
CS3230 Semester 2 2024/2025

Design and Analysis of Algorithms

Tutorial 04

Correctness and Divide-and-conquer

For Week 05

Document is last modified on: January 29, 2025

MODEL ANSWER IS FOR OUR CLASS ONLY; NOT TO BE DISTRIBUTED IN PUBLIC

1 Lecture Review: Proof of Correctness

We prove the correctness of an algorithm depending on its type:

• For iterative algorithm, we usually use loop invariant.

Invariant is a condition which is TRUE at the start of EVERY iteration

We can then use invariant to show the correctness:

1. Initialization: It is true before iteration 1

2. Maintenance: If it is true for iteration x, it remains true for iteration x+1

3. Termination: When the algorithm ends, it helps the proof of correctness

• For recursive algorithm, we usually use proof by induction.

1. Show the recursive algorithm is (trivially) correct on its base case(s).

2. Inductive step: show that the recursive algorithm is correct, assuming that the smaller

cases are all correct.

1



2 Lecture Review: D&C

Here are the usual steps for using Divide and Conquer (D&C) problem solving paradigm for problems

that are amenable to it:

1. Divide: Divide/break the original problem into ≥ 1 smaller sub-problems.

2. Conquer: Conquer/solve the sub-problems recursively.

3. Combine (optional): Optionally, combine the sub-problem solutions to get the solution of the

original problem.

The most classic D&C example is Merge Sort.

1. Divide: Divide/break the original problem of sorting n elements into 2 smaller sub-problems of

sorting n
2 elements.

2. Conquer: Conquer/solve the sorting of n
2 elements recursively.

3. Combine (optional): Merge 2 already sorted n
2 elements.

3 Tutorial 04 Questions

Q1). Consider the following iterative sorting algorithm:

Algorithm 1: InsertionSort(A[0..N − 1])

1 for i = 1 to N − 1 do // outer For loop i

2 Let X = A[i] // X is the next item to insert into A[0..i− 1]

3 for j = i− 1 down to 0 do // inner For loop j

4 if A[j] > X then

5 A[j + 1] = A[j] // Make space for X

6 else

7 break

8 A[j + 1] = X // Insert X at index j + 1

Assuming the inner for loop for index j is correct (that is, assuming, A[0..i− 1] is sorted it places A[i]

in its correct position, without making any other changes to A[i+1..N − 1]) answer the following two

questions:

(a) What is the suitable loop invariant for the outer for loop i?

Let B refer to the original (unsorted) array A (alternatively, you can imagine having copied

original array A to B at the beginning). This makes it easier to refer to the original values.

Invariant: A[0..i− 1] is the sorted version of B[0..i− 1]. Furthermore, A[i..N − 1] = B[i..N − 1]

2



(b) Show the invariant after initialization, maintenance, and termination.

The invariant is true at the beginning when i = 1,

i.e., A[0] = B[0] is a single Integer and by default is sorted.

The rest of the array is as A[1..N − 1] = B[1..N − 1]

As we have been given the assumption that the inner for loop j is correct, after it terminates

(break) and we reach Step 8, we will correctly slot X at A[j +1], maintaining A[0..i] is now the

sorted values of B[0..i] (one index more than before).

At termination, i = N − 1, then the invariant says that A[0..N − 1] is the sorted values of the

original array B[0..N − 1], which shows the correctness of InsertionSort(A).

Not part of the tutorial, but you may want to think about a suitable invariant for inner For

loop.

Invariant: The following hold

(i) A[0..j]A[j + 2..i] is the sorted version of B[0..i− 1].

(ii) A[i+ 1..N − 1] = B[i+ 1..N − 1].

(iii) X = B[i].

(iv) If j + 2 ≤ i, then A[j + 2] > X

Q2). Consider the following recursive sorting algorithm:

Algorithm 2: StoogeSort(A)

1 Let n be the length of array A

2 if n = 2 and A[0] > A[1] then

3 Swap A[0] and A[1]

4 if n > 2 then

5 Apply StoogeSort to sort the first ⌈2n/3⌉ elements recursively

6 Apply StoogeSort to sort the last ⌈2n/3⌉ elements recursively

7 Apply StoogeSort to sort the first ⌈2n/3⌉ elements recursively

Answer the following two questions:

(a) Prove that StoogeSort(A) correctly sorts the input array A.

For the sake of simplicity, you may assume that all numbers in A are distinct.

We prove the correctness of the algorithm by an induction on the array size n.

Base case: If n = 1, the algorithm is trivially correct, as the array is already sorted.

If n = 2, the algorithm is correct due to Step 2.

Inductive step: Now consider the case of n > 2. By induction hypothesis, assume that the

algorithm is correct on any array of size smaller than n. Let r = n− ⌈2n/3⌉ = ⌊n/3⌋. We make

the following observation:

3



• After Step 5, the r largest numbers of A must be in the final ⌈2n/3⌉ entries of A.

This observation implies that the r largest numbers of A are correctly sorted after Step 6.

Therefore, at the beginning of Step 7, the initial n−r = ⌈2n/3⌉ numbers of the array are precisely

the ⌈2n/3⌉ smallest numbers of A. After Step 7, these ⌈2n/3⌉ numbers are also correctly sorted.

In the subsequent discussion, we prove the above observation. Let x be any number in the set

of r largest numbers of A. We show that x must be in the final ⌈2n/3⌉ entries of A after Step 5.

• Suppose x is not one of the initial ⌈2n/3⌉ numbers of A at the beginning of Step 5. The

algorithm of Step 5 does not change the position of x, so x is still in the final n−⌈2n/3⌉ ≤
⌈2n/3⌉ entries of A after Step 5.

• Suppose x is one of the initial ⌈2n/3⌉ numbers of A at the beginning of Step 5. Among

these ⌈2n/3⌉ numbers, at least ⌈2n/3⌉− r ≥ r of them are smaller than x. Therefore, after

Step 5, x is not in the initial r entries of A. In other words, x is in the final n− r = ⌈2n/3⌉
entries of A after Step 5.

(b) Analyze the time complexity of StoogeSort.

The runtime T (n) of the algorithm on an array of size n is given by the recurrence relation

T (n) =

O(1) if n ≤ 2.

3T (⌈2n/3⌉) +O(1) if n > 2.

Since a = 3, b = 3/2, and d = log3/2 3 ≈ 2.7095 . . . and f(n) ∈ O(nd−ϵ) for some 0.5 = ϵ > 0, by

Case 1 of the Master Theorem, we get T (n) ∈ O(nd) = O(n2.7095...).

Optional: Can ask students why the choice of ⌈2n/3⌉ makes sense in the algorithm.

The Peak Finding Problem (Q3-5)

Given a 2D array with m rows and n columns, where each cell contains a number, a peak is a cell

whose value is no smaller than all of its (up to) four neighbors: top, right, bottom, and left.

For example, given m× n = 3× 5 grid below, there are 5 peaks (denoted with a ‘*’):

6 8* 7 7* 1

9* 3 1 7* 3

8 4 5* 3 2

Q3). Show that there is a peak in every 2D array!

Since any 2D array must contain at least one maximal element, and a maximal element is no smaller

than any other cell (including its four neighbors), all maximal elements are peaks.

We want to come up with a recursive algorithm to find any peak:

4



Algorithm 3: FindPeakSp(A)

1 if A has n = 1 column then

2 return a maximal element in the column

3 if A has n ≥ 2 columns then

4 Let Cm be the middle column of A

5 Find a maximal element in Cm

6 if the above maximal element in Cm is a peak then

7 return that element

8 else

9 X ← FindPeakSp(Left Half of A without Cm)

10 Y ← FindPeakSp(Right Half of A without Cm)

11 if X or Y is a peak then

12 return the peak (X or Y )

13 else

14 return None // See Question Q3

Note: FindPeakSp finds a Special kind of peak element. The element that is a peak as well a maximal

element in the column in which it is located. Call this kind of peak element special-peak.

Q4). What is the runtime complexity of FindPeakSp(A) algorithm?

Time complexity of finding a maximal element in any column is Θ(m), as there are m rows.

So, we can consider how many columns are processed, then multiply the result by Θ(m).

Let T (n) be the number of columns to be processed, then T (n) = 2 · T (n2 ) + 1.

Since a = 2, b = 2, d = log2 2 = 1, and f(n) ∈ O(nd−ϵ) for some 0.5 = ϵ > 0, by Case 1 of the Master

Theorem, then T (n) ∈ Θ(nd) = Θ(nlog2 2) = Θ(n).

Thus, FindPeakSp(A) runs in T (n)×Θ(m) = Θ(n)×Θ(m) ∈ Θ(nm).

Q5). Argue why FindPeakSp(A) will never return None (i.e., always returns a peak). Additionally,

discuss whether any steps within the ‘else’ condition in Step 8 can be optimized (faster asymptotically).

The following argument demonstrates why the algorithm will always find a peak (special-peak) and

thus never return None. It also explains why FindPeakSp(A) does not need to perform both Steps 9

and 10. Consequently, a faster divide-and-conquer (D&C) algorithm can be designed.

If we reach Step 8, the chosen maximal element W in the middle column (the k-th column) is not a

peak. This implies one of the following scenarios for W :

• Only right neighbor of W is larger.

• Only left neighbor of W is larger. (Symmetric to above)

• Both the left and right neighbors of W are larger. (Covered by the two cases above)

Hence, we focus on the case where the right neighbor of W in column k + 1 (denoted as X) is larger.

5



1 · · · k k + 1 · · · n



1 · · · · · · · · · · · · · · · · · · · · ·
· · · a b W X c · · ·
· · · d e f g h · · ·

... · · · · · · · · · · · · · · · · · · · · ·
· · · l o p q r · · ·
· · · s t Y Z u · · ·

m · · · · · · · · · · · · · · · · · · · · ·

Figure 1: Illustration of the scenario where the right neighbor X in column k + 1 is larger than W .
The figure highlights the relevant elements W (max in Cm), X, Y , and Z (special-peak of A′).

We argue below that this guarantees the existence of a special-peak in the columns k + 1, k + 2, . . .

(i.e., columns > k). Refer to Figure 1 for an illustration of this scenario.

A special-peak in the right subarray A′ = A[1..m][k + 1..n] must also be a special-peak of A if it is

located in any column other than column k + 1. Thus, the only case requiring further consideration

is when a special-peak of A′ is located in column k + 1, as it directly borders column k.

Let Z be a special-peak of A′ located in column k + 1 of A. Observe the following:

• Z is a maximal element in column k + 1 of A, so Z ≥ X, where X is the right neighbor of W .

• Z is not smaller than any of its neighbors in A′, i.e., it is not smaller than its top, bottom, or

right neighbors. To confirm that Z is also a special-peak of A, we need to show that Z is not

smaller than its left neighbor Y in column k.

Since the right neighbor of W is larger (X > W ) and Z ≥ X, it follows that:

Z ≥ X > W ≥ Y.

This implies that Z is not smaller than its left neighbor Y . Therefore, Z is a special-peak of A.

With this, we can optimize the ‘else’ condition in Step 8, as shown below in the Improved algorithm:

6



Algorithm 4: FindPeakSp-Imp(A)

1 if A has n = 1 column then

2 return a maximal element in the column

3 if A has n ≥ 2 columns then

4 Let Cm be the middle column of A

5 Find a maximal element in Cm

6 if the above maximal element in Cm is a peak then

7 return that element

8 else

9 if the right neighbor of the above maximal element in Cm is larger then

10 return FindPeakSp-Imp(Right Half of A without Cm)

11 else

12 return FindPeakSp-Imp(Left Half of A without Cm)

Now we analyze its asymptotic behavior.

Let T (n) represent the number of columns processed. In this case, the recurrence is: T (n) = T (n/2)+1.

Since a = 1, b = 2, d = 0, and f(n) ∈ Θ(nd), by Case 2 of the Master Theorem, yielding: T (n) ∈
Θ(log n). Thus, the overall algorithm runs in T (n)×Θ(m) = Θ(log n)×Θ(m) ∈ Θ(m log n), which is

asymptotically faster.

Optional: Can ask the students whether the Θ(m log n) algorithm is the best possible solution for this

problem.

7


	Lecture Review: Proof of Correctness
	Lecture Review: D&C
	Tutorial 04 Questions

