
CS3230 Semester 2 2024/2025

Design and Analysis of Algorithms

Tutorial 05

D&C, Sorting and Average-case analysis

For Week 06

Document is last modified on: February 4, 2025

1 Lecture Review: Decision Tree

A decision tree contains:

• Vertices (Internal): A comparison

• Branches: Outcome of comparison

• Leaves: Output / decision for the input
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Figure 1: Worst case runtime is the height of the decision tree.

The classic example to illustrate the usage of decision tree is for showing the lower bound of comparison-

based sorting is Ω(n log n). Here is a picture of decision tree of sorting n = 3 elements and there are

3! = 6 possible outputs (decision for the inputs) which must all been catered for. As each comparison

of two comparable elements a versus b yields two possible outcomes: a < b (which means a must be in

front of b) or a ≥ b (here b must be in front of a if a > b; on the other hand, if a = b, then it does not

matter which order a and b are put in). This decision tree is thus a binary tree. The height of binary

decision tree so that its number of leaves is at least n! is log n! ≈ n log n (use Stirling’s formula).
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2 Tutorial 05 Questions

Q1, Q2, Q3, and Q4 involve Polynomial Multiplication of two polynomials of degree n.

Let A(x) = an · xn + . . .+ a2 · x2 + a1 · x+ a0.

Let B(x) = bn · xn + . . .+ b2 · x2 + b1 · x+ b0.

Let C(x) = A(x)×B(x) = c2n · x2n + . . .+ c2 · x2 + c1 · x+ c0

Assume all coefficients ai, bi, ci are Integers.

Assume that all addition and multiplication operations of two Integers take O(1) time.

We can compute the coefficients ci of C(x) in O(n2) using complete search:

For each i ∈ [2n..0], ci =
∑

aj · bi−j where both j and i− j are between 0 and n (inclusive).

Q1). Let x = 10 to make it easier to visualize this as a normal base 10 multiplication and n = 2.

Let A(10) = 352 = 3 · 102 + 5 · 10 + 2, i.e., a2 = 3, a1 = 5, a0 = 2.

Let B(10) = 221 = 2 · 102 + 2 · 10 + 1, i.e., b2 = 2, b1 = 2, b0 = 1.

Compute the coefficients of C(10) = A(10)×B(10) = 77 792 using the O(n2) algorithm above.

Q2). Suppose that you are given the following Divide and Conquer (D&C) algorithm:

Rewrite A(x) = x
n
2 ·A1(x) +A2(x)

Rewrite B(x) = x
n
2 ·B1(x) +B2(x)

where A1(x), A2(x), B1(x), B2(x) are all now polynomials of degree (up to) n
2 .

We now compute four smaller polynomial multiplications:

A1(x)×B1(x), A1(x)×B2(x), A2(x)×B1(x), A2(x)×B2(x)

And we compute:

C(x) = xn · [A1(x)×B1(x)] + x
n
2 · [A1(x)×B2(x) +A2(x)×B1(x)] +A2(x)×B2(x)

Apply this D&C algorithm to compute the multiplication of the same two polynomials of degree n = 2:

Rewrite A(10) = 352 = 10 · (3 · 10 + 5) + 2

Rewrite B(10) = 221 = 10 · (2 · 10 + 2) + 1

Compute A1(10)×B1(10), A1(10)×B2(10), A2(10)×B1(10), A2(10)×B2(10).

Then, compute C(10).

Q3). What is the time complexity of that recursive D&C algorithm?

Q4). Introducing: the Karatsuba’s algorithm.

We still compute two smaller polynomials: A1(x)×B1(x), A2(x)×B2(x).

But instead of computing: A1(x)×B2(x), A2(x)×B1(x) that requires two polynomial multiplications,

we compute: [A1(x)+A2(x)]× [B1(x)+B2(x)] that requires two additions and just one multiplication.

Note: A1(x)×B2(x)+A2(x)×B1(x) = [A1(x)+A2(x)]×[B1(x)+B2(x)]−A1(x)×B1(x)−A2(x)×B2(x).

We now have the elements needed to compute C(x) in faster time.

What is the time complexity of Karatsuba’s algorithm?

Q5). Decision Tree
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You are given 243 balls, all but one of which have the same weight; the remaining one is heavier. Your

job is to find which of the balls is heavier. Your friend has a balance scale, but will charge you for each

weighing. You want to minimize the (worst-case) number of weighings needed. What is the minimum

number of weighings needed to find the ball?

You can assume that we only use comparison model (comparison returns <, =, or >). You can decide

how to compare the ball(s). What is the lower bound of any algorithm to solve this problem?

Q6) You are given an array A[1..n] that is sorted in non-increasing order. Your task is to find the

largest index i such that A[i] ≥ i. Design an efficient algorithm to solve this problem.

To guide your approach, consider the following properties of the sorted array:

• If A[j] ≥ j, then it must hold that A[j − 1] ≥ j − 1, unless j = 0.

• If A[j] < j, then it must follow that A[j + 1] < j + 1, unless j = n.

For ease of notation, assume that the array is extended such that A[0] > 0 and A[n + 1] < n + 1.

Thus, there is a unique i such that A[i] ≥ i but A[i+ 1] < i+ 1.

Q7) Bogosort is an extremely inefficient sorting algorithm. It repeatedly generates random permu-

tations of the input array until it encounters one that is sorted by chance. What is the best-case,

worst-case and average-case time complexity of Bogosort for an array of length n?

Algorithm 1: Bogosort(A[0..n− 1])

1 while not IsSorted(A) do

2 RandomlyShuffle(A)

3 return A

4 Function IsSorted(A):

5 for i← 1 to n− 1 do

6 if A[i] < A[i− 1] then

7 return false

8 return true

Note: The RandomlyShuffle function can be implemented in O(n) time using the Fisher-Yates shuffle

algorithm.
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