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1 Notes

CS3230 tutorial format is as follows: We will consider a few questions per tutorial. For each question,

we may ask a student to solve it. A reasonable attempt for that question will earn the student

participation points. TA will give each student at least two chances over the semester. As there are

11 − 12 tutorials, and around 5 questions per tutorial, each student should be able to get enough

chances if they are coming regularly to the tutorials.

2 Lecture Review: Asymptotic Analysis

We say1 that f ∈ O(g) or f = O(g) or f(n) ∈ O(g(n)) or f(n) = O(g(n)) if ∃c, n0 > 0 such that

∀n ≥ n0, 0 ≤ f(n) ≤ c · g(n).
Informally, in words, the above says that (function) g is an upper bound on (function) f . This is

the Big O worst-case time complexity analysis that you have learned since earlier courses, for example,

from CS2040/C/S.

The four other asymptotic notations Ω,Θ, o, ω along with O, can be summarised as in the following

table.

1We are fine with either notation although we prefer f(n) ∈ O(g(n)) notation.
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We say if ∃c, c1, c2, n0 > 0 such that ∀n ≥ n0 In other words

f(n) ∈ O(g(n)) 0 ≤ f(n) ≤ c · g(n) g is an upper bound on f

f(n) ∈ Ω(g(n)) 0 ≤ c · g(n) ≤ f(n) g is a lower bound on f

f(n) ∈ Θ(g(n)) 0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n) g is a tight bound on f

We say if ∀c > 0, ∃n0 > 0 such that ∀n ≥ n0 In other words

f(n) ∈ o(g(n)) 0 ≤ f(n) < c · g(n) g is a strict upper bound on f

f(n) ∈ ω(g(n)) 0 ≤ c · g(n) < f(n) g is a strict lower bound on f

3 Tutorial 01 Questions

Q1). Assume f(n), g(n) > 0, show:

(a) limn→∞
f(n)
g(n) = 0 ⇒ f(n) ∈ o(g(n)) — this has already been shown in lec01b.

(b) limn→∞
f(n)
g(n) < ∞ ⇒ f(n) ∈ O(g(n))

By definition of limit, limn→∞
f(n)
g(n) = z, means

∀ϵ > 0, ∃n0 > 0, such that ∀n ≥ n0,
f(n)
g(n) ≤ z + ϵ.

Hence, for c = z + ϵ,∃n0 > 0, such that ∀n ≥ n0,

f(n) ≤ (z + ϵ) · g(n) = c · g(n).
f(n) ∈ O(g(n)).

(c) 0 < limn→∞
f(n)
g(n) < ∞ ⇒ f(n) ∈ Θ(g(n))

The above and the remaining parts can be done similarly by looking at the value of the limits.

However, the simplest way to see this is to combine the explanation above for O and explanation

below for Ω to conclude that f(n) ∈ Θ(g(n)).

(d) limn→∞
f(n)
g(n) > 0 ⇒ f(n) ∈ Ω(g(n))

The simplest way to see this is to flip f(n) vs g(n), and use the explanation above (the limit will

remain z as before), then use the complementarity property g(n) ∈ O(f(n)) iff f(n) ∈ Ω(g(n)).

(e) limn→∞
f(n)
g(n) = ∞ ⇒ f(n) ∈ ω(g(n))

The simplest explanation is to flip f(n) - the faster growing function vs g(n) - the slower growing

function, the limit limn→∞
g(n)
f(n) will be 0, then use the complementarity property g(n) ∈ o(f(n))

iff f(n) ∈ ω(g(n)).

Q2). Assume f(n), g(n) > 0, show:

(a) Reflexivity
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• f(n) ∈ O(f(n))

Taking c = 1 (any constant ≥ 1), n0 = 1, we have ∀n ≥ n0,

f(n) ≤ (1 · f(n) = c · f(n)).

• f(n) ∈ Ω(f(n))

Taking c = 1 (any positive constant ≤ 1), n0 = 1, we have ∀n ≥ n0,

(c · f(n) = 1 · f(n)) ≤ f(n).

• f(n) ∈ Θ(f(n))

Taking c1 = 1, c2 = 1, n0 = 1, we have ∀n ≥ n0,

(c1 · f(n) = 1 · f(n)) ≤ f(n) ≤ (1 · f(n) = c2 · f(n)).

(b) Transitivity

• f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)) implies f(n) ∈ O(h(n))

f(n) ∈ O(g(n)) means there exist cfg > 0, n0fg > 0 such that ∀n ≥ n0fg, f(n) ≤ cfg · g(n).
g(n) ∈ O(h(n)) means there exist cgh > 0, n0gh > 0 such that ∀n ≥ n0gh, g(n) ≤ cgh · h(n).
Taking c = cfg · cgh, n0 = max(n0fg, n0gh), we have ∀n ≥ n0,

f(n) ≤ c · h(n).
Hence, f(n) ∈ O(h(n)).

• Do the same for Ω, Θ, o, ω

Same as above, just change ≤ to ≥,=, <,>, respectively. Here, = for Θ denotes that we

need to do both ≥ and ≤ bounds.

(c) Symmetry

• f(n) ∈ Θ(g(n)) iff g(n) ∈ Θ(f(n))

Suppose f(n) ∈ Θ(g(n)).

Thus, there exist c1, c2, n0 > 0 such that ∀n ≥ n0,

c1 · g(n) ≤ f(n) ≤ c2 · g(n).

f(n) ≤ c2 · g(n).
Hence, 1

c2
· f(n) ≤ g(n) (divide LHS and RHS by c2).

c1 · g(n) ≤ f(n).

Hence, g(n) ≤ 1
c1

· f(n) (divide LHS and RHS by c1).

Taking c′1 =
1
c2
, c′2 =

1
c1

and with the same n0, we have ∀n ≥ n0,

c′1 · f(n) ≤ g(n) ≤ c′2 · f(n).
Thus, g(n) ∈ Θ(f(n)).

(d) Complementarity
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• f(n) ∈ O(g(n)) iff g(n) ∈ Ω(f(n))

Suppose f(n) ∈ O(g(n)).

Thus, there exist c, n0 > 0 such that ∀n ≥ n0,

f(n) ≤ c · g(n).

Hence, 1
c · f(n) ≤ g(n) (divide LHS and RHS by c).

Taking c′ = 1
c and with the same n0, we have ∀n ≥ n0,

c′ · f(n) ≤ g(n).

Thus, g(n) ∈ Ω(f(n)).

• f(n) ∈ o(g(n)) iff g(n) ∈ ω(f(n))

Same as above, just change ≤ to <.

Q3). Which of the following statement(s) is/are True?

(a) 3n+1 ∈ O(3n)

True.

Taking c = 3, n0 = 1, we have ∀n ≥ n0,

3n+1 ≤ 3 · 3n = c · 3n.
3n+1 ∈ O(3n).

(b) 4n ∈ O(2n)

False.

For all c ≥ 1, n0 = c, we have ∀n ≥ n0,

(4n = (22)n = (2n)2 = 2n · 2n) ≥ c · 2n, i.e., we cannot upper bound 4n with constant times 2n.

(c) 2⌊logn⌋ ∈ Θ(n) (we assume log is in base 2)

True.

Taking c1 =
1
2 , c2 = 1, n0 = 1 (log 0 is undefined), we have ∀n ≥ n0,

(c1 · n = 1
2 · n) ≤ 2⌊logn⌋ ≤ (1 · n = c2 · n).

2⌊logn⌋ ∈ Θ(n).

(d) For constants i, a > 0, we have (n+ a)i ∈ O(ni)

True.

Taking c = 2i, n0 = a, we have ∀n ≥ n0,

(n+ a)i ≤ (n+ n)i = (2n)i = 2i · ni = c · ni.

(n+ a)i ∈ O(ni).

Q4). Which of the following statement(s) is/are True?

2log2 n ∈
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(a) O(n)

(b) Ω(n)

(c) Θ(
√
n)

(d) ω(n)

2log2 n = n ∈ O(n), and also n ∈ Ω(n).

During the tutorial, TA can follow-up with this version:

Q4-variant). How about 2log4 n ∈ ?

We can rewrite the logarithm from one base to another base: log4 n = log2 n
log2 4

= log2 n
2 .

Thus, 2log4 n = 2
log2 n

2 = (2log2 n)
1
2 = n

1
2 =

√
n.

(a) O(n)

True.

2log4 n =
√
n ∈ O(n), taking c = 1, n0 = 1.

(b) Ω(n)

False

(c) Θ(
√
n)

True

2log4 n =
√
n ∈ Θ(

√
n), taking c1 = 1 (or smaller), c2 = 1 (or larger), n0 = 1.

(d) ω(n)

False

Remarks: Note that logb n = c · loga n, where the constant c = log a
log b . Thus, logb n and loga n have

the same order of growth for different a and b. But, when they used as exponents, like in this

question+variant, they make a difference (be careful). A common mistake is to say 2log4 n ∈ Θ(n) —

pick option 1 (ok) and 2 (wrong), missing option 3.

Q5). Rank the following functions by their order of growth.

(But if any two (or more) functions have the same order of growth, group them together).

• f1(n) = logn

• f2(n) = n!

• f3(n) = 2n + n

f3(n) ∈ Θ(2n).
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• f4(n) = n2.3 + 16n+ f1(n)

f4(n) ∈ Θ(n2.3).

• f5(n) = log(n2)

f5(n) = log(n2) = 2 log n, hence the same order of growth as f1(n).

• f6(n) = ln(n2n)

f6(n) = 2n ln(n) ∈ Θ(n lnn).

f2(n) = n! = n · (n− 1) · (n− 2) · . . . · 1.
expand simplified f3(n) = 2n = 2 · 2 · 2 · . . . · 2.
can show by induction that for n ≥ 4, n! ≥ n

4 · 2n.

Therefore, with respect to order of growth, we have (f1(n) = f5(n)) ≤ f6(n) ≤ f4(n) ≤ f3(n) ≤ f2(n).
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