
CS3230 Semester 2 2024/2025

Design and Analysis of Algorithms

Tutorial 02

Recurrences and Master Theorem

For Week 03

Document is last modified on: January 21, 2025

MODEL ANSWER IS FOR OUR CLASS ONLY; NOT TO BE DISTRIBUTED IN PUBLIC

1 Lecture Review: Recurrences

Given a recurrence in the form of T (n) = a · T (nb ) + f(n), where f(n) = c · nm logk n, we want to give

a tight asymptotic bound for T (n).

There are a few ways to solve recurrences, with the easiest being the Master theorem (master

method). Let d = logb a (this d plays an important role; also notice bd = a).

1. Case 1: f(n) ∈ O(nd−ϵ) ⇒ T (n) ∈ Θ(nd).

The work done at the leaves dominate.

2. Case 2: f(n) ∈ Θ(nd logk n) ⇒ T (n) ∈ Θ(nd logk+1 n).

There are some extensions of case 2, to be elaborated in this tutorial.

3. Case 3: f(n) ∈ Ω(nd+ϵ) ⇒ T (n) ∈ Θ(f(n)),

assuming, for some constant c < 1, that for all x, a · f(xb ) ≤ c · f(x) (regularity condition).

The work done at the root dominates.

However, there are at least three other ways to solve recurrences, especially useful when the recur-

rences are not of the form stated above: Telescoping (if applicable), substitution method (guess and

check; need good guess(es)), or draw the recursion tree (try exploring https://visualgo.net/en/

recursion).

1

https://visualgo.net/en/recursion
https://visualgo.net/en/recursion


1.1 Recap About Telescoping

Consider any sequence a0, a1, . . . , an and suppose we need to find
∑n−1

i=0 (ai − ai+1).

Expanding
∑n−1

i=0 (ai − ai+1), we have (a0 − a1) + (a1 − a2) + (a2 − a3) + . . .+ (an−1 − an).

Which can be rewritten as a0 + (−a1 + a1) + (−a2 + a2) + . . .+ (−an−1 + an−1)− an.

Thus, except for a0 at the beginning and −an at the end, all other ai appear exactly once as a negative

and then as a positive in the sum, and thus cancel each other, making the
∑n−1

i=0 (ai− ai+1) = a0− an.

2 Tutorial 02 Questions

Q1). Give a tight asymptotic bound for T (n) = 4 · T (n4 ) + n
logn using telescoping.

Since a = 4, b = 4, d = log4 4 = 1, and f(n) = n
logn = n1 log−1 n ∈ Θ(nd log−1 n).

Master theorem case 2 (extension 2b when k = −1, see https://en.wikipedia.org/wiki/Master_

theorem_(analysis_of_algorithms)#Generic_form) is actually applicable, and the result is:

T (n) ∈ Θ(nd log logn) = Θ(n log log n).

But you are forced to use the ‘harder’ telescoping method for this question...

For ease of notation, assume n is a power of 4 (to avoid floors/ceilings). If n is not a power of 4, it

would only make a constant factor difference.

T (n) = 4 · T
(n
4

)
+

n

log n
(the original recurrence)

T (n)

n
=

4 · T
(
n
4

)

n
+

1

log n
(divide both LHS and RHS by n)

T (n)

n
=

T
(
n
4

)
n
4

+
1

log n
(rearrange to bring 4 down to denominator)

1

log n
=

T (n)

n
− T

(
n
4

)
n
4

Now, we telescope

1

log n
=

T (n)

n
− T

(
n
4

)
n
4

1

log n
4

=
T
(
n
4

)
n
4

− T
(
n
16

)
n
16

(substitute n with
n

4
)

1

log n
16

=
T
(
n
16

)
n
16

− T
(
n
64

)
n
64

(substitute n with
n

16
)

...

1

log 4
=

T (4)

4
− T (1)

1
(final term, n with 4)

Taking the sum on both LHS and RHS:

2

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)#Generic_form
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)#Generic_form


1

log 4
+

1

log 16
+ · · · 1

log n
=

log4 n∑

i=1

1

log 4i
=

T (n)

n
− T (1)

1

Finally,

log4 n∑

i=1

1

i log 4
=

T (n)

n
− T (1) (simplify logarithms)

T (n)

n
− T (1) ∈ Θ(log log n) (harmonic series over log n)

T (n)

n
∈ Θ(log log n) (T (1) is constant)

T (n) ∈ Θ(n log log n). (multiply through by n)

Q2). Give a tight asymptotic bound for T (n) = 5 · T (n3 ) + n.

1. T (n) ∈ Θ(n2)

2. T (n) ∈ Θ(nlog5 3)

3. T (n) ∈ Θ(nlog3 5)

4. T (n) ∈ Θ(n log n)

5. T (n) ∈ Θ(n)

T (n) = 5 · T (n3 ) + n.

Since a = 5, b = 3, d = log3 5 ≈ 1.46..., and f(n) = n = n1 ∈ O(nd−ϵ),

Master theorem case 1 is applicable, and the result is:

T (n) ∈ Θ(nd) = Θ(nlog3 5) = Θ(n1.46...).

Q3). Give a tight asymptotic bound for T (n) = 9 · T (n3 ) + n3.

1. T (n) ∈ Θ(n9)

2. T (n) ∈ Θ(n3 log n)

3. T (n) ∈ Θ(n2)

4. T (n) ∈ Θ(n3)

5. T (n) ∈ Θ(n log2 n)

T (n) = 9 · T (n3 ) + n3.

Since a = 9, b = 3, d = log3 9 = 2, and f(n) = n3 ∈ Ω(nd+ϵ),

Master theorem case 3 is applicable, and the result is:

T (n) ∈ Θ(n3).

3



Regularity condition holds for c = 1
3 < 1:{

a · f
(
x
b

)
= 9 · f

(
x
3

)
= 9 · x3

33
= x3

3

}
≤

{
1
3 · f(x) = c · f(x)

}
,

Extra remarks: If the given f(n) is not of f(n) = c · nd logk n format, there can be a case that

regularity condition does not hold, and thus must be checked. In lec02, we had also seen that if we

check regularity condition first and it is true, we must be in case 3.

Q4). Give a tight asymptotic bound for T (n) = 16 · T (n4 ) + n2 log n.

1. T (n) ∈ Θ(n2 log n)

2. T (n) ∈ Θ(n2 log2 n)

3. T (n) ∈ Θ(n2)

4. T (n) ∈ Θ(n3)

5. T (n) ∈ Θ(n4 log n)

T (n) = 16 · T (n4 ) + n2 log n.

Since a = 16, b = 4, d = log4 16 = 2, and f(n) = n2 log n ∈ Θ(nd log1 n),

Master theorem case 2 is applicable, and the result is:

T (n) ∈ Θ(n2 log1+1 n) = Θ(n2 log2 n).

Q5). Give a tight asymptotic bound for T (n) = 4 · T (n2 ) +
√
n using the substitution method.

Since a = 4, b = 2, d = log2 4 = 2, and f(n) =
√
n = n0.5 ∈ O(nd−ϵ),

Master theorem case 1 is applicable, and the result is:

T (n) ∈ Θ(nd) = Θ(n2).

But you are forced to use the ‘harder’ substitution method for this question...

We guess T (n) ≤ c2 · n2 − c1 · n (a wrong guess will make the math ”not work”).

For c1 = 1, we set c2 large enough so that T (1) ≤ c2 − c1.

T (n) = 4 · T
(n
2

)
+
√
n

≤ 4 ·
(
c2 · n2

22
− c1 · n

2

)
+
√
n (substitute the guessed solution)

= c2 · n2 − 2 · c1 · n+
√
n (simplify)

≤ c2 · n2 − c1 · n+
(√

n− c1 · n
)

(rearrange terms)

≤ c2 · n2 − c1 · n (since
√
n− c1 · n < 0 for n > 1/c21).

Upper bound is shown.

Lower Bound: Either show similarly, or note that
√
n only gives extra cost.

Q6). Suppose that you are given k sorted arrays: {A1, A2, . . . , Ak}, with n elements each.

Your task is to merge them into one combined sorted array of size k · n.

4



Let T (k, n) denotes the complexity of merging k arrays of size n.

Suppose that you decide that the best way to do the above is via recursion (when k > 1):

1. Merge the first ⌈k2⌉ arrays of size n,

2. Merge the remaining ⌊k2⌋ arrays of size n,

3. Merge the two sorted subarrays obtained from the first two steps above.

Give a formula for T (k, n) based on the recursive algorithm above and solve the recurrence. You can

assume that merging two arrays takes time proportional to the sum of the sizes of the two arrays.

The k sorted arrays is divided into two sub-problems of size k
2 sorted arrays each (rounded up or down

if necessary). Finally, these two arrays, each of size k·n
2 , are merged with a cost of:

k · n
2

+
k · n
2

= c · k · n, (for some constant c).

Thus, the recurrence is:

T (k, n) = 2 · T
(
k

2
, n

)
+ c · k · n.

This recurrence does not fit the Master Theorem directly. Instead, a recursion tree can be used (base

case k = 1, no merging). The tree height is log k (or explictly log2 k). At level i (root is level 0), there

are 2i subproblems, each costing kn
2i
:

Cost at level i = 2i · k · n
2i

= c · k · n.

Since there are 1 + log k levels, the total cost is:

T (k, n) =

log k∑

i=0

c · k · n = c · k · n · (1 + log k) ∈ Θ(kn log k)

The recursion tree diagram is shown below:

5



k · n

k·n
2

k·n
4

...

k·n
2i

k·n
2i

...

k·n
4

...
...

k·n
2

k·n
4

...
...

k·n
4

...
...

k·n
2i

k·n
2i

= c · k · n

...

c · k · n

c · k · n

c · k · n

Θ(kn log k)

Level 0

Level 1

Level 2

...

Level i = log k

+

+ ++

+ +· · ·

∑log k
i=0 2i · c·k·n

2i

+

+

+

=

+

=

=

⇓
∑log k

i=0 c · k · n = c · k · n · (1 + log k)

=

+ +

= ⇔

· · ·

6


	Lecture Review: Recurrences
	Recap About Telescoping

	Tutorial 02 Questions

