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Introduction

Chronic Diseases
* Major cause of illnesses and deaths

» Likely to worsen with more severe comorbidities and
complications without intervention

Disease Progression Modeling (DPM)

* Employ computational methods to model the progression of a
target disease

* Facilitate early detection and treatment of chronic diseases before
deterioration

* Exploit electronic medical records (EMR) for analytics
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Introduction

Electronic Medical Records (EMR)

* One major challenge of DPM over EMR data is on handling the
irregularity issue of the time series EMR data

" Two levels: visit-level irregularity, feature-level irregularity

* Visit-Level Irregularity
= EMR data appears irregularly with time

" Time span between consecutive visits is irregular

* Feature-Level Irregularity
= Same feature appears irregularly in EMR data with time

" Time span between a feature’s consecutive occurrences is irregular
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Introduction

Electronic Medical Records (EMR)
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Existing Solutions for Irregularity

I. Converting to Non-Time Series Data
(Duchesne et al., 2009; Stonnington et al., 2010; Zhou et al., 2011; Zhou et al., 2012)

© simple computation and modeling

@ under-utilization of time series EMR data
Il. Transforming into Regular Time Series Data
- Dynamic Bayesian networks or variant graphical models
(Van Gerven et al., 2008; Exarchos et al., 2013; Wang et al., 2014)
© causality and interpretability
@ time-consuming & need experts’ domain knowledge

- Deep learning models
(Che et al., 2014; Che et al., 2015; Lipton et al., 2016)

© better performance in many areas for feature learning

@ difficult to capture feature patterns within a time window q
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Ill. Without Transforming Data

Input EMR data of patients’ visits in chronological order without
considering the intrinsic irregularity (choietal, 2016)

Utilize irregular EMR data by concatenating the visits’ timestamps in
the inputs (choi etal., 2016)

Use the time span as a visit-level decay term to analyze EMR data
(Pham et al., 2016)

© incorporate all visit-level information available

@ not use feature-wise time span or distinguish various features
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Disease Progression
Modeling (DPM)

Given a set of training
samples {< x,y, At >}, the
objective of DPM is to obtain
a mapping function @ that
minimizes the following loss
function over all samples:

L(®(x,At),y)
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Prediction Module
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Loss function: L =

S (y™ — y)*

Back-propagation algorithm for updating the model parameters
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Evaluation

ADNI dataset

* Public Alzheimer’s disease dataset from Alzheimer’s Disease Neuroimaging Initiative

= Severity is measured by Mini-Mental State Examination (MMSE) test (€ [0,30])

NUH-CKD dataset

" Extract from a chronic kidney disease (CKD) dataset from National University
Hospital in Singapore

= Choose patients with Stage 3 CKD or higher as cohort, “NUH-CKD” dataset

= Severity is measured by Glomerular Filtration Rate (GFR) test (€ [0,60])

Evaluation metrics
" Mean squared error (MSE)

" Pearson product-moment correlation coefficient (R) value
16
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Evaluation

GRU-based baselines

* Window-Based Model

" Visit-Level Model

" Visit-Level Time Decay Model

Multi-task learning (MTL) methods (zhou et al., 2012)
" Least Convex Fused Group Lasso (cFSGL)

" |east Non-Convex Fused Group Lasso (nFSGL), denote two formulations as nFSGL-|
and nFSGL-2 in experiments

Our proposed method

" Feature-Level Time Decay Model
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Figure: Experimental results in the ADNI dataset

* For the same CutPoint setting, from Window-Based Model to Feature-Level Time
Decay Model, performance is mainly on the ascending trend; Feature-Level Time
Decay Model more accurate than MTL-based methods;

* When CutPoint becomes larger, MSE values of GRU-based models decrease
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Case Study - Patientl
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* Our model would suggest
Patient| to consult specialists for
expert assessment

Figure: Disease progression modeling illustration for
representative CKD Patientl in the NUH-CKD dataset
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Case Study - Patient2
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Figure: Disease progression modeling illustration for
representative CKD Patient2 in the NUH-CKD dataset
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Mild yet deteriorating
* In the beginning, GFR indicates

only moderately reduced kidney
function. However, GFR
decreases slowly over time
before the 52nd week

After the 52nd week, our model
predicts that the patient will
suffer from a large drop in GFR,
indicating the deterioration of
kidney functioning

Our model would suggest
healthcare workers to provide
more aggressive interventions to
Patient2 in advance
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Case Study - Patient3
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Figure: Disease progression modeling illustration for
representative CKD Patient3 in the NUH-CKD dataset
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Severe yet stable

Patient3 is already in CKD
Stage5 in the beginning
Through the whole year, this
patient progresses stably
without much change in GFR
Our model gives the prediction
that this stableness will maintain
for a long time

Our model would suggest
guaranteeing the monitoring for
Patient3
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Conclusion

I. Identify the irregularity characteristic residing in EMR data
both at the visit level and at the feature level

Il. Capturing feature-level irregularity can benefit EMR data
analytics through Feature-Level Time Decay Model

* Handle feature-level irregularity
" Decay the influence of previous information on patients’ current state

" Learn decaying parameters for different features

Ill. Evaluate proposed Feature-Level Time Decay Model in both a
public ADNI dataset and a private NUH-CKD dataset for two
chronic disease cohorts
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Thank you!
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