
CS3230 Semester 2 2024/2025

Design and Analysis of Algorithms

Tutorial 06

Randomized Algorithms

For Week 07

Document is last modified on: February 18, 2025

MODEL ANSWER IS FOR OUR CLASS ONLY; NOT TO BE DISTRIBUTED IN PUBLIC

1 Lecture Review: Randomized Algorithms

Techniques: Linearity of expectations, indicator random variables, Markov inequality, union bound,

principle of deferred decision, amplification of success probability.

Algorithms: Freivalds’ algorithm (Monte Carlo), (Randomized) Quick Sort (Las Vegas).

Balls and bins: coupon collector (probability of no empty bin), chain hashing (expected bin size).

2 Tutorial 06 Questions

Q1). In the class, we showed that Freivalds’ algorithm succeeds with a probability of at least 1/2. Show

that the bound 1/2 in the analysis is actually the best possible by constructing an input (A,B,C) on

which the success probability of Freivalds’ algorithm is precisely 1/2.

Consider 1 × 1 matrices A = (1), B = (0), and C = (1). We have AB ̸= C. In Freivalds’ algorithm,

v = (v1), where v1 is chosen from {0, 1} uniformly at random. With probability 1/2, v1 = 0, in which

case1 A(Bv) = Cv (the answer is incorrect). With probability 1/2, v1 = 1, in which case A(Bv) ̸= Cv

1Notice that when computing ABv, we need to compute matrix-row vector (Bv) of A(Bv) first to avoid triggering
the actual complex matrix multiplication of AB

1

(the answer is correct). By appending zeros, the construction can be extended to n × n matrices for

every positive integer n. For example, if n = 3, then we can use

A =

1 0 0

0 0 0

0 0 0

 , B =

0 0 0

0 0 0

0 0 0

 , and C =

1 0 0

0 0 0

0 0 0

 ,

and we still have (A(Bv) = Cv if v1 = 0) and (A(Bv) ̸= Cv if v1 = 1).

For Q2). and Q3). Consider the equality testing problem, where Alice holds an n-bit string SA ∈
{0, 1}n, Bob holds an n-bit string SB ∈ {0, 1}n, and they want to decide whether SA = SB. Consider

the following communication protocol, where an n-bit string is seen as a number expressed in base-2.

1. Let S be the set of n2 smallest prime numbers.

2. Alice samples a number p from S uniformly at random.

3. Alice sends p and SAmod p to Bob (thus, only O(log p) ⊆ O(log n) bits are sent, see Q3).

4. After receiving Alice’s message, Bob calculates SB mod p.

5. If SAmod p = SB mod p, Bob decides that SA = SB, otherwise Bob decides that SA ̸= SB.

Q2). Show that this (randomized) communication protocol is correct with a probability of at least

1− 1
n .

We consider the 2 cases:

• Case SA = SB: Bob always decides that SA = SB because SAmod p = SB mod p for all p, so

the output is correct with probability 1.

• Case SA ̸= SB: the output is incorrect only if SAmod p = SB mod p, that is, p is a divisor of

|SA −SB|. Since |SA −SB| ≤ 2n, |SA −SB| has at most n prime factors, so the probability that

p is a divisor of |SA − SB| is at most n/|S| ≤ 1/n.

Thus, the algorithm is correct with probability at least 1− 1
n .

Remark: By the prime number theorem, p ∈ O(n2 log n), so this communication protocol only re-

quires communicating O(log p) ⊆ O(log n) bits. This demonstrates an exponential separation between

randomized and deterministic algorithms, as any deterministic algorithm solving the equality testing

problem requires communicating Ω(n) bits in the worst case.

Q3). Show that any deterministic algorithm solving the equality testing problem requires communi-

cating Ω(n) bits in the worst case.

For the special case of one-way communication (Alice sends a message to Bob, and then Bob decides

the answer), a lower bound of n bits can be seen as follows.

• The number of possible n-bit strings SA is 2n.

2

https://en.wikipedia.org/wiki/Prime_number_theorem

• The number of possible (n− 1)-bit messages sent by Alice is 2n−1.

By the pigeonhole principle, there must be two n-bit strings X and Y such that the (n−1)-bit message

that Alice sends to Bob when SA = X is identical to the (n− 1)-bit message that Alice sends to Bob

when SA = Y , meaning that Bob cannot distinguish between the two cases SA = X and SA = Y , so

the algorithm must fail in one of the two cases: (SA = X,SB = X) and (SA = Y, SB = X).

Remarks: For the more general case where Alice and Bob can communicate with each other in

multiple rounds in both directions, there is still a lower bound of n bits, see the following Wikipedia

page: https://en.wikipedia.org/wiki/Communication_complexity.

For Q4). and Q5). You are given a graph G = (V,E) (without self-loops) and your task is to partition

its vertex set into two parts V = V1 ∪ V2 randomly as follows.

• Each vertex v ∈ V flip an unbiased coin independently.

– If the outcome is head, which happens with probability 1/2, v joins V1.

– If the outcome is tail, which happens with probability 1/2, v joins V2.

Q4). Show that the expected number of edges crossing V1 and V2 is exactly |E|/2.

For each edge e ∈ E, let Xe be the indicator2 random variable for the event that e crosses V1 and V2,

we first compute E[Xe] for any edge e = {u, v}:

• With probability 1/4, u ∈ V1 and v ∈ V1, in which case e does not cross V1 and V2.

• With probability 1/4, u ∈ V1 and v ∈ V2, in which case e crosses V1 and V2.

• With probability 1/4, u ∈ V2 and v ∈ V1, in which case e crosses V2 and V1

(which also crosses V1 and V2 as edge orientation doesn’t matter).

• With probability 1/4, u ∈ V2 and v ∈ V2, in which case e does not cross V1 and V2.

Therefore, indeed E[Xe] = 1 · Pr[e crosses V1 and V2] = 1/2. Now considering the expected number

of edges crossing V1 and V2:

E[X] = E[
∑
e∈E

Xe] (X =
∑
e∈E

Xe)

=
∑
e∈E

E[Xe] (Linearity of expectation)

=
∑
e∈E

1

2
(Each edge E[Xe] = 1/2)

=
|E|
2

. (Sum over all edges)

2Takes the value 1 if a specific event occurs and 0 otherwise.

3

https://en.wikipedia.org/wiki/Communication_complexity

Remark: As a corollary, we obtain the following result in graph theory.

• Any graph G = (V,E) admits a cut of size of at least |E|/2.

Here a cut is a partition of the vertex set into two parts, and the size of a cut is the number of edges

crossing the two parts.

Q5). Is it possible to improve the bound |E|/2 in the above result?

If you claim it is possible, propose some ideas and analyze the new bound.

Assuming E ̸= ∅, a slight improvement can be achieved in many different ways by modifying the

random partitioning algorithm. For example, we can pick one edge e∗ = {u∗, v∗} and force u∗ ∈ V1

and v∗ ∈ V2. The remaining vertices V \{u∗, v∗} are still assigned to V1 or V2 randomly. Observe that

E[Xe] =

1 if e = e∗,

1
2 if e ∈ E \ {e∗},

so E[X] =
∑

e∈E E[Xe] = 1 + |E|−1
2 = |E|+1

2 , which is slightly better than |E|
2 .

If |V | is an even number, a bound of |E|
2 · |V |

|V |−1 can be attained by selecting V1 uniformly at random from

the collection of all (|V |/2)-vertex subsets of V and setting V2 = V \ V1, in which case E[Xe] =
|V |/2
|V |−1 ,

so E[X] =
∑

e∈E E[Xe] =
|E|
2 · |V |

|V |−1 . Remarks: This bound is tight for complete graphs, and a

bound that is tight for complete graphs can also be obtained similarly for odd |V |.

4

	Lecture Review: Randomized Algorithms
	Tutorial 06 Questions

