Capturing Feature-Level Irregularity in Disease Progression Modeling

Kaiping Zheng, Wei Wang, Jinyang Gao, Kee Yuan Ngiam, Beng Chin Ooi, Wei Luen James Yip

Presenter: Kaiping Zheng

Nov 9th, 2017

- Introduction
- Existing Solutions for Irregularity
- Problem Definition
- Methodology
- Evaluation
- Case Study
- Conclusion

Chronic Diseases

- Major cause of illnesses and deaths
- Likely to worsen with more severe comorbidities and complications without intervention

Disease Progression Modeling (DPM)

- Employ computational methods to model the progression of a target disease
- Facilitate early detection and treatment of chronic diseases before deterioration
- Exploit electronic medical records (EMR) for analytics

Electronic Medical Records (EMR)

Electronic Medical Records (EMR)

- One major challenge of DPM over EMR data is on handling the irregularity issue of the time series EMR data
- Two levels: visit-level irregularity, feature-level irregularity
 - Visit-Level Irregularity
 - EMR data appears irregularly with time
 - Time span between consecutive visits is irregular
 - Feature-Level Irregularity
 - Same feature appears irregularly in EMR data with time
 - Time span between a feature's consecutive occurrences is irregular

Electronic Medical Records (EMR)

- Introduction
- Existing Solutions for Irregularity
- Problem Definition
- Methodology
- Evaluation
- Case Study
- Conclusion

Existing Solutions for Irregularity

I. Converting to Non-Time Series Data

(Duchesne et al., 2009; Stonnington et al., 2010; Zhou et al., 2011; Zhou et al., 2012)

- © simple computation and modeling
- (a) under-utilization of time series EMR data

II. Transforming into Regular Time Series Data

- Dynamic Bayesian networks or variant graphical models

(Van Gerven et al., 2008; Exarchos et al., 2013; Wang et al., 2014)

- © causality and interpretability
- ime-consuming & need experts' domain knowledge
- Deep learning models

(Che et al., 2014; Che et al., 2015; Lipton et al., 2016)

- © better performance in many areas for feature learning
- ifficult to capture feature patterns within a time window

III. Without Transforming Data

- Input EMR data of patients' visits in chronological order without considering the intrinsic irregularity (Choi et al., 2016)
- Utilize irregular EMR data by concatenating the visits' timestamps in the inputs (Choi et al., 2016)
- Use the time span as a visit-level decay term to analyze EMR data (Pham et al., 2016)
 - incorporate all visit-level information available
 - not use feature-wise time span or distinguish various features

- Introduction
- Existing Solutions for Irregularity
- Problem Definition
- Methodology
- Evaluation
- Case Study
- Conclusion

Problem Definition

Disease Progression Modeling (DPM)

Given a set of training samples $\{\langle x, y, \Delta t \rangle\}$, the objective of DPM is to obtain a mapping function Φ that minimizes the following loss function over all samples: $L(\Phi(x, \Delta t), y)$

- Introduction
- Existing Solutions for Irregularity
- Problem Definition
- Methodology
- Evaluation
- Case Study
- Conclusion

Methodology

Medical Feature Input ($x^{(t)}$: EMR Data)

Loss function:
$$L = \frac{1}{|\{\langle x,y,\Delta t\rangle\}|} \sum (y^{(n)} - y)^2$$

Back-propagation algorithm for updating the model parameters

Methodology

Compute a decay term ϱ using $\tau(t)$ and multiply ϱ to z(t)

$$- \varrho = 1 - tanh(W_{\tau}\tau^{(t)} + b_{\tau})$$

-
$$z(t) = sigmoid\left(\left(W_z x^{(t)} + U_z h^{(t-1)}\right) \odot \varrho\right)$$

- Introduction
- Existing Solutions for Irregularity
- Problem Definition
- Methodology
- Evaluation
- Case Study
- Conclusion

ADNI dataset

- Public Alzheimer's disease dataset from Alzheimer's Disease Neuroimaging Initiative
- Severity is measured by Mini-Mental State Examination (MMSE) test ($\in [0,30]$)

NUH-CKD dataset

- Extract from a chronic kidney disease (CKD) dataset from National University
 Hospital in Singapore
- Choose patients with Stage 3 CKD or higher as cohort, "NUH-CKD" dataset
- Severity is measured by Glomerular Filtration Rate (GFR) test ($\in [0,60]$)

Evaluation metrics

- Mean squared error (MSE)
- Pearson product-moment correlation coefficient (R) value

Dataset	ADNI1 Dataset	NUH-CKD Dataset
# of medical features	591	603
# of demo. features	3 - age, gender,	2 − age, gender
	education time	
# of patients	819	2740
Time span	4 years, M00 to M48,	1 year, W00 to W52,
	("M" — "month")	("W" - "week")
# of time steps	7 (aggregated by	52 (aggregated by
	every 6 months)	every week)
CutPoint (t_{ψ}) setting	M12, M18, M24	W16, W24, W32
# of samples	t_{ψ} =M12: 1529	$t_{\psi} = W16: 3601$
	$t_{\psi} = M18: 1200$	$t_{\psi} = W24: 2793$
	t_{ψ}^{\prime} =M24: 558	$t_{\psi}^{'}$ =W32: 1585

GRU-based baselines

- Window-Based Model
- Visit-Level Model
- Visit-Level Time Decay Model

Multi-task learning (MTL) methods (Zhou et al., 2012)

- Least Convex Fused Group Lasso (cFSGL)
- Least Non-Convex Fused Group Lasso (nFSGL), denote two formulations as nFSGL-I and nFSGL-2 in experiments

Our proposed method

Feature-Level Time Decay Model

Figure: Experimental results in the ADNI dataset

- For the same CutPoint setting, from Window-Based Model to Feature-Level Time Decay Model, performance is mainly on the ascending trend; Feature-Level Time Decay Model more accurate than MTL-based methods;
- When CutPoint becomes larger, MSE values of GRU-based models decrease

Figure: Experimental results in the NUH-CKD dataset

- From W16 to W24, GRU-based models achieve larger MSE values decreasing number of samples
- From W24 to W32, GRU-based models achieve smaller MSE values more time series features
- Both the sample length and sample number affect the model performance

- Introduction
- Existing Solutions for Irregularity
- Problem Definition
- Methodology
- Evaluation
- Case Study
- Conclusion

Case Study - Patient I

Figure: Disease progression modeling illustration for representative CKD Patient I in the NUH-CKD dataset

Severe and deteriorating

- GFR decreases in the first 32 weeks and drops to around 35
- From the 32nd week, GFR remains in the descending trend
- Furthermore, our proposed model predicts that as time further goes on, the loss of Patient I's GFR will exceed 5ml/min/1.73m² within one year
- Our model would suggest
 Patient I to consult specialists for expert assessment

Case Study – Patient2

Figure: Disease progression modeling illustration for representative CKD Patient2 in the NUH-CKD dataset

Mild yet deteriorating

- In the beginning, GFR indicates only moderately reduced kidney function. However, GFR decreases slowly over time before the 52nd week
- After the 52nd week, our model predicts that the patient will suffer from a large drop in GFR, indicating the deterioration of kidney functioning
- Our model would suggest healthcare workers to provide more aggressive interventions to Patient2 in advance

Case Study - Patient3

Figure: Disease progression modeling illustration for representative CKD Patient3 in the NUH-CKD dataset

Severe yet stable

- Patient3 is already in CKD
 Stage5 in the beginning
- Through the whole year, this patient progresses stably without much change in GFR
- Our model gives the prediction that this stableness will maintain for a long time
- Our model would suggest guaranteeing the monitoring for Patient3

- Introduction
- Existing Solutions for Irregularity
- Problem Definition
- Methodology
- Evaluation
- Case Study
- Conclusion

Conclusion

- I. Identify the irregularity characteristic residing in EMR data both at the visit level and at the feature level
- II. Capturing feature-level irregularity can benefit EMR data analytics through Feature-Level Time Decay Model
- Handle feature-level irregularity
- Decay the influence of previous information on patients' current state
- Learn decaying parameters for different features
- III. Evaluate proposed Feature-Level Time Decay Model in both a public ADNI dataset and a private NUH-CKD dataset for two chronic disease cohorts

Thank you!

