
17 Mar 2005 CS 3243 - Logical Inference 1

Inference in PL and FOL

Chapters 7, 8 and 9
+ Prolog Redux

! Long lecture ahead

17 Mar 2005 CS 3243 - Logical Inference 2

Outline: PL Inference

Enumerative methods
Resolution in CNF

Sound and Complete

Forward and Backward Chaining using
Modus Ponens in Horn Form

Sound and Complete

17 Mar 2005 CS 3243 - Logical Inference 3

Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules
 Legitimate (sound) generation of new sentences from old

Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search

 algorithm
Typically require transformation of sentences into a normal form

Model checking

truth table enumeration (always exponential in n)
improved backtracking, e.g., Davis-Putnam-Logemann-Loveland

 (DPLL)
heuristic search in model space (sound but incomplete)

e.g., min-conflicts like hill- climbing algorithms

17 Mar 2005 CS 3243 - Logical Inference 4

Efficient propositional inference

Two families of efficient algorithms for propositional
 inference:

Complete backtracking search algorithms
DPLL algorithm (Davis, Putnam, Logemann , Loveland)
Incomplete local search algorithms

WalkSAT algorithm

17 Mar 2005 CS 3243 - Logical Inference 5

The DPLL algorithm
Determine if an input propositional logic sentence (in CNF) is satisfiable .

 Improvements over truth table enumeration:
1. Early termination

A clause is true if any literal is true.
 A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses (A ∨ ¬B), (¬B ∨ ¬C), (C ∨ A), A and B are pure, C is

impure.
 Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause

 The only literal in a unit clause must be true.

Least constraining value

Most constrained value

What are correspondences between
DPLL and in general CSPs?

What are correspondences between
DPLL and in general CSPs?

17 Mar 2005 CS 3243 - Logical Inference 6

The DPLL algorithm

17 Mar 2005 CS 3243 - Logical Inference 7

The WalkSAT algorithm

 Incomplete, local search algorithm
Evaluation function: The min-conflict heuristic of minimizing

 the number of unsatisfied clauses
 Balance between greediness and randomness

17 Mar 2005 CS 3243 - Logical Inference 8

The WalkSAT algorithm

Let’s ask ourselves: Why is it incomplete?Let’s ask ourselves: Why is it incomplete?

17 Mar 2005 CS 3243 - Logical Inference 9

Hard satisfiability problems

Consider random 3- CNF sentences. e.g.,
(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨ ¬B
∨ E) ∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬ C)

m = number of clauses
n = number of symbols

Hard problems seem to cluster near m/n = 4.3
 (critical point)

17 Mar 2005 CS 3243 - Logical Inference 10

Hard satisfiability problems

17 Mar 2005 CS 3243 - Logical Inference 11

Hard satisfiability problems

Median runtime for 100 satisfiable random 3-CNF
sentences, n = 50

17 Mar 2005 CS 3243 - Logical Inference 12

Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules
 Legitimate (sound) generation of new sentences from old

Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search

 algorithm
Typically require transformation of sentences into a normal form

Model checking

truth table enumeration (always exponential in n)
improved backtracking, e.g., Davis-Putnam-Logemann-Loveland

 (DPLL)
heuristic search in model space (sound but incomplete)

e.g., min-conflicts like hill- climbing algorithms

17 Mar 2005 CS 3243 - Logical Inference 13

Resolution
Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals
clauses

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬ D)

Resolution inference rule (for CNF):
li ∨… ∨ lk, m1 ∨ … ∨ mn

li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn

where li and mj are complementary literals.
E.g., P1,3 ∨ P2,2, ¬P2,2

P1,3

Resolution is sound and complete
 for propositional logic

17 Mar 2005 CS 3243 - Logical Inference 14

Resolution example

KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1

α = ¬P1,2 (negate the premise for proof by refutation)

¬B1,1 ∨ P1,2 ∨ P2,1 ¬P1,2 ∨ B1,1 ¬P2,1 ∨ B1,1 ¬ B1,1 P1,2

P1,2 ∨ P2,1 ∨ ¬P1,2

¬B1,1 ∨ B1,1 ∨ P2,1

¬B1,1 ∨ P1,2 ∨ B1,1

¬P2,1 ∨ P1,2 ∨ P2,1

¬P2,1 ¬P1,2

17 Mar 2005 CS 3243 - Logical Inference 15

The power of false

Given: (P) ∧ (¬P)
Prove: Z

Can we prove ¬Z using the givens above?

¬ P Given
P Given
¬ Z Given
� Unsatisfiable

17 Mar 2005 CS 3243 - Logical Inference 16

Applying inference rules
KB:

B, A ∧ D ∧ C,
B ⇒ F

KB:
B, A ∧ D ∧ C,

B ⇒ F, A

KB:
B, A ∧ D ∧ C,

B ⇒ F, F

M.P.A.E.

Equivalent to a search
problem

KB state = node
Inference rule
application = edge

17 Mar 2005 CS 3243 - Logical Inference 17

Inference Do the operators make
conclusions that aren’t
always true?

Define: KB ├i α = sentence α can be derived from KB by
procedure i
Soundness: i is sound if whenever KB ├i α, it is also true
that KB╞ α

Completeness: i is complete if whenever KB╞ α, it is also
true that KB ├i α
Preview: we will define a logic (first-order logic) which is
expressive enough to say almost anything of interest, and
for which there exists a sound and complete inference

 procedure.
That is, the procedure will answer any question whose
answer follows from what is known by the KB .• Is a set of inference operators complete

and sound?
• Is a set of inference operators complete
and sound?

17 Mar 2005 CS 3243 - Logical Inference 18

Completeness

All possible clauses entailed by
the KB

Clauses inferable
from KB using IF

Original
KB

Completeness: i is
complete if whenever
KB╞ α, it is also true
that KB ├i α

An incomplete
inference algorithm
cannot reach all
possible conclusions

Equivalent to
completeness in search
(chapter 3)

17 Mar 2005 CS 3243 - Logical Inference 19

Resolution

Conjunctive Normal Form (CNF)
conjunction of disjunctions of literals

clauses
E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬ D)

 Resolution inference rule (for CNF):
li ∨… ∨ lk, m1 ∨ … ∨ mn

li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn

where li and mj are complementary literals.
E.g., P1,3 ∨ P2,2, ¬P2,2

P1,3

Resolution is sound and complete
 for propositional logic

17 Mar 2005 CS 3243 - Logical Inference 20

Resolution

Soundness of resolution inference rule:

¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ li
¬mj ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn)

¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn)

where li and mj are complementary literals.

What if li and ¬mj are false?
What if li and ¬mj are true?

Same truth valueSame truth value

17 Mar 2005 CS 3243 - Logical Inference 21

Completeness of Resolution

That is, that resolution can decide the truth value
of S

S = set of clauses
RC(S) = Resolution closure of S = Set of all
clauses that can be derived from S by the
resolution inference rule.
RC(S) has finite cardinality (finite number of
symbols P1, P2, … Pk), thus resolution refutation
must terminate.

17 Mar 2005 CS 3243 - Logical Inference 22

Completeness of Resolution (cont)

Ground resolution theorem = if S unsatisfiable,
RC(S) contains empty clause.
Prove by proving contrapositive:

i.e., if RC(S) doesn’t contain empty clause, S is
satisfiable
Do this by constructing a model:

For each Pi, if there is a clause in RC(S) containing ¬Pi and all
other literals in the clause are false, assign Pi = false
Otherwise Pi = true

This assignment of Pi is a model for S.

17 Mar 2005 CS 3243 - Logical Inference 23

Other Reasoning Patterns

• Resolution works by refutation
• What about proving propositions directly?

Given(s)
Conclusion

A ⇒ B, A
B

B ∧ A
A

Rules that allow us to
introduce new propositions
while preserving truth
values: logically equivalent

Two Examples:
Modus Ponens

And Elimination

17 Mar 2005 CS 3243 - Logical Inference 24

Forward and backward chaining

Horn Form (restricted)
KB = conjunction of Horn clauses

Horn clause =
proposition symbol; or
(conjunction of symbols) ⇒ symbol

E.g., C ∧ (B ⇒ A) ∧ (C ∧ D ⇒ B)
Modus Ponens (for Horn Form): complete for Horn KBs

α1, … ,αn, α1 ∧ … ∧ αn ⇒ β
β

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in linear time

17 Mar 2005 CS 3243 - Logical Inference 25

Forward chaining

Idea: fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found

17 Mar 2005 CS 3243 - Logical Inference 26

Forward chaining algorithm

Forward chaining is sound and complete for Horn
 KB

17 Mar 2005 CS 3243 - Logical Inference 27

Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference 28

Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference 29

Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference 30

Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference 31

Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference 32

Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference 33

Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference 34

Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference 35

Proof of completeness

FC derives every atomic sentence that is entailed
by KB (only for clauses in Horn form)

1. FC reaches a fixed point (the deductive closure)
 where no new atomic sentences are derived

2. Consider the final state as a model m, assigning
 true/false to symbols

3. Every clause in the original KB is true in m
a1 ∧ … ∧ ak ⇒ b

4. Hence m is a model of KB
5. If KB╞ q, q is true in every model of KB, including m

17 Mar 2005 CS 3243 - Logical Inference 36

Backward chaining example

17 Mar 2005 CS 3243 - Logical Inference 37

Backward chaining example

17 Mar 2005 CS 3243 - Logical Inference 38

Backward chaining example

17 Mar 2005 CS 3243 - Logical Inference 39

Inference in first-order logic

Chapter 9

17 Mar 2005 CS 3243 - Logical Inference 40

Outline

Reducing first-order inference to
propositional inference
Unification
Generalized Modus Ponens
Forward chaining
Backward chaining
Resolution

17 Mar 2005 CS 3243 - Logical Inference 41

Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by
 it:

∀v α

Subst({v/g}, α)
for any variable v and ground term g

E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))
.
.
.

17 Mar 2005 CS 3243 - Logical Inference 42

Existential instantiation (EI)

For any sentence α, variable v, and constant
symbol k that does not appear elsewhere in the

 knowledge base:
∃v α

Subst({v/k}, α)

E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)

provided C1 is a new constant symbol, called a
Skolem constant

17 Mar 2005 CS 3243 - Logical Inference 43

Reduction to propositional inference
 Suppose the KB contains just the following:

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)

Instantiating the universal sentence in all possible ways, we have:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

The new KB is propositionalized : proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard), etc.

17 Mar 2005 CS 3243 - Logical Inference 44

Reduction contd.

Every FOL KB can be propositionalized so as to
 preserve entailment

(A ground sentence is entailed by new KB iff entailed by
 original KB)

Idea: propositionalize KB and query, apply resolution,
 return result

Problem: with function symbols, there are infinitely many
ground terms,

e.g., Father(Father(Father(John)))

17 Mar 2005 CS 3243 - Logical Inference 45

Reduction con’td.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it
is entailed by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-n terms
see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is
semi-decidable (algorithms exist that say yes to every entailed
sentence, but no algorithm exists that also says no to every non-

 entailed sentence.)

17 Mar 2005 CS 3243 - Logical Inference 46

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.

 E.g., from:
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
∀y Greedy(y)
Brother(Richard,John)

it seems obvious that Evil(John), but propositionalization produces
lots of facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates and n constants, there are p·nk

 instantiations.

17 Mar 2005 CS 3243 - Logical Inference 47

Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John } works

Unify(α,β) = θ if αθ = βθ
p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x,OJ) {fail}

Standardizing apart eliminates overlap of variables, e.g.,
Knows(z17 ,OJ)

17 Mar 2005 CS 3243 - Logical Inference 48

Unification

To unify Knows(John,x) and Knows(y,z) ,
θ = {y/John, x/z } or θ = {y/John, x/John, z/John}

The first unifier is more general than the
 second.

There is a single most general unifier (MGU)
 that is unique up to renaming of variables.

MGU = { y/John, x/z }

17 Mar 2005 CS 3243 - Logical Inference 49

The unification algorithm

17 Mar 2005 CS 3243 - Logical Inference 50

The unification algorithm

17 Mar 2005 CS 3243 - Logical Inference 51

Generalized Modus Ponens (GMP)

p1', p2', … , pn', (p1 ∧ p2 ∧ … ∧ pn ⇒q)
qθ

p1' is King(John) p1 is King(x)
p2' is Greedy(y) p2 is Greedy(x)
θ is {x/John,y/John} q is Evil(x)
q θ is Evil(John)

GMP used with KB of definite clauses (exactly one positive literal)

 All variables assumed universally quantified

where pi'θ = pi θ for all i

17 Mar 2005 CS 3243 - Logical Inference 52

Soundness of GMP

 Need to show that
p1', …, pn', (p1 ∧ … ∧ pn ⇒ q) ╞ qθ

provided that pi'θ = piθ for all I

Lemma: For any sentence p, we have p ╞ pθ by UI

1. (p1 ∧ … ∧ pn ⇒ q) ╞ (p1 ∧ … ∧ pn ⇒ q)θ = (p1θ ∧ … ∧ pnθ⇒ qθ)
2. p1', …, pn' ╞ p1' ∧ … ∧ pn' ╞ p1'θ ∧ … ∧ pn'θ
3. From 1 and 2, qθ follows by ordinary Modus Ponens

17 Mar 2005 CS 3243 - Logical Inference 53

Example knowledge base

The law says that it is a crime for an American to sell
weapons to hostile nations. The country Nono, an
enemy of America, has some missiles, and all of its
missiles were sold to it by Colonel West, who is

 American.

 Prove that Col. West is a criminal

17 Mar 2005 CS 3243 - Logical Inference 54

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:
American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

 Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)

17 Mar 2005 CS 3243 - Logical Inference 55

Forward chaining algorithm

17 Mar 2005 CS 3243 - Logical Inference 56

Forward chaining proof

17 Mar 2005 CS 3243 - Logical Inference 57

Forward chaining proof

17 Mar 2005 CS 3243 - Logical Inference 58

Forward chaining proof

17 Mar 2005 CS 3243 - Logical Inference 59

Properties of forward chaining

Sound and complete for first- order definite clauses

Datalog = first-order definite clauses + no functions
FC terminates for Datalog in finite number of iterations

May not terminate in general if α is not entailed

This is unavoidable: entailment with definite clauses is
semidecidable

17 Mar 2005 CS 3243 - Logical Inference 60

Efficiency of forward chaining

Incremental forward chaining: no need to match a rule on
iteration k if a premise wasn't added on iteration k-1
⇒ match each rule whose premise contains a newly added positive

 literal

Matching itself can be expensive:
Database indexing allows O(1) retrieval of known facts

e.g., query Missile(x) retrieves Missile(M1)

Forward chaining is widely used in deductive databases

17 Mar 2005 CS 3243 - Logical Inference 61

Backward chaining algorithm

SUBST(COMPOSE(θ1, θ2), p) = SUBST(θ2,
SUBST(θ1 , p))

17 Mar 2005 CS 3243 - Logical Inference 62

Backward chaining example

17 Mar 2005 CS 3243 - Logical Inference 63

Backward chaining example

17 Mar 2005 CS 3243 - Logical Inference 64

Backward chaining example

17 Mar 2005 CS 3243 - Logical Inference 65

Backward chaining example

17 Mar 2005 CS 3243 - Logical Inference 66

Backward chaining example

17 Mar 2005 CS 3243 - Logical Inference 67

Backward chaining example

17 Mar 2005 CS 3243 - Logical Inference 68

Backward chaining example

17 Mar 2005 CS 3243 - Logical Inference 69

Prolog Inference

Q: which model do you think
Prolog uses for inference?

17 Mar 2005 CS 3243 - Logical Inference 70

Properties of backward chaining

Depth-first recursive proof search: space is
linear w.r.t. size of proof

 Incomplete due to infinite loops
⇒ fix by checking current goal against every goal on

stack

Inefficient due to repeated subgoals (both
success and failure)
⇒ fix using caching of previous results (extra space)

17 Mar 2005 CS 3243 - Logical Inference 71

Prolog Execution

Prolog needs to choose which goal to pursue first,
although logically it doesn’t matter. Why?

Treats goals in order, leftmost first.

A :- B,C,D.
B :- E,F.
-? A.

B is tried first, then C, then D.
E and F are pushed onto the stack, before C and D.

Why?

3 goals in
this clause

17 Mar 2005 CS 3243 - Logical Inference 72

Prolog Execution

Prolog also needs to choose which clause to
pursue first.

Treats clauses in order, top-most first.
G.
A :- B,C,D.
B :- E,F.
B :- G.

To satisfy goal B, prolog tries E,F before G.

4 clauses in
example

17 Mar 2005 CS 3243 - Logical Inference 73

Procedural Prolog Programming

Order of Prolog clauses and goals crucial,
can affect running times immensely

Order of goals tell which get executed first
Order of clauses tell which control branches are
tried first.

17 Mar 2005 CS 3243 - Logical Inference 74

A Singaporean example

likes(hari,X) :- makan(X), consumes(hari,X).
likes(min,X) :- likes(hari,X).
makan(meeSiam).
makan(rojak).
minum(rootBeerFloat).
consumes(hari,meeSiam).

likes(hari,X1)

likes(min,X)

makan(X2), consumes(hari,X2)

consumes(hari,rojak).consumes(hari,meeSiam).

X = X1

X1 = X2

X2 = meeSiam X2 = rojak

Fail

17 Mar 2005 CS 3243 - Logical Inference 75

Summary

Whew! That was a loooooooong lecture. What did we learn?

Enumeration: DPLL rules are similar to CSP heuristics.
Resolution is proof by refutation, used in PL.
Other forms of reasoning: Modus Ponens which requires
Horn form.
FOL uses unification to find solutions, requires Skolem
constants and functions.
Forward (undirected) and Backward (directed) chaining
patterns to apply an inference mechanism.

	Inference in PL and FOL
	Outline: PL Inference
	Proof methods
	Efficient propositional inference
	The DPLL algorithm
	The DPLL algorithm
	The WalkSAT algorithm
	The WalkSAT algorithm
	Hard satisfiability problems
	Hard satisfiability problems
	Hard satisfiability problems
	Proof methods
	Resolution
	Resolution example
	The power of false
	Applying inference rules
	Inference
	Completeness
	Resolution
	Resolution
	Completeness of Resolution
	Completeness of Resolution (cont)
	Other Reasoning Patterns
	Forward and backward chaining
	Forward chaining
	Forward chaining algorithm
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Proof of completeness
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Inference in first-order logic
	Outline
	Universal instantiation (UI)
	Existential instantiation (EI)
	Reduction to propositional inference
	Reduction contd.
	Reduction con’td.
	Problems with propositionalization
	Unification
	Unification
	The unification algorithm
	The unification algorithm
	Generalized Modus Ponens (GMP)
	Soundness of GMP
	Example knowledge base
	Example knowledge base contd.
	Forward chaining algorithm
	Forward chaining proof
	Forward chaining proof
	Forward chaining proof
	Properties of forward chaining
	Efficiency of forward chaining
	Backward chaining algorithm
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Prolog Inference
	Properties of backward chaining
	Prolog Execution
	Prolog Execution
	Procedural Prolog Programming
	A Singaporean example
	Summary

