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1 Lecture Review: Dynamic Programming

The key ideas to solve a problem with Dynamic Programming (DP) are as follows:

• Optimal substructure: Can we express the solution recursively?

Break the original problem into its subproblems.

• Realizes that there are only a small (maybe polynomial) number of subproblems.

The naive implementation of the recursive solution encounters many overlapping subproblems.

The recursive algorithm may take exponential time (solving the same subproblem many times).

So we either:

• Top-down: Compute the recursive solution but memoize the solutions of the computed subprob-

lems, so the next computation of the same subproblem can be done in O(1).

• Bottom-up: Compute the recursive solution iteratively in a bottom-up fashion (also called

tabulation), starting from the base cases and continue filling the next subproblems that we

can compute next, gradually.

Both methods avoids wastage of computation and leads to an efficient implementation.
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2 Tutorial 07 Questions

This tutorial is related to the Convex Polygon Triangulation problem: Given a convex polygon

with n (n ≥ 2) vertices (labeled with 1, 2, . . . , n), divide (or triangulate) the polygon into n − 2

triangles. We can triangulate a convex polygon in many ways. The figure below shows 2 ways (middle

and right pictures).

A triangle consisting of vertices (x, y, z) will have a weight of W (x, y, z) – for the purpose of this

problem, treat W as a black-box O(1) function. Our objective is to minimize the sum of the weights

of n− 2 triangles in the optimal triangulation!

Q1). Let TRI(x, y) be a function to triangulate a polygon with minimum weight sum, but we only

consider the vertices in the range of (x, x + 1, x + 2, . . . , y). So our problem can be solved by calling

TRI(1, n). Your first task is to write a recursive formula of TRI(x, y).

(a) Find the base case of TRI(x, y)

(b) Find the recursive case of TRI(x, y)

Hint: It calls TRI(x′, y′) where x < x′ or y′ < y.

TRI(x, y) =


0, if y − x = 1

min
k∈[x+1,y−1]

[TRI(x, k) +W (x, k, y) + TRI(k, y)] , otherwise

Base Case: Cannot triangulate a line (adjacent vertices x and y).

Recursive Case: Try all triangulations in any order in the recurrence:

• Subproblems TRI(x, k) and TRI(k, y)

• Triangle (x, k, y) with weight W (x, k, y)
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Q2). What is the time complexity of this recursive formula TRI(1, n), if implemented verbatim.

(a) O(n2)

too low

(b) O(n3)

still too low

(c) O(3n)

the answer; derivation below

Let T (n) be the worst case running time of TRI(1, n), so: Let T (n) be the worst-case running time

of TRI(1, n).

T (2) = c, when y − x = 1.

Expanding the recurrence for T (n), T (n− 1):

T (n) = (T (2) + T(n-1) + c) + (T (3) + T (n− 2) + c)

+ . . .+ (T (n− 2) + T (3) + c) + ( T(n-1) + T (2) + c )

T (n− 1) = (T (2) + T (n− 2) + c) + (T (3) + T (n− 3) + c)

+ . . .+ (T (n− 2) + T (2) + c)

Subtracting T (n− 1) from T (n):

T (n)− T (n− 1) = 2T (n− 1) + c

=⇒ T (n) = 3T (n− 1) + c

=⇒ T (n) ≈ 3n ∈ O(3n).
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Q3). Which one is the correct explanation regarding the findings from (Q2)?

(a) It has 3n non-overlapping subproblems and each call runs in Θ(1)

(b) It has n2 non-overlapping subproblems and each call runs in Θ(3
n

n2 )

(c) It has n2 subproblems but there are many overlaps

It has n2 subproblems with significant overlap, making a Dynamic Programming solution necessary

for efficiency.

Q4). Design a Dynamic Programming (DP) solution for Convex Polygon Triangulation problem.

(a) Using Top-Down DP

(b) Using Bottom-Up DP

(a) Using Top-Down DP

This is the easier route, as we just need to prepare a 2D memo table of size n× n, set all cells to −1

or NULL or None (the number of distinct subproblems, and thus the space complexity, is O(n2)).

In TRI(x, y), if the subproblem/state (x, y) has been computed optimally, we return memo[x][y].

Otherwise, we compute the optimal value for state (x, y) once, in O(n), and store it in memo[x][y], so

future call of the same state (x, y) will be O(1).

Notice that TRI(x, y) requires the following combinations of O(n) subproblems that will be handled

recursively: TRI(x, x+1) and TRI(x+1, y), TRI(x, x+2) and TRI(x+2, y), . . ., until TRI(x, y−1)

and TRI(y − 1, y). Visually, computing TRI(x, y) requires all subproblems in that row of TRI(x, ?)

and all subproblems in that column of TRI(?, y). PS: It is probably clearer to see this pattern using

an animation (shown in tutorial).

Overall, there are O(n2) different subproblems and each sub-problem is only computed once in O(n),

so the total time complexity is O(n2 × n) = O(n3).

(b) Using Bottom-Up DP

This is the harder route, as we need to prepare the same 2D (DP, no longer called ‘memo’) table TRI

of size n× n (space complexity is the same, O(n2)), but we now need to figure out the ‘correct filling

order’ (the topological order of the underlying recursion DAG) of this DP table. Here is one way:

Base case: For each x ∈ [1..n − 1], set TRI[x][x + 1] = 0 (easy to figure out). And notice that this

is ONE index away from the anti/counter diagonal of the n× n 2D DP table.

Recursive case: In bottom up, is to fill the table anti-diagonally. This is because each TRI(x, y)

requires all subproblems in that row of TRI(x, ?) and all subproblems in that column of TRI(?, y) to

already been computed optimally before, and the only way this happens is if we process the 2D DP
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table anti-diagonally (not row-by-row left-to-right that we usually do for other DP problems involving

2D DP table):

for each ∆ ∈ [2..n− 1]: // we try the other anti-diagonals, from 2 indices away and so on

for each x ∈ [1..n− 1−∆]: // we try all x

y = x+∆ // this is the corresponding y

TRI[x][y] = ∞
for each k ∈ [x+ 1..y − 1]: // we try all subproblems

TRI[x][y] = min(TRI[x][y], TRI[x][k] + w(x, k, y) + TRI[k][y])

return TRI[1][n]

PS: It is probably clearer to see this pattern using an animation (shown in tutorial).

Clearly, the overall time complexity is O(n3) (from three nested loops), which is the same as Top-Down

DP approach. While asymptotically equivalent, the Bottom-Up method can benefit from reduced

recursion overhead.
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