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ABSTRACT 
 

The aggregation of multimodal features in medical image 
registration remains underexplored, limiting the performance 
of current models in capturing complex anatomical 
relationships. Traditional convolutional neural networks 
(CNNs) often overlook the rich semantic information 
available from text, while existing approaches lack effective 
methods to combine spatial and contextual cues. In this paper, 
we propose Text Aggregation for Medical Image Registration 
(TA-MIR), a novel framework that enhances encoder-
decoder architecture by incorporating anatomical text 
embeddings throughout the registration process. By 
employing large kernel blocks for improved receptive fields 
in U-Net and fusion blocks at each level, our model 
effectively integrates image features with semantic text 
information. Extensive experiments on three brain MRI 
datasets—OASIS, IXI, and LPBA40—demonstrate that our 
approach achieves state-of-the-art performance, 
significantly improving registration accuracy and anatomical 
coherence compared to traditional CNN and Transformer-
based methods. 

Index Terms— Registration, medical image, text 
embedding, deep learning 

 
1. INTRODUCTION 

Deformable image registration (DIR) plays a vital role in 
medical imaging, with applications in disease diagnosis, 
treatment planning, and intraoperative guidance. It aligns 
datasets, often from different modalities or time points, by 
transforming them into a common coordinate system based 
on matched anatomical structures. Using a deformation 
model, spatial correspondences between moving and fixed 
images are established and optimized [1]. 

Since VoxelMorph [2] demonstrated the power of skip 
connections and an encoder-decoder structure for medical 
image registration (MIR), U-Net has been widely adapted for 
these tasks. To manage complex deformations, methods like 
RCN [3] and DualPRNet++ [4] integrated cascaded and 
parallel architectures into U-Net to enhance feature 
representation learning. Further improvements were made 

by introducing anatomical constraints such as key point loss 
[5] and segmentation masks [6] to maintain the deformation 
boundaries between organs. 

However, the limited local receptive field of the 
convolution operator restricts capturing long-range 
relationships, leading to the integration of attention-based 
Transformers into encoder-decoder networks, like 
TransMorph [7] and XMorpher [8], to capture local and global 
anatomical relationships. Despite these advancements, most 
MIR frameworks still struggle to fully utilize the diverse 
feature representations in medical images, prompting the 
exploration of multimodal models that combine both visual 
and textual information. 

Recently, Vision-Language Models (VLMs), such as 
CLIP [9], have shown promise in computer vision tasks by 
jointly learning from images and text. In the medical domain, 
models like GLORIA [10], and PMC-CLIP [11] have 
demonstrated the potential of integrating medical reports to 
enhance the image analysis tasks. Models like LAVT [12] and 
LViT [13] have incorporated text annotations to compensate 
for image quality deficiencies, achieving superior 
segmentation results. However, VLMs' application in MIR is 
still limited. TextSCF [14] is one of the few methods that 
leverage text embeddings, improving brain MRI and 
abdominal CT registration. However, this model applies text 
embeddings only at the final decoding output, limiting the 
textual information's influence on the encoding and decoding 
of the backbone models. This leaves room for further 
exploration of deeper multimodal fusion strategies. 

To address these limitations, we propose TA-MIR to 
integrate text prompts into an encoder-decoder structure at 
multiple scales for MIR. Our approach combines the 
strengths of text and image modalities, with text prompts 
providing semantic context while utilizing U-Net to capture 
spatial details. We evaluated our model on three benchmark 
brain MRI datasets: OASIS [15], IXI [16], and LPBA40 [17]. 
Our model achieved state-of-the-art results, outperforming 
traditional image-only registration methods. By incorporating 
text prompts, it enhances the registration process with added 
semantic and contextual relevance, making this one of the 
first attempts to integrate textual information at the multiscale 
of the encoder-decoder framework for MIR. 



 

 
Fig. 1. (a) Illustration of the proposed TA-MIR model, which 
consists of an encoder-decoder structure, here we adopt the 
U-Net-like structure and multimodal feature aggregation 
blocks on each level. (b) The visualization of an LK Block 
[18], following the same designation in LKU-Net. 

 

Fig. 2. The proposed fusion block in TA-MIR. Anatomical 
label m(x) retrieves the text embedding 𝑡𝑡!(𝑥𝑥) from matrix T. 

 
2. METHOD 

 
The proposed framework TA-MIR is illustrated in Fig. 1, it 
integrates textual prompts and U-Net architecture for 
multimodal feature aggregation in MIR. The key innovation 
lies in leveraging both image and text modalities, enhancing 
the traditional image encoder-decoder pipeline with semantic 
guidance derived from text embeddings. 

2.1. Overall Framework 
 

The overall architecture of TA-MIR builds on a U-Net 
backbone, enhanced by the fusion block at each level of the 
encoder-decoder structure and the propagation of these fused 
features through skip connections, as shown in Fig. 1. 

The encoding path incorporates four large-kernel (LK) 
blocks, followed by a text-image fusion block and 
downsampling layers, to extract hierarchical features at 
different scales. The encoder progressively increases the 
number of kernels, starting with C kernels in the first layer 
and doubling them at each subsequent downsampling layer. 
In the expansion path, the decoder upsamples the features and 
combines them with the corresponding encoder features 
through skip connections. In TA-MIR, the skip connections 
not only pass spatial information but also propagate the text- 
infused features from the encoder to the decoder. 

While the text-image fusion, as Fig. 2 shows, occurs at 
multiple levels of the U-Net, it allows for the integration of 
semantic information at three scales to achieve low-level, 
mid-level, and high-level fusion. Thus, our model could first 
capture fine-grained anatomical details, then integrate 
intermediate-scale features, and finally incorporate global 
contextual information. The fused feature at each level is 
modulated by an attenuation coefficient 𝛼𝛼": 

𝐹𝐹#∗ = 𝛼𝛼" ∗ 𝐹𝐹#′, (1) 
Here, 𝛼𝛼" is a decay factor that controls the influence of 

the text embedding at each level l. It ensures that the influence 
of the text embeddings is modulated as the feature maps 
propagate through the U-Net, allowing the model to balance 
spatial features with semantic guidance from the text. The 
value of 𝛼𝛼" increases progressively from the shallower 
encoder levels to the deeper levels, ensuring that the text 
embedding’s contribution is gradually amplified while 
guiding the entire registration process. 

2.2. Backbone for Image Feature Extraction 
 

In the main experiments of this paper, we chose the LKU- Net 
[18] backbone for its ability to effectively capture both 
detailed features and large-scale deformations. The LK 
encoder in our U-Net model is designed to enhance the 
effective receptive field by combining multiple convolutional 
operations in parallel while maintaining parameter efficiency. 
Each LK block in the encoder applies four parallel operations 
to the input feature map x and aggregates the outputs 
elementwise. Shortly, for a given x, the overall output of each 
LK encoder block is: 

𝑥𝑥%&'(&' = 𝜎𝜎(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3𝑑𝑑)×)×)(𝑥𝑥) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3𝑑𝑑+×+×+(𝑥𝑥) 
+ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3𝑑𝑑,×,×,(𝑥𝑥) + 𝑥𝑥), (2) 

where k represents the LK size, chosen as 5 in this paper, and 
σ(⋅) is an activation function such as ReLU. 

This formulation ensures that the network captures a 
wide range of spatial information without dramatically 
increasing the number of parameters, preserving the model's 
training stability while enhancing its capacity to process both 
small-scale details and large anatomical deformations. 

 
2.3. Textual Feature Extraction 

To integrate semantic information into the registration 
process, we employ CLIP [9], which is pre-trained on large- 
scale image-text pairs, to extract text-based embeddings of 
regions using its original feature without fine-tuning (with a 
higher accuracy than One-Hot). For each anatomical region 
m, a descriptive prompt is generated, such as: "Magnetic 
Resonance Imaging (MRI) of the [m] region of the brain." 
CLIP’s pre-trained text encoder is used to convert these 
prompts into corresponding text embedding vectors 𝑡𝑡! ∈ ℝ-

, where D represents the embedding dimension. During this 
procedure, a transformer-based encoder is used to embed the 
textual input. The tokenized text is first converted 



# # ! 

into a sequence of word embeddings, then passed through a 𝐿𝐿'%':# = 𝐿𝐿;"! D𝐼𝐼7, 𝐼𝐼!(𝜙𝜙9)E + 𝐿𝐿-<5 D𝐽𝐽7, 𝐽𝐽!(𝜙𝜙9)E + 

series of transformer layers to extract the textual feature 
representation through multi-head self-attention. Finally, for 𝜆𝜆𝜆𝜆;!% (∇𝜙𝜙9 ), (8) 

a total of M anatomical regions, the embeddings are 
organized into a matrix 𝑇𝑇 ∈ ℝ.×- , where each row is an 
embedding vector for a particular region: 

𝑇𝑇 = [𝑡𝑡,, 𝑡𝑡/, … , 𝑡𝑡.]0, (3) 
Meanwhile, the background embedding 𝑡𝑡1 is initialized 

to distinguish it from the anatomical embeddings, ensuring 
that the network correctly differentiates background from the 
anatomical regions. Thus, the full embedding matrix is: 

𝑇𝑇2&## = [𝑡𝑡1, 𝑡𝑡,, … , 𝑡𝑡.]0, (4) 

2.4. Multimodal Feature Aggregation 
 

A key aspect of TA-MIR is the fusion of text-based 
anatomical embeddings and image features, which occurs at 
multiple stages in the network. The fusion block is illustrated 
in Fig. 2, specifically, for each voxel 𝑥𝑥 , the segmentation 
label 𝑚𝑚(𝑥𝑥) is used to retrieve corresponding text embedding 
𝑡𝑡!(𝑥𝑥) ∈ ℝ- from 𝑇𝑇2&## by indexing: 

𝑡𝑡!(𝑥𝑥) = 𝑇𝑇2&##[𝑚𝑚(𝑥𝑥)] (5) 
To combine it with the image features, we gather 𝑡𝑡!(𝑥𝑥) 

to construct the full embedding image 𝑡𝑡! ∈ ℝ3!×4!×-!×- , and 
implement a feature modulation mechanism. Let 𝐹𝐹# ∈ 
ℝ3!×4!×-!×5! represent the image feature map at level l of the 
U-Net. We modulate these image features by applying the 
text embedding 𝑡𝑡! to enrich the spatial information with 
contextual knowledge: 

𝐹𝐹6 = 𝐹𝐹 ⨀ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡 ), (6) 
where ⨀ denotes element-wise multiplication, 𝐹𝐹#′ is the 
fused feature map, and 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡!) ∈ ℝ3!×4!×-!×5! is the 
weight generated by a multi-layer perceptron projecting 𝑡𝑡! 
into the same dimensional space as the image feature map. 

This fusion block is applied at multiple levels of the 
encoder-decoder structure, allowing the text embedding to 
influence low-level and high-level feature representations. 
The fused feature maps are used as inputs for subsequent 
layers of the U-Net, ensuring that image features and 
semantic information from the text jointly guide the process. 

 
2.5. Loss Function 

The task of medical image registration is to find the optimal 
transformation that aligns the moving image 𝐼𝐼! with the 
fixed image 𝐼𝐼7 . With the final fused multimodal feature 
representation 𝐷𝐷8 at the final layer (when L=1) of the 
decoder, we define the final deformation field 𝜙𝜙9(𝑥𝑥) as: 

𝜙𝜙9(𝑥𝑥) = 𝑥𝑥 + 𝑢𝑢9(𝑥𝑥), (7) 
where 𝑢𝑢9(𝑥𝑥) represents the displacement field learned from 
the multimodal features throughout the model at location x, 
and θ are the parameters learned by the network. 

Moreover, the loss function is composed of three terms: 

where 𝐿𝐿;"! is typically implemented as mean squared error 
(MSE) or normalized cross-correlation (NCC) depending on 
the data used. 𝐿𝐿-<5 evaluates the similarity based on the 
deformed segmentation of the registration results 𝐽𝐽!(𝜙𝜙9) 
and the ground truth 𝐽𝐽7 using a Dice loss. 𝐿𝐿;!%, where the L2 
norm is calculated, penalizes large gradients to enforce 
smoothness in the deformation field, while 𝜆𝜆 serves as the 
scale of smoothness modulation. 

3. EXPERIMENTS AND RESULTS 
 

3.1. Datasets 
 

Experiments were carried out using three publicly available 
3D brain MRI datasets. For all those datasets, the label and 
responding anatomical region names were paired and served 
as the text prompt of our model. Automatic segmentation 
processed by FreeSurfer [19] was utilized. 
The OASIS dataset [15] contains 414 pre-processed 3D 
inter-subject brain scans with 35 structures and a resolution 
of 160 × 192 × 224. There were 394 scans for training, along 
with 19 image pairs for validation and testing. 
The IXI dataset [16] includes 576 T1-weighted brain MRI 
scans, and label maps of 38 anatomical structures were used 
for Dice evaluation. All scans were cropped to 160 × 192 × 
224. The training, validation, and testing set was separated to 
have 403, 58, and 115 images accordingly. 
The LPBA40 dataset [17] consists of 40 brain MRI scans, 
with 56 labeled ROIs. These scans were resampled to a size 
of 160 × 192 × 160. A total of 30 scans were used for training, 
and 10 scans were reserved for testing. 

3.2. Implementation Details 
 

The model was implemented using PyTorch on a machine 
with four NVIDIA Quadro GV100 GPUs. It was trained for 
500 epochs using the Adam optimization algorithm, with a 
batch size of 1, and a learning rate of 1 × 10-4 throughout the 
training process. The smooth factor 𝜆𝜆 and start channel C 
were subject to change according to the dataset used. 
Empirically, we used 0.2/0.4/0.6 as decay factor 𝛼𝛼,///+. 

 
3.3. Results 

 
To demonstrate the effectiveness of the proposed TA-MIR, 
we compared it with multiple cutting-edge classical iterative 
methods, CNN-based models, Transformer-based models, 
and hybrid methods. Most of the quantitative results of those 
methods were obtained from open-sourced publications or 
leaderboards, while others were trained by us using the 
optimal parameter settings. The performance was evaluated 
using the Dice Similarity Coefficient (DSC) and the Jacobian 
determinant of the deformation field (%| 𝐽𝐽> | < 0). 



Table 1. Quantitative results of different methods on OASIS, LPBA40, and IXI dataset. 
 

Method 
OASIS LPBA40 IXI 

Dice(%) %| 𝐽𝐽>| ≤ 0 Dice(%) %| 𝐽𝐽>| ≤ 0 Dice(%) %| 𝐽𝐽>| ≤ 0 
SyN [22] 78.0 0±0.12 66.5 0±0.12 63.9 0±0.20 
NiftyReg [23] 78.5 0.10±0.20 66.9 0.14±0.09 64.0 0±0.18 
CycleMorph [24] 78.8 0.85±0.38 65.0 0.44±0.22 73.0 1.72±0.38 
VoxelMorph [2] 84.7 1.24±0.46 64.2 0.96±0.38 72.6 1.52±0.34 
TransMorph [7] 86.2 1.56±0.33 63.7 1.42±0.46 74.6 1.57±0.33 
AttentionReg [25] 77.5 1.44±0.50 62.7 0.81±0.34 / / 
LapIRN [26] 76.5 0.01±0.32 73.6 0.01±0.30 / / 
LKU-Net [18] 88.6 0.11±0.05 68.7 0.13±0.26 75.7 0.14±0.12 
TextSCF [14] 90.1 0.12±0.04 / / / / 
TA-MIR (Ours) 91.4 0.11±0.04 72.5 0.13±0.33 78.6 0.13±0.18 

 
 
 
 
 

Fig. 3. One of the qualitative results on OASIS dataset in blend display, in axial, coronal, and sagittal dimension. 

Table 2. Results of DMR and DMR-edited on two datasets. 
 

 OASIS LPBA40  
it still demonstrated higher accuracy across datasets, 
validating the effectiveness of our multiscale fusion method. 

Model 

Vit-V- 
Dice(%) %| 𝐽𝐽!| ≤ 0 Dice(%) %| 𝐽𝐽!| ≤ 0 

78.2 2.05±0.90 61.3 1.31±0.48 
3.4. Ablation Study 

 Net [20]  
DMR[21] 79.3 1.02±0.44 67.5 0.62±0.33 
TA-DMR 80.8 0.98±0.43 68.9 0.56±0.33 

 
Table 3. Results of encoder/decoder-only-fusion TA-MIR. 

 

Model Dice(%) %| 𝑱𝑱𝝓𝝓| ≤ 𝟎𝟎 
 

TA-MIR (Enc) 89.7 0.17±0.26 
 

 

TA-MIR (Dec) 89.2 0.14±0.06 
 

 
Table 1 shows the comparison of various methods across 

the three datasets. Our proposed TA-MIR method achieved 
state-of-the-art performance on the OASIS and IXI datasets 
and ranked second on the LPBA40 dataset, Fig. 3 shows an 
example. The model also generated a relatively smooth 
deformation field, indicated by a low percentage of voxels 
with non-positive Jacobian determinants. 

When compared to LapIRN on the LPBA40 dataset, our 
model's Dice score was 1.1% lower, likely due to LapIRN’s 
use of a similarity pyramid for multi-resolution optimization, 
which enhanced performance on limited data. However, 
compared to the LKU-Net, our model showed a 3% to 4% 
accuracy improvement across all datasets, highlighting the 
effectiveness of our multimodal feature aggregation block. 

Furthermore, TA-MIR outperformed TextSCF on the 
OASIS dataset, emphasizing the importance of multiscale 
text-image fusion integrated throughout the model, rather than 
applied only at the final output stage. We also applied our 
fusion block to another U-Net-like model, Deformer (DMR) 
[21], named as TA-DMR. As shown in Table 2, while TA-
DMR did not achieve state-of-the-art performance, 

To assess the impact of image-text fusion in both the encoder 
and decoder of our model, we conducted an ablation study 
on the OASIS dataset by applying fusion only in the encoding 
progress or only during decoding. 

In the encoder-only fusion, the text embeddings were 
fused during feature extraction, while the decoder used 
traditional skip connections. In the decoder-only fusion, the 
text embeddings were integrated at each decoder level, with 
no fusion in the encoder. Refer to Table 3, both experiments 
showed a decline in performance compared to the full model, 
with Dice scores dropping to 89.7 and 89.2, respectively. 
Despite this, both experiments outperformed the LKU-Net's 
88.6. However, they performed worse than TextSCF, 
highlighting the importance of multiscale fusion across entire 
network. 

 
4. CONCLUSION 

 
In this paper, we introduced TA-MIR, a framework that 
integrates anatomical text embeddings with an encoder- 
decoder architecture for MIR. By combining spatial image 
features and semantic information, our model improved the 
registration accuracy and the robustness cross datasets. 
Experiments on the OASIS, IXI, and LPBA40 datasets 
showed state-of-the-art performance, highlighting the 
benefits of multimodal feature aggregation. Future work will 
expand the model to other data types, like abdomen CT or 
even cross-modal MIR, explore more sophisticated text 
prompts with additional anatomic details, and integrate more 
encoder-decoder architectures like hybrid networks, to 
further improve the usability and alignment precision. 
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