(CS3230 Semester 2 2024 /2025
Design and Analysis of Algorithms

Tutorial 05
D& C, Sorting and Average-case analysis
For Week 06

Document is last modified on: February 4, 2025

1 Lecture Review: Decision Tree

A decision tree contains:
e Vertices (Internal): A comparison
e Branches: Outcome of comparison

e Leaves: Output / decision for the input

1:2
/ \
2:3 1:3
1 AN 1 AN
29 1:3 Zollyd 2:3
/ N\ / N\
1,3,2 3,1,2 23,1 3,2,1

Figure 1: Worst case runtime is the height of the decision tree.

The classic example to illustrate the usage of decision tree is for showing the lower bound of comparison-
based sorting is Q(nlogn). Here is a picture of decision tree of sorting n = 3 elements and there are
3! = 6 possible outputs (decision for the inputs) which must all been catered for. As each comparison
of two comparable elements a versus b yields two possible outcomes: a < b (which means a must be in
front of b) or a > b (here b must be in front of a if a > b; on the other hand, if a = b, then it does not
matter which order a and b are put in). This decision tree is thus a binary tree. The height of binary

decision tree so that its number of leaves is at least n! is logn! =~ nlogn (use Stirling’s formula).



2 Tutorial 05 Questions

Q1, Q2, Q3, and Q4 involve Polynomial Multiplication of two polynomials of degree n.
Let A(x) =an-2"+ ... +az- 2% + a1 - v+ ap.

Let B(z) = by -a™ + ...+ by - 2%+ by -z + bo.

Let C(z) = A(z) x B(x) =cop -2+ ... +ca- 2> +c1 -z + ¢

Assume all coefficients a;, b;, ¢; are Integers.

Assume that all addition and multiplication operations of two Integers take O(1) time.

We can compute the coefficients ¢; of C(z) in O(n?) using complete search:

For each i € [2n..0], ¢; = ) a; - bj—; where both j and ¢ — j are between 0 and n (inclusive).

Q1). Let = 10 to make it easier to visualize this as a normal base 10 multiplication and n = 2.
Let A(10) =352 =3-102+5-10+2, i.e., ap = 3,a1 = 5,a9 = 2.

Let B(10) =221 =2-1024+2-10+1, i.e., by = 2,by = 2,by = 1.

Compute the coefficients of C(10) = A(10) x B(10) = 77792 using the O(n?) algorithm above.

Q2). Suppose that you are given the following Divide and Conquer (D&C) algorithm:
Rewrite A(z) = 22 - Aj(z) + Ay ()
Rewrite B(z) = 22 - By(z) + By(x)
where A1(z), Az(x), B1(x), Ba(x) are all now polynomials of degree (up to) 4.

We now compute four smaller polynomial multiplications:
Al(x) X Bl(IL’), Al (Jf) X BQ(&?), Ag(x) X Bl(:c), AQ(SII) X BQ(IL’)

And we compute:
C(x) = 2" - [A1(z) X Bi(z)] + x2 - [A1(x) x Ba(x) + Az(x) x Bi(x)] + Aa(z) x By(z)

Apply this D&C algorithm to compute the multiplication of the same two polynomials of degree n = 2:
Rewrite A(10) =352=10-(3-10+5) +2
Rewrite B(10) =221 =10-(2-10+2) +1

Compute A1(10) X Bl(lO), A1(10) X BQ(lO), Ag(lO) X Bl(lo), AQ(lO) X BQ(lO).
Then, compute C(10).

Q3). What is the time complexity of that recursive D&C algorithm?

Q4). Introducing: the Karatsuba’s algorithm.

We still compute two smaller polynomials: A;(x) x By(z), A2(x) x Ba(x).

But instead of computing: A;(z) x Ba(x), A2(z) x By (x) that requires two polynomial multiplications,
we compute: [Aq(z)+ Az(x)] X [B1(z)+ B2(x)] that requires two additions and just one multiplication.
Note: Aj(z)x Ba(z)+Az(z)xBi(z) = [A1(z)+Az(z)] X [Bi(x)+Ba(x)]— A1 (x) x By (x) — A2(z) X Ba(z).

We now have the elements needed to compute C(x) in faster time.
What is the time complexity of Karatsuba’s algorithm?

Q5). Decision Tree


https://en.wikipedia.org/wiki/Karatsuba_algorithm

You are given 243 balls, all but one of which have the same weight; the remaining one is heavier. Your
job is to find which of the balls is heavier. Your friend has a balance scale, but will charge you for each
weighing. You want to minimize the (worst-case) number of weighings needed. What is the minimum

number of weighings needed to find the ball?

You can assume that we only use comparison model (comparison returns <, =, or >). You can decide

how to compare the ball(s). What is the lower bound of any algorithm to solve this problem?

Q6) You are given an array A[l..n| that is sorted in non-increasing order. Your task is to find the
largest index i such that A[i] > i. Design an efficient algorithm to solve this problem.

To guide your approach, consider the following properties of the sorted array:
o If A[j] > j, then it must hold that A[j — 1] > j — 1, unless j = 0.
e If Afj] < j, then it must follow that A[j + 1] < j + 1, unless j = n.

For ease of notation, assume that the array is extended such that A[0] >0 and An+1] <n+ 1.
Thus, there is a unique 7 such that A[i] > i but Afi + 1] < i+ 1.
Q7) Bogosort is an extremely inefficient sorting algorithm. It repeatedly generates random permu-
tations of the input array until it encounters one that is sorted by chance. What is the best-case,
worst-case and average-case time complexity of Bogosort for an array of length n?

Algorithm 1: Bogosort(A[0..n — 1])

1 while not IsSorted(A) do
2 | RandomlyShuffle(A)

3 return A

4 Function IsSorted(A):

5 fori<1ton—1do

6 if Af:| < Ali — 1] then
7 L return false

8 return true

Note: The RandomlyShuffle function can be implemented in O(n) time using the [Fisher-Yates shuffle

algorithm.


https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle

	Lecture Review: Decision Tree
	Tutorial 05 Questions

