(CS3230 Semester 2 2024 /2025
Design and Analysis of Algorithms

Tutorial 04
Correctness and Divide-and-conquer
For Week 05

Document is last modified on: January 29, 2025

MODEL ANSWER IS FOR OUR CLASS ONLY; NOT TO BE DISTRIBUTED IN PUBLIC

1 Lecture Review: Proof of Correctness
We prove the correctness of an algorithm depending on its type:

e For iterative algorithm, we usually use loop invariant.
Invariant is a condition which is TRUE at the start of EVERY iteration

We can then use invariant to show the correctness:

1. Initialization: It is true before iteration 1
2. Maintenance: If it is true for iteration x, it remains true for iteration x+1

3. Termination: When the algorithm ends, it helps the proof of correctness
e For recursive algorithm, we usually use proof by induction.

1. Show the recursive algorithm is (trivially) correct on its base case(s).

2. Inductive step: show that the recursive algorithm is correct, assuming that the smaller

cases are all correct.

2 Lecture Review: D&C

Here are the usual steps for using Divide and Conquer (D&C) problem solving paradigm for problems

that are amenable to it:

1. Divide: Divide/break the original problem into > 1 smaller sub-problems.
2. Conquer: Conquer/solve the sub-problems recursively.

3. Combine (optional): Optionally, combine the sub-problem solutions to get the solution of the

original problem.
The most classic D&C example is Merge Sort.

1. Divide: Divide/break the original problem of sorting n elements into 2 smaller sub-problems of

sorting % elements.

2. Conquer: Conquer/solve the sorting of 2 elements recursively.

3. Combine {eptionalty: Merge 2 already sorted % elements.

3 Tutorial 04 Questions

Q1). Consider the following iterative sorting algorithm:
Algorithm 1: InsertionSort(A[0..N — 1])

1 fori=1to N —1do // outer For loop i
2 Let X = A[i] // X is the next item to insert into A[0..i — 1]
3 for j =i—1 down to 0 do // inner For loop j
4 if A[j] > X then

5 ‘ Alj + 1] = Alj] // Make space for X
6 else

7 t break

8 Aj+1]=X // Insert X at index j + 1

Assuming the inner for loop for index j is correct (that is, assuming, A[0..i — 1] is sorted it places Ali]
in its correct position, without making any other changes to A[i 4+ 1..N — 1]) answer the following two

questions:

(a) What is the suitable loop invariant for the outer for loop i?

Let B refer to the original (unsorted) array A (alternatively, you can imagine having copied

original array A to B at the beginning). This makes it easier to refer to the original values.

Invariant: A[0..i — 1] is the sorted version of B|0..i — 1]. Furthermore, A[i..N — 1] = B[i..N — 1]

(b) Show the invariant after initialization, maintenance, and termination.

The invariant is true at the beginning when ¢ = 1,

i.e., A[0] = B[0] is a single Integer and by default is sorted.

The rest of the array is as A[1.N — 1] = B[1..N — 1]

As we have been given the assumption that the inner for loop j is correct, after it terminates

(break) and we reach Step [8] we will correctly slot X at A[j + 1], maintaining A|[0..i] is now the

sorted values of BJ0..7] (one index more than before).

At termination, ¢ = N — 1, then the invariant says that A[0..N — 1] is the sorted values of the

original array B[0..N — 1], which shows the correctness of InsertionSort(A).

Not part of the tutorial, but you may want to think about a suitable invariant for inner For

loop.

Invariant: The following hold

(i) A[0..5]A[j + 2..i] is the sorted version of B[0..7 — 1].
(ii) [7 +1.N—-1]=B[i+1.N —1].

(i) X = B

(iv) If j +2 <4, then A[j +2] > X

Q2). Consider the following recursive sorting algorithm:

Algorithm 2: StoogeSort(A)

1 Let n be the length of array A
2 if n =2 and A[0] > A[1] then

L Swap A[0] and A[1]

4 if n > 2 then

5
6
7

Apply StoogeSort to sort the first [2n/3] elements recursively
Apply StoogeSort to sort the last [2n/3] elements recursively
Apply StoogeSort to sort the first [2n/3] elements recursively

Answer the following two questions:

(a) Prove that StoogeSort(A) correctly sorts the input array A.

For the sake of simplicity, you may assume that all numbers in A are distinct.

We prove the correctness of the algorithm by an induction on the array size n.

Base case: If n =1, the algorithm is trivially correct, as the array is already sorted.
If n = 2, the algorithm is correct due to Step

Inductive step: Now consider the case of n > 2. By induction hypothesis, assume that the
algorithm is correct on any array of size smaller than n. Let r = n — [2n/3]| = [n/3]. We make

the following observation:

e After Step [5] the r largest numbers of A must be in the final [2n/3] entries of A.

This observation implies that the r largest numbers of A are correctly sorted after Step [f]
Therefore, at the beginning of Step the initial n—r = [2n/3] numbers of the array are precisely
the [2n/3] smallest numbers of A. After Step[7] these [2n/3] numbers are also correctly sorted.

In the subsequent discussion, we prove the above observation. Let x be any number in the set
of r largest numbers of A. We show that x must be in the final [2n/3] entries of A after Step

e Suppose z is not one of the initial [2n/3] numbers of A at the beginning of Step [p| The
algorithm of Step [5| does not change the position of x, so x is still in the final n — [2n/3] <
[2n/3] entries of A after Step

e Suppose x is one of the initial [2n/3] numbers of A at the beginning of Step |5} Among
these [2n/3] numbers, at least [2n/3] —r > r of them are smaller than x. Therefore, after
Step [2 is not in the initial r entries of A. In other words, x is in the final n —r = [2n/3]
entries of A after Step

(b) Analyze the time complexity of StoogeSort.
The runtime T'(n) of the algorithm on an array of size n is given by the recurrence relation

0(1) if n <2

T(n) = ‘
3T([2n/3]) +O(1) ifn > 2.

Since a = 3, b = 3/2, and d = logg), 3 ~ 2.7095... and f(n) € O(n?=¢) for some 0.5 = ¢ > 0, by
Case 1 of the Master Theorem, we get T'(n) € O(n?) = O(n?709),

Optional: Can ask students why the choice of [2n/3] makes sense in the algorithm.

The Peak Finding Problem (Q3-5)

Given a 2D array with m rows and n columns, where each cell contains a number, a peak is a cell

whose value is no smaller than all of its (up to) four neighbors: top, right, bottom, and left.
For example, given m x n = 3 x 5 grid below, there are 5 peaks (denoted with a ‘*):

6 8x 7 Tx 1
9% 3 1 7% 3
8 4 5%x3 2

Q3). Show that there is a peak in every 2D array!

Since any 2D array must contain at least one maximal element, and a maximal element is no smaller

than any other cell (including its four neighbors), all maximal elements are peaks.

We want to come up with a recursive algorithm to find any peak:

Algorithm 3: FindPeakSp(A)

1 if A has n = 1 column then

2 L return a maximal element in the column

3 if A has n > 2 columns then

4 Let C,, be the middle column of A

5 Find a maximal element in (),

6 if the above maximal element in (), is a peak then
7 return that element

8 else

9 X < FindPeakSp(Left_Half of A_without_C,,)
10 Y < FindPeakSp(Right_Half_of A _without_C,,)
11 if X or Y is a peak then

12 ‘ return the peak (X or Y)
13 else
14 L return None // See Question Q3

Note: FindPeakSp finds a Special kind of peak element. The element that is a peak as well a maximal
element in the column in which it is located. Call this kind of peak element special-peak.
Q4). What is the runtime complexity of FindPeakSp(A) algorithm?

Time complexity of finding a maximal element in any column is ©(m), as there are m rows.

So, we can consider how many columns are processed, then multiply the result by ©(m).

Let T'(n) be the number of columns to be processed, then T'(n) =2-T(3) + 1.

Since a = 2,b =2,d = log, 2 = 1, and f(n) € O(n?€) for some 0.5 = ¢ > 0, by Case 1 of the Master
Theorem, then T'(n) € O(n) = O(n'°822) = O(n).

Thus, FindPeakSp(A) runs in T'(n) x ©(m) = O(n) x ©(m) € O(nm).

Q5). Argue why FindPeakSp(A) will never return None (i.e., always returns a peak). Additionally,

discuss whether any steps within the ‘else’ condition in Stepcan be optimized (faster asymptotically).

The following argument demonstrates why the algorithm will always find a peak (special-peak) and
thus never return None. It also explains why FindPeakSp(A) does not need to perform both Steps El
and Consequently, a faster divide-and-conquer (D&C) algorithm can be designed.

If we reach Step [§] the chosen maximal element W in the middle column (the k-th column) is not a

peak. This implies one of the following scenarios for W:

e Only right neighbor of W is larger.
e Only left neighbor of W is larger. (Symmetric to above)

e Both the left and right neighbors of W are larger. (Covered by the two cases above)

Hence, we focus on the case where the right neighbor of W in column k + 1 (denoted as X) is larger.

1 r A
a w X c
d f g h
p q r
s t Y Z U
m L J

Figure 1: Illustration of the scenario where the right neighbor X in column k + 1 is larger than W.
The figure highlights the relevant elements W (max in C),), X, Y, and Z (special-peak of A").

We argue below that this guarantees the existence of a special-peak in the columns k + 1,k + 2, ...
(i.e., columns > k). Refer to Figure [I| for an illustration of this scenario.

A special-peak in the right subarray A’ = A[l..m|[k + 1..n] must also be a special-peak of A if it is
located in any column other than column k + 1. Thus, the only case requiring further consideration

is when a special-peak of A’ is located in column k + 1, as it directly borders column k.
Let Z be a special-peak of A’ located in column k + 1 of A. Observe the following:
e 7 is a maximal element in column k 4+ 1 of A, so Z > X, where X is the right neighbor of W.

e 7 is not smaller than any of its neighbors in A’, i.e., it is not smaller than its top, bottom, or
right neighbors. To confirm that Z is also a special-peak of A, we need to show that Z is not

smaller than its left neighbor Y in column k.

Since the right neighbor of W is larger (X > W) and Z > X, it follows that:
Z>X>W>Y.

This implies that Z is not smaller than its left neighbor Y. Therefore, Z is a special-peak of A.

With this, we can optimize the ‘else’ condition in Step [§] as shown below in the Improved algorithm:

Algorithm 4: FindPeakSp-Imp(A)

N =

© 0 g o o oA~ W

10

11

12

if A has n =1 column then

L return a maximal element in the column

if A has n > 2 columns then

Let C,, be the middle column of A
Find a maximal element in C,,

if the above maximal element in C,, is a peak then

‘ return that element
else
if the right neighbor of the above maximal element in C,, is larger then
‘ return FindPeakSp-Imp(Right_Half_of_A_without_C,)
else
L return FindPeakSp-Imp(Left_Half_of_A_without_C),)

Now we analyze its asymptotic behavior.

Let T'(n) represent the number of columns processed. In this case, the recurrence is: T'(n) = T'(n/2)+1.
Since a = 1, b = 2, d = 0, and f(n) € ©(n?), by Case 2 of the Master Theorem, yielding: T'(n) €
O(logn). Thus, the overall algorithm runs in 7'(n) x O(m) = O(logn) x ©(m) € O(mlogn), which is
asymptotically faster.

Optional: Can ask the students whether the ©(m logn) algorithm is the best possible solution for this

problem.

	Lecture Review: Proof of Correctness
	Lecture Review: D&C
	Tutorial 04 Questions

