HyMen's page migration.

HyMem and Spitre use pointer swizzling to add:
baifered pages, whic q
bufer-managed data structure 1o be adapled sccordingly [5].
Leis et sl propased hardware-supported virual memory-based
translation of page identifiers (PIDs) to physical memaey
addresses 25 2 nonvinvasive and easy-to-implement aliemaiive
to pointer swizzling [5]. While the approach shows high
performance and low implementation complexity, it lacks
support for multiple byle-addressable memory ticrs.
Tn this work, we present a three-tier buffer manager that
inigrtes CRL dowoe scrmory. The design combins virtua

gracion poliy 4] to determins on which ter pages are locaed.
his hat the

a simple intcgration of CXL device memory into a DBMS. We
evaluate the buffer manager design and its components in an
isolated manner with different configurations and workloads
based on the YCSB benchmask (6], Our evaluation demon-
strates that expanding a server's memory with CXL. deviee
memory can be used for & buffer manager 1o keep more data
in memory and o reduce spill
We present primitives to integrate the proposed design into
an in-memory DBMS and demonstrate the integration of the
balfer manager into the in-memory DEMS Hrise (7]
In summary, this work makes the following contributions:
1y We demonstrate the intcgration of CXL device memary
into a database system's buffer manager using virtal
‘memary-based PID translation and probabilistic page mi-
gration (Section [11). We provide intcgration details and an
N implementation' (Section HI-G).

‘We experimentally evaluate the buffer manager with pro-
lmyp jieal CXL device memory and show its benefit of sup-
porting larger-than-local- memory workloads with higher
throughput than a traditional twetiee design locating data
only on local memory and SSD (Section I¥).

3) We discuss how page migration across multiple memory
tiers ean further be optimized (Section V).

1L BACKGROUND

This section introduces the CXL interconnest and buffer
pool management concepts thit we build our work upon.

"Sourse code: hpsgihab comyrseyrischree piperllerminage.
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Abstract
‘W propose CXL-ANNS, a software-hardware collborative
igh

bor NS ices. To this end,

DRAM from the host via compute express link (CXL) and
place all cxsential datascts into ts memary pool. Whil this
‘CXL memory pool can make ANNS feasible to handle billion-
point graphs without an accuracy loss, we observe that the
scarch performance sigrificantly degrades because of CXL's
fs-memory-Jike characterstis. To address this, CXL-ANNS

Sealaily Scaagiiny
. ot §
Compressie
o anns
g . K - e
(8 Previous stuies. 0) CX1L-based approaches.

Figure 1: Various billion-scale ANNS characterizations.

12,13],
it most frequenily.

dhata to-shey CXL- paradigms in various applications, it ostly operation
Hewl ikely 10 vis ingtaking lincar time 1o scan data (14, 5], This computation
behaviors of ANNS. CXL-ANNS is al he archi- » -
the CXL i more pract-
different scarch il ‘mearest neighbor search [ANNS)vesllius

Compute Expre| for i panallel. T a query vector o scarch only a subsct of neighbors w
on the physical lay forther,t relaxes the o acest o (15151 ARNS on.
device with a € ks and maximizes the degree of scarch paralclism by fully  hibits good vector searching speed and accuracy, but it sig-
device memory [ wilzing all hardware in the CXL network nificantly increases memory requircment and pressure. For
ilferen oy ‘Our empirical evaluation results show that CXL-ANNS  example, many production-level recommendation systents
Jocal memary o i 1110 ighe O w535 kover gy ey skvady dop llom okt dns, whichpuplce o of

Frelrmewas s ANNS pl lesied CXL- TBa space for ANNS; Microsoft

(DBMSs) use scco

memary and on pe
managers exist f
solidsta dive

and DRAM as s¢]
Zhou et al. [4] ex
a concure

policy to determ
superior performay

ANNS also ouperforms an oracle ANNS system that has
DRAM-only (with urlimited storage capacity) by 65 0% and
3.8, in terms of latency and throughput, respectively.

1 Introduction

engies (wsed 1 Bing/Ouloak)requie 1008+ vectors, ey
being explained by 100 dimensions, which coasume more
than 4OTB memory space (18], Similarly, several of Alibaba's

paces
‘commodate their 2B+ vectoes (125 dimensions) [19].

) has
um on an important role and provides fundamental sup-

Tactine leunlagspplicsons wa‘n as mmmum sy
tems [1-8). In contast 10 the classic pamemysiri
ach, imilarity
pre mbe

pr madem ANNS.
techniques Icverage lossy compression methods or cmploy
persisient storage, such as solid siate disks (SSDs) and per-
sistent memory (PMEM), for their memory expansion. For
example, [20-23] split large datasets and group them into
‘maliiple clustcrs in an offline time. This compression ap-

o bjcts, similar 1o the query objec,Feferred o s k-nearest
neighbor (6NN) [9-11]. To this cnd,

P ly has. produet quantized vectors for each eluster’s
centroid and searches kNN hased on the quantized informa-

input information into a few thousand dimensional spaces
of each object, called & feature vectar, Since these vectors

ode & wide speetrum of data formats (c.§., images,
@ s, sounds, cic.), -

tion, feasible. On the other hand,

19 SSD/PMEM, but reduces target search spaces by referring

10 & summary in its local memory (DRAM), As shown in

Figure |2, these compression and hicrarcl
i best KNN h perfc

put query's i i d
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o Montage CXL type3 controller
o Intel Sapphire Rapids CPU (32 cores)
o Sub-NUMA clustering (SNC) mode

= 32GB local memory (DRAM)

=  32GB NUMA memory (NUMA)

= 64GB CXL memory (CXL)

UPI (96.0 GB/s)
local host NUMA host

PCle 5.0
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64GB DRAM 32GB DRAM 32GB DRAM
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. Throughput w.r.t. Memory Interleaving Ratio

« Experiment workload
o sequential access over 2 billion records (8-byte) with 32 cores.

1 DRAM BEE 4:1

1 31 B9 21 B2 3:2 B 43 KX 1)1 EEE 34 E===d 2:3 B 1:2 G 1.3 EBEE 1:4 B CXL

%Zz \\ &g N N \
N 2 N §
=R N | S D

(a) Peak read throughput (b) Peak write throughput

© Copyright National University of Singapore. All Rights Reserved.

12




. Throughput w.r.t. Memory Interleaving Ratio

« Experiment workload
o sequential access over 2 billion records (8-byte) with 32 cores.

[0 DRAM EEE 4:1 [N 3:1 B 21 K207 3:2 B 4.3 XXJ 1:1 B8 3.4 Esssd 2:3 BEE 12 SN0 103 EEME 14 ESS CXL
7 40 .
5% § o 20 N N
£20 N i § §
3 n i 10+
El‘: £ § 2 O \ N
(a) Peak read throughput

(b) Peak write throughput

© Copyright National University of Singapore. All Rights Reserved.

12




. Throughput w.r.t. Memory Interleaving Ratio

« Experiment workload
o sequential access over 2 billion records (8-byte) with 32 cores.

[0 DRAM BEE 4:1 [N 3:1 B 2:1| =20 32 |EE 43 XX3 1:1 EER 3.4 Esssd 2:3 BEE 12 SN0 103 EEME 14 ESS CXL
7 40 .
5% § o 20 N N
£20 N i § §
3 n i 10+
El‘: £ § 2 O \ N
(a) Peak read throughput

(b) Peak write throughput

© Copyright National University of Singapore. All Rights Reserved.

12




. Throughput w.r.t. Memory Interleaving Ratio

« Experiment workload
o sequential access over 2 billion records (8-byte) with 32 cores.

E===d 2:3 A 1:2 OGSO 1:3 BEE 1.4 B CXL

[ DRAM B 41 ] 31 B9 2:1) B4 3:2 |HEE 4.3 KX 1.1 B 3:4

i R < gR )
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(a) Peak read throughput (b) Peak write throughput

1.61x throughput gain
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"% Hash Join Evaluation

« Experiment workload
o uniform distribution, 256M 1 1024M (8-byte)

—o— DRAM —+— NUMA —&— CXL —— DRAM:CXL=3:2

4 8 12 16 20 24 28 32
#Thread
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Star Schema Benchmark

« SSB workload

o column store
o scaling factor: 30

BN CXL BN TIER EE DRAM:CXL=3:2

Q1.1 Q1.2 Q1.3 Q21 Q22 Q23 Q31 Q32 Q33 Q34 Q41 Q4.2 Q4.3 Mean
Queries
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" Limited Bandwidth in Socket

« Experiment workload
o sequential access over 2 billion records (8-byte)

*=s STORE === NT-STORE == = LOAD

1004 ’f__'_ 100 1 i — 100
= 1501
) 801 80
S
g
o 40 40
2] 50
£ 20 1 20
—_— ] =
2 4 6 8 10 12 14 16 18 2 4 6 8 101214161820 2 4 6 8 10 12 14 16 18 2 4 6 8101214161820222426283032
#Thread #Thread #Thread #Thread
(a) Sky Lake (b) Cascade Lake (c) Ice Lake (d) Sapphire Rapids
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