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1 Lecture Review: Randomized Algorithms

Techniques: Linearity of expectations, indicator random variables, Markov inequality, union bound,

principle of deferred decision, amplification of success probability.
Algorithms: Freivalds’ algorithm (Monte Carlo), (Randomized) Quick Sort (Las Vegas).

Balls and bins: coupon collector (probability of no empty bin), chain hashing (expected bin size).

2 Tutorial 06 Questions

Q1). In the class, we showed that Freivalds’ algorithm succeeds with a probability of at least 1/2. Show
that the bound 1/2 in the analysis is actually the best possible by constructing an input (A, B,C') on

which the success probability of Freivalds’ algorithm is precisely 1/2.

Consider 1 x 1 matrices A = (1), B = (0), and C' = (1). We have AB # C'. In Freivalds’ algorithm,
v = (v1), where vy is chosen from {0, 1} uniformly at random. With probability 1/2, v; = 0, in which
Cascﬂ A(Bv) = Cv (the answer is incorrect). With probability 1/2, v; = 1, in which case A(Bv) # Cv

!Notice that when computing ABv, we need to compute matrix-row vector (Bv) of A(Bv) first to avoid triggering
the actual complex matrix multiplication of AB



(the answer is correct). By appending zeros, the construction can be extended to n x n matrices for

every positive integer n. For example, if n = 3, then we can use

1 00 0 00 100
A=10 0 0, B=10 0 0|, and C=|0 0 0],
0 00 0 00 0 00

and we still have (A(Bv) = Cv if v; = 0) and (A(Bv) # Cv if v; = 1).

For Q2). and Q3). Consider the equality testing problem, where Alice holds an n-bit string S4 €
{0,1}"™, Bob holds an n-bit string Sp € {0,1}", and they want to decide whether Sy = Sp. Consider

the following communication protocol, where an n-bit string is seen as a number expressed in base-2.
1. Let S be the set of n? smallest prime numbers.
2. Alice samples a number p from S uniformly at random.
3. Alice sends p and S4 modp to Bob (thus, only O(logp) C O(logn) bits are sent, see Q3).
4. After receiving Alice’s message, Bob calculates Sp mod p.
5. If Sy modp = Spmodp, Bob decides that Sy = Sp, otherwise Bob decides that S4 # Sp.

Q2). Show that this (randomized) communication protocol is correct with a probability of at least

1
-
We consider the 2 cases:

e Case 5S4 = Sp: Bob always decides that S4 = Sp because S4modp = Spmodp for all p, so
the output is correct with probability 1.

e Case S # Sp: the output is incorrect only if Sy modp = Spmod p, that is, p is a divisor of
|S4 — Sp|. Since |S4 — Sp| < 2", |S4 — Sp| has at most n prime factors, so the probability that
p is a divisor of |S4 — Sp| is at most n/[S| < 1/n.

Thus, the algorithm is correct with probability at least 1 — %

Remark: By the prime number theorem, p € O(n?logn), so this communication protocol only re-

quires communicating O(logp) € O(logn) bits. This demonstrates an exponential separation between

randomized and deterministic algorithms, as any deterministic algorithm solving the equality testing

problem requires communicating €2(n) bits in the worst case.

Q3). Show that any deterministic algorithm solving the equality testing problem requires communi-

cating Q(n) bits in the worst case.

For the special case of one-way communication (Alice sends a message to Bob, and then Bob decides

the answer), a lower bound of n bits can be seen as follows.

e The number of possible n-bit strings S, is 2.


https://en.wikipedia.org/wiki/Prime_number_theorem

e The number of possible (n — 1)-bit messages sent by Alice is 2" 1.

By the pigeonhole principle, there must be two n-bit strings X and Y such that the (n—1)-bit message
that Alice sends to Bob when S4 = X is identical to the (n — 1)-bit message that Alice sends to Bob
when S4 = Y, meaning that Bob cannot distinguish between the two cases S4 = X and S =Y, so
the algorithm must fail in one of the two cases: (S4 = X,Sp = X) and (S4 =Y, Sp = X).

Remarks: For the more general case where Alice and Bob can communicate with each other in
multiple rounds in both directions, there is still a lower bound of n bits, see the following Wikipedia

page: https://en.wikipedia.org/wiki/Communication_complexity.

For Q4). and Q5). You are given a graph G = (V, E) (without self-loops) and your task is to partition

its vertex set into two parts V = V; U V5 randomly as follows.
e Each vertex v € V flip an unbiased coin independently.

— If the outcome is head, which happens with probability 1/2, v joins V.
— If the outcome is tail, which happens with probability 1/2, v joins V5.

Q4). Show that the expected number of edges crossing Vi and V5 is exactly |E|/2.

For each edge e € F, let X, be the indicatorﬂ random variable for the event that e crosses V7 and V5,
we first compute E[X,] for any edge e = {u,v}:

e With probability 1/4, u € V} and v € Vi, in which case e does not cross V; and V5.
e With probability 1/4, u € V; and v € V3, in which case e crosses V; and V5.

e With probability 1/4, u € Vo and v € Vj, in which case e crosses Vo and V;

(which also crosses V; and V5 as edge orientation doesn’t matter).
e With probability 1/4, u € V5 and v € V3, in which case e does not cross V; and V5.

Therefore, indeed E[X.| = 1 - Prle crosses V; and V5] = 1/2. Now considering the expected number

of edges crossing V7 and Va:

E[X] - E[Z Xe] (X = Z Xe)
eck eck

= E E[X.] (Linearity of expectation)

eck

1

= Z 5 (Each edge E[X.]| = 1/2)
eck
15l

5 (Sum over all edges)

2Takes the value 1 if a specific event occurs and 0 otherwise.


https://en.wikipedia.org/wiki/Communication_complexity

Remark: As a corollary, we obtain the following result in graph theory.
e Any graph G = (V, E) admits a cut of size of at least |F|/2.

Here a cut is a partition of the vertex set into two parts, and the size of a cut is the number of edges

crossing the two parts.

Q5). Is it possible to improve the bound |E|/2 in the above result?

If you claim it is possible, propose some ideas and analyze the new bound.

Assuming F # (), a slight improvement can be achieved in many different ways by modifying the

random partitioning algorithm. For example, we can pick one edge e* = {u*,v*} and force u* € V}

and v* € V5. The remaining vertices V' \ {u*,v*} are still assigned to V; or V5 randomly. Observe that

1 ife=c¢e",

ifee E\{e*},

E[Xe] =

D[ =

so B[X] = Y, E[X] = 14+ E2L = [EIEL Gnich is slightly better than £,

If |V is an even number, a bound of @ \‘L‘\/ll can be attained by selecting V4 uniformly at random from
the collection of all (|V|/2)-vertex subsets of V' and setting Vo = V' \ V1, in which case E[X.]| = ||“//||121,

so BE[X] = Y pE[X(] = @ : I“/‘\/ll' Remarks: This bound is tight for complete graphs, and a

bound that is tight for complete graphs can also be obtained similarly for odd |V|.
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