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4 INTRODUCTION

Electronic Medical Records (EMR Data)
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Amputation

Bias in EMR Data
 Patients tend to visit hospital more often when they feel sick
* Doctors tend to prescribe the lab examinations that show abnormality

Severity
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METHODOLOGY

EMR Regularization

Inspiration
« EMR Series ¥ is not a randomly sampled subset of Patients’ Hidden Conditions @

« Probability that one tuple < p, t,d, v > (p: patient, t: time point, d: feature, v: value) Is observed may
depend on the medical feature and its value

Target of our work
« Estimate the unobserved hidden conditions @ — ¥ using EMR series ¥
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Characteristics of Medical Features

CURED
Condition Change Rate (CCR) ? H
« How a medical feature is likely to change from its 4+ - Ti
i - : 6 months 'me
condition in the previous observation
Observation Rate (OR)
« Probability that a medical feature Is exposed at a NOT CURED
time point based on its actual condition at that U
time point ‘
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A Hidden Markov Model (HMM) Variant for Learning and Inference
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Algorithm 1: EMR regularization with smoothing

Input: medical features Qp, observation sequences

= {Yd’led’s = yf’s, e y‘;,’s} for each feature d and for
each sequence s. A’s prior for feature d is Beta(aﬁ, bi) DS
prior for feature d is Beta(a B )
Output: parameters A9 = (119, A9, Bd) for each d € Qp, hidden
qf state probability sequence P(qt = 2;|Y9s, 29).
1: For each medical feature d € Qp
2 Initialize A9 = (Hd A4 pd )
3:  Iterate EM process until convergence
4:  E-Step:
. N 5 For each observation sequence s € Qg
Time Time d,s d,s :
_ . 6: Compute &¢(q;”" = zi.q;,, = zj) (Equation 3)
Slice 1 Slice t s :
_ 7: Compute y¢(q,”” = z;) (Equation 4)
o s M-Step:
9: Update 1:[? (Equation 5)
10: Update transition matrix Af i (Equation 6)
11: Update emission matrix B;i i (Equation 7)

S = z;|Y4$ 29) (Equation 8)
= 2|75 19

12z Compute P(qf’
5 return A4 = (114, 4%, BY), P(g*
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EXPERIMENTS
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Benefits for Analytical Tasks
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GRU LSTM Vanilla RNN
Different Recurrent Neural Networks for Processing Time Series Input
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MIMIC-III in-hospital mortality prediction results MIMIC-III diagnosis by category results
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LSTM
Different Recurrent Neural Networks for Processing Time Series Input
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CONCLUSION AND FUTURE WORK

EMR Regularization to Resolve Bias

Consider CCR and OR as characteristics of medical features
Employ an HMM variant for learning and inference

Impute missing values in EMR data more accurately
Improve the analytical performance after resolving the bias

Future Directions

Model different diseases jointly in the probabilistic graphical model for capturing the
relationships in between

Model the patient personalization as different patients might behave differently in terms
of CCR and OR
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