| Inference in PL and FOL

Chapters 7, 8 and 9
+ Prolog Redux

A Long lecture ahead

17 Mar 2005 CS 3243 - Logical Inference

B Outline: PL Inference

Enumerative methods
Resolution in CNF
Sound and Complete

Forward and Backward Chaining using
Modus Ponens in Horn Form

Sound and Complete

17 Mar 2005 CS 3243 - Logical Inference

‘ Proof methods

= Proof methods divide into (roughly) two kinds:

= Application of inference rules
= Legitimate (sound) generation of new sentences from old

= Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search

algorithm
= Typically require transformation of sentences into a normal form

17 Mar 2005 CS 3243 - Logical Inference

B Efficient propositional inference

Two families of efficient algorithms for propositional
inference:

Complete backtracking search algorithms
DPLL algorithm (Davis, Putnam, Logemann, Loveland)

Incomplete local search algorithms
Wal kSAT algorithm

17 Mar 2005 CS 3243 - Logical Inference

1 The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:

Early termination
A clause is true if any literal is true.
A sentence is false if any clause is false.

Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses (A v —B), (-B v —C), (Cv A), A and B are pure, C s

impure.
Make a pure symbol literal true. Least constraining value
Unit clause heuristic
Unit clause: only one literal in the clause Most constrained value

The only literal in a unit clause must be true.

17 Mar 2005 CS 3243 - Logical Inference 5

1 The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses + the set of clauses in the CNF representation of s
symbols + a list of the proposition symbols in s
return DPLL(clauses, symbols, [|)

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true

if some clause in clauses is false in model then return false

P, value «+— FIND-PURE-SYMBOL(symbols, clauses, model)

if P is non-null then return DPLL(clauses, symbols-P,|P = value|model))
P, value « FIND-UNIT-CLAUSE(clauses, model)

if P is non-null then return DPLL(clauses, symbols-P,|P = value|model))
P+ F1RST(symbols); rest + REST(symbols)

17 Mar 2005 CS 3243 - Logical Inference

W The WalKkSAT algorithm

Incomplete, local search algorithm

Evaluation function: The min-conflict heuristic of minimizing
the number of unsatisfied clauses

Balance between greediness and randomness

17 Mar 2005 CS 3243 - Logical Inference 7

The WalkSAT algorithm

function WALKSAT(clauses, p, maz-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move
maz-flips, number of flips allowed before giving up

model+ a random assignment of true/ false to the symbols in clauses

if model satisfies clauses then return model
clause +— a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol
from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

17 Mar 2005 CS 3243 - Logical Inference

M Hard satisfiability problems

Consider random 3-CNF sentences. e.qg.,

(Dv-BvCOABv-Av-LCA(-Cv —B
vVE)A(Ev-DvB)A(BvVEV-C)

/m = number of clauses
n = number of symbols

Hard problems seem to cluster near m/n = 4.3
(critical point)

17 Mar 2005 CS 3243 - Logical Inference 9

M Hard satisfiability problems

{ T - T
9
1
0.8 ‘
Z 06 |
: \
2 04 1
o i
0.2 &&
0 \I\ T

0 1 2 3 4 5 6 7 8
Claunse/symbol ratio m/n
17 Mar 2005 CS 3243 - Logical Inference

M Hard satisfiability problems

Median runtime for 100 satisfiable random 3-CNF

Runtime

2000

1800 |
1600
1400
1200 |
1000
800
600 -
4m-
200

0

[[[T
DPLL + ﬁ
WalkSAT X IT
ke
\
[
| |
||4l !
|
|
|
|I E
LK
I|I % :I: .:.‘J'C-u__ﬂ:‘
i X
A -%?Iclgk
R e P i, i
0 1 2 3 4 5

Clause/symbol ratio m/n

sentences, n = 50

17 Mar 2005

CS 3243 - Logical Inference

11

‘ Proof methods

= Proof methods divide into (roughly) two kinds:

= Model checking
= truth table enumeration (always exponential in n)

= improved backtracking, e.g., Davis-Putnam-Logemann-Loveland
(DPLL)

= heuristic search in model space (sound but incomplete)
e.g., min-conflicts like hill-climbing algorithms

17 Mar 2005 CS 3243 - Logical Inference 12

B Resolution

Resolution inference rule (for CNF):
Lv...v b, m Vo .V m,

[e VEgV iV VRV My VL Mg Vg Ve Vo

where £ and m are complementary literals.
Eg., PsVv Py =P,
P1,3

17 Mar 2005 CS 3243 - Logical Inference

13

W Resolution example

KB = (51,1 = (P1,2V P2,1)) A Bl,l

a-= (negate the premise for proof by refutation)

P1,2 Y P2,1 Vv —|P1,2

—|B]_,1 \Y4 P1,2 Y Bl,l —|P1,2

|B],1 Vv B].,]. vV P2,1 _|P2,1 Vv P1,2 \4 lel

17 Mar 2005 CS 3243 - Logical Inference

B The power of false

Given: (P) A (—=P)

Prove: Z
— P Given
P Given
—Z Given
] Unsatisfiable

Can we prove —Z using the givens above?

17 Mar 2005 CS 3243 - Logical Inference

‘ Applying inference rules

Equivalent to a search
problem

= KB state = node

= Inference rule
application = edge

17 Mar 2005 CS 3243 - Logical Inference 16

‘ Inference

Define: KB | a = sentence a can be derived from KB by
procedure /

= Soundness: /is sound if whenever KB | q, it is also true
that KBE aB

=« Completeness: 7is complete if whenever KB |= a, it is also
true that KB | a

17 Mar 2005 CS 3243 - Logical Inference 17

! Completeness

Completeness: 7is
complete if whenever
KBE q, it is also true
that kB | a

= An incomplete
inference algorithm
cannot reach all
possible conclusions

= Equivalent to
completeness in search
(chapter 3)

17 Mar 2005 CS 3243 - Logical Inference

Original
KB

18

B Resolution

Resolution is sound and complete
for propositional logic

17 Mar 2005 CS 3243 - Logical Inference

19

B Resolution

Soundness of resolution inference rule:

Simetithale |
(Vv o VEVE NV VL)L

=iy = (Mg Vo VMV My Ve Vo)
—(lv oo VE{NVE VoV L) (M V.V Mg V Mgy Vewn V)

where £ and m; are complementary literals.

What if £ and —m; are false?
What if £ and —m; are true?

17 Mar 2005 CS 3243 - Logical Inference 20

M Completeness of Resolution

That is, that resolution can decide the truth value
of S

S = set of clauses

RC(S) = Resolution closure of S = Set of all
clauses that can be derived from S by the
resolution inference rule.

RC(S) has finite cardinality (finite number of

symbols Py, P, ... P,), thus resolution refutation
must terminate.

17 Mar 2005 CS 3243 - Logical Inference

21

| Completeness of Resolution (cont)

Ground resolution theorem = if S unsatisfiable,
RC(S) contains empty clause.

Prove by proving contrapositive:
i.e., if RC(S) doesn’t contain empty clause, S is
satisfiable

Do this by constructing a model:

For each P, if there is a clause in RC(S) containing —P; and all
other literals in the clause are false, assign P, = false

Otherwise P, = true
This assignment of P;is a model for S.

17 Mar 2005 CS 3243 - Logical Inference 22

W Other Reasoning Patterns

e Resolution works by refutation
e What about proving propositions directly?

Given(s) Rules that allow us to
Conclusion introduce new propositions
while preserving truth
values: logically equivalent

A= B, A
B Two Examples:
Modus Ponens
BAA
2‘ And Elimination

17 Mar 2005 CS 3243 - Logical Inference 23

B Forward and backward chaining

Horn Form (restricted)
KB = conjunction of Horn clauses
Horn clause =
proposition symbol; or
(conjunction of symbols) = symbol
E.g, CA(B=A)A(CAD=B)
Modus Ponens (for Horn Form): complete for Horn KBs
ay, ... 0., ;A ... A0, =P

b

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in linear time

17 Mar 2005 CS 3243 - Logical Inference 24

W Forward chaining

Idea: fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found

T
P = @
LAnM = P P
BAL = M }:}\
AANP = L M
AANB = L £
A
B /

A B

17 Mar 2005 CS 3243 - Logical Inference

W Forward chaining algorithm

function PL-FC-ENTAILS?(KB, ¢) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p+ Pop(agenda)
unless inferred[p| do
inferred|p| < true
for each Horn clause ¢ in whose premise p appears do
decrement count|c|
if count|[c] = 0 then do
if HEAD|¢| = ¢ then return true
Pusn(HEAD|c], agenda)
return false

E%rward chaining is sound and complete for Horn

17 Mar 2005 CS 3243 - Logical Inference

W Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference

27

W Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference

28

1 Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference

29

1 Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference

30

1 Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference

31

1 Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference

32

1 Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference

33

1 Forward chaining example

17 Mar 2005 CS 3243 - Logical Inference

34

B Proof of completeness

FC derives every atomic sentence that is entailed

by

17 Mar 2005

KB (only for clauses in Horn form)

FC reaches a fixed point (the deductive closure)
where no new atomic sentences are derived

Consider the final state as a model m, assigning
true/false to symbols

Every clause in the original KBis true in m
A ...N G_b

Hence mis a model of KB
If KBE g, gis true in every model of KB, including m

CS 3243 - Logical Inference 35

1 Backward chaining example

17 Mar 2005 CS 3243 - Logical Inference

36

1 Backward chaining example

17 Mar 2005 CS 3243 - Logical Inference

37

1 Backward chaining example

17 Mar 2005 CS 3243 - Logical Inference

38

17 Mar 2005

Inference In first-order logic

Chapter 9

CS 3243 - Logical Inference

39

Outline

Reducing first-order inference to
propositional inference

Unification

Generalized Modus Ponens
Forward chaining

Backward chaining
Resolution

17 Mar 2005 CS 3243 - Logical Inference

40

Universal instantiation (Ul)

Every instantiation of a universally quantified sentence is entailed by

it:
YV a
Subst({v/g}, a)

for any variable v and ground term g

E.g., VX King(x) A Greedy(x) = Evil(x) yields:
King(John) A Greedy(John) = Evil(John)
King(Richard) A Greedy(Richard) = Evil(Richard)
King(Father(John)) A Greedy(Father(John)) = Evil(Father(John))

17 Mar 2005 CS 3243 - Logical Inference

41

Existential instantiation (El)

For any sentence a, variable v, and constant
symbol k that does not appear elsewhere in the
knowledge base:
v a
Subst({v/k}, a)

E.g., 3x Crown(x) A OnHead(x,John) yields:
Crown(C,) A OnHead(C,,John)

provided C, is a new constant symbol, called a
Skolem constant

17 Mar 2005 CS 3243 - Logical Inference 42

Reduction to propositional inference

Suppose the KB contains just the following:
vx King(x) A Greedy(x) = Evil(x)
King(John)

Greedy(John)
Brother(Richard,John)

Instantiating the universal sentence in all possible ways, we have:
King(John) A Greedy(John) = Evil(John)
King(Richard) A Greedy(Richard) = Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard), etc.

17 Mar 2005 CS 3243 - Logical Inference 43

Reduction contd.

Every FOL KB can be propositionalized so as to
preserve entailment

(A ground sentence is entailed by new KB iff entailed by
original KB)

|dea: propositionalize KB and query, apply resolution,
return result

Problem: with function symbols, there are infinitely many
ground terms,
e.g., Father(Father(Father(John)))

17 Mar 2005 CS 3243 - Logical Inference 44

Reduction con’td.

Theorem: Herbrand (1930). If a sentence a is entailed by an FOL KB, it
is entailed by a finite subset of the propositionalized KB

ldea: Forn =0 to « do
create a propositional KB by instantiating with depth-n terms
see if a is entailed by this KB

Problem: works if a is entailed, loops if a is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is
semi-decidable (algorithms exist that say yes to every entailed
sentence, but no algorithm exists that also says no to every non-
entailed sentence.)

17 Mar 2005 CS 3243 - Logical Inference 45

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.

E.g., from:
Vx King(x) A Greedy(x) = Evil(x)
King(John)
vy Greedy(y)
Brother(Richard,John)

it seems obvious that Evil(John), but propositionalization produces
lots of facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates and n constants, there are p-nk
instantiations.

17 Mar 2005 CS 3243 - Logical Inference

46

Unification

We can get the inference immediately if we can find a substitution 0
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 = {x/John,y/John} works

Unify(a,B) = 8 if aB = 36
p q 6
Knows(John,x) | Knows(John,Jane)
Knows(John,x)| Knows(y,OJ)
Knows(John,x) | Knows(y,Mother(y))
Knows(John,x)| Knows(x,0J)

Standardizing apart eliminates overlap of variables, e.g.,
Knows(z,,,0J)

17 Mar 2005 CS 3243 - Logical Inference 47

Unification

To unify Knows(John,x) and Knows(y,z),
0 = {y/John, x/z } or 8 = {y/John, x/John, z/John}

The first unifier is more general than the
second.

There is a single most general unifier (MGU)

that is unique up to renaming of variables.
MGU = { y/John, x/z }

17 Mar 2005 CS 3243 - Logical Inference

48

The unification algorithm

function UNIFY(z, y, #) returns a substitution to make x and y identical
inputs: z, a variable, constant, list, or compound
y, a variable, constant, list, or compound
f, the substitution built up so far

if § = failure then return failure
else if z = y then return #
else if VARIABLE?(xz) then return UNIFY-VAR(z, y, #)
else if VARIABLE?(y) then return UNIFY-VAR(y, z, 6)
else if ComPouND?(z) and ComPOUND?(y) then
return UNIFY(ARGS[z], ARGS[y], UNIFY(OPr[z], OP[1], 7))
else if LisT?(z) and LisT?(y) then
return UNIFY(REST[z], REST[y], UNIFY(FIRST[2], FIRST[1], 7))
else return failure

17 Mar 2005 CS 3243 - Logical Inference

49

The unification algorithm

function UNIFY-VAR(var, z,) returns a substitution
inputs: var, a variable
T, any expression
6, the substitution built up so far

if {var/val} € 6 then return UniFyY(val, z,6)
else if {z/val} € # then return UNIFY(var, val, 6)
else if OCCUR-CHECK?(var,) then return failure
else return add {var/z} to ¢

17 Mar 2005 CS 3243 - Logical Inference

50

Generalized Modus Ponens (GMP)

P1', P2 s Py (P1AP2A o APy =0) yhere p'0 =p, 6 for all |
qo

p,' is King(John) P, is King(x)

p,' is Greedy(y) P, is Greedy(x)

0 is {x/John,y/John} q is Evil(x)
q 6 is Evil(John)

GMP used with KB of definite clauses (exactly one positive literal)

All variables assumed universally quantified

17 Mar 2005 CS 3243 - Logical Inference

51

Soundness of GMP

Need to show that
P+, s Pas (1A . AP =q) FQO

provided that p;'@ = p,0 for all |

Lemma: For any sentence p, we have p |= pB by Ul

P1A AP, =0) F(P1A .. AP, =q)0 = (PO A ... AP0 = qB)

Py s Py EP A AP, EP{OA ... AP, O
From 1 and 2, g0 follows by ordinary Modus Ponens

17 Mar 2005 CS 3243 - Logical Inference 52

Example knowledge base

The law says that it is a crime for an American to sell
weapons to hostile nations. The country Nono, an
enemy of America, has some missiles, and all of its
missiles were sold to it by Colonel West, who is
American.

Prove that Col. West is a criminal

17 Mar 2005 CS 3243 - Logical Inference

53

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:

American(x) A Weapon(y) » Sells(x,y,z) A Hostile(z) = Criminal(x)
Nono ... has some missiles, i.e., 3x Owns(Nono,x) A Missile(x):
Owns(Nono,M,) and Missile(M,)
... all of its missiles were sold to it by Colonel West
Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)
Missiles are weapons:
Missile(x) = Weapon(x)
An enemy of America counts as "hostile”:
Enemy(x,America) = Hostile(x)
West, who is American ...
American(West)
The country Nono, an enemy of America ...
Enemy(Nono,America)

17 Mar 2005 CS 3243 - Logical Inference

54

Forward chaining algorithm

function FOL-FC-AsSk(KB, a) returns a substitution or false

repeat until new is empty
new <+ { }
for each sentence rin KB do
(pyAN... A Py = @)+ STANDARDIZE-APART(r)
for each # such that (py A ... A p,)8 = (p] N ... A p,)0
for some pi,....p! in KB
q' + SuBsT(#, q)
if ¢’ is not a renaming of a sentence already in KB or new then do
add ¢’ to new
¢ + UNIFY(¢', @)
if ¢ is not fail then return ¢
add new to KB
return false

17 Mar 2005 CS 3243 - Logical Inference

55

Forward chaining proof

American West)

17 Mar 2005

MissileiM 1)

st Vo, M1)

CS 3243 - Logical Inference

Enemw Nono Amerioa)

56

Forward chaining proof

Weapon M1)

American West)

17 Mar 2005

Sellsi West, M I Noro)

MissileiM 1)

st Vo, M1)

Hostilei Noro)

CS 3243 - Logical Inference

Enemw Nono Amerioa)

57

Forward chaining proof

Criminali West)

Weapon M1)

American West)

17 Mar 2005

Sellsi West, M I Noro)

MissileiM 1)

st Vo, M1)

Hostilei Noro)

CS 3243 - Logical Inference

Enemw Nono Amerioa)

58

Properties of forward chaining

Sound and complete for first-order definite clauses

Datalog = first-order definite clauses + no functions
FC terminates for Datalog in finite number of iterations

May not terminate in general if a is not entailed

This is unavoidable: entailment with definite clauses is
semidecidable

17 Mar 2005 CS 3243 - Logical Inference

59

Efficiency of forward chaining

Incremental forward chaining: no need to match a rule on
iteration k if a premise wasn't added on iteration k-1

— match each rule whose premise contains a newly added positive
literal

Matching itself can be expensive:

Database indexing allows O(1) retrieval of known facts
e.d., query Missile(x) retrieves Missile(M,)

Forward chaining is widely used in deductive databases

17 Mar 2005 CS 3243 - Logical Inference 60

Backward chaining algorithm

function FOL-BC-ASK(KB, goals, f) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query
6, the current substitution, initially the empty substitution { }
local variables: ans, a set of substitutions, initially empty

if goals is empty then return {6}
¢' + SuBST(H, FIRST(goals))
for each rin KB where STANDARDIZE-APART(r) = (p1 A ... A pp = q)
and ' +— UNIFY(q, ¢') succeeds
ans+ FOL-BC-ASK(KB, [p1, ..., pu|REST(go0als)], COMPOSE(F, #')) U ans
return ans

SUBST(COMPOSE(8,, 8,), p) = SUBST(S,,
SUBST(8,, p))

17 Mar 2005 CS 3243 - Logical Inference

61

Backward chaining example

Criminalf West)

17 Mar 2005 CS 3243 - Logical Inference

Backward chaining example

Criminalf West)

Americanix)l

Weapon! v)

17 Mar 2005

Sells{x,y,z)

CS 3243 - Logical Inference

{x/West]

Heostilel z)

63

Backward chaining example

Criminalf West)

American Westl

Weapon! v)

17 Mar 2005

L

Sells{x,y,z)

CS 3243 - Logical Inference

{x/West]

Heostilel z)

64

Backward chaining example

Criminalf West)

American Westl

Weapon! v)

17 Mar 2005

L

Missile{y)

Sells{x,y,z)

CS 3243 - Logical Inference

{x/West]

Heostilel z)

65

Backward chaining example

Criminalf West)

American West) Weapon! v)
Missile{y)
| wMl |
17 Mar 2005

Sells{x,y,z)

CS 3243 - Logical Inference

(x/West, WMl j

Heostilel z)

66

Backward chaining example

Criminalf West)

{x/West, vMI, z/Nono |

Heostilel z)

Americani West) Weapori v) Sells{ West, M1,z)
L | &Neno |
Missile{y) || Missile{M1) | | Owns(Noro, M1)
| wMl |
17 Mar 2005 CS 3243 - Logical Inference

67

Backward chaining example

Criminalf West)

{x/West, vMI, z/Nono |

Americani West) Weapori v) Sells{ West, M1,z) Hostile{ Norno)
¥ [Nono |
Missile{v) || MissileiM1) | | Owns(Nono, M1) | | Eneniy Nono, America)
| wM1} |l L |
17 Mar 2005 CS 3243 - Logical Inference

68

17 Mar 2005

Prolog Inference

Q: which model do you think
Prolog uses for inference?

CS 3243 - Logical Inference

69

Properties of backward chaining

Depth-first recursive proof search: space is
linear w.r.t. size of proof

Incomplete due to infinite loops

= fix by checking current goal against every goal on
stack

Inefficient due to repeated subgoals (both
success and failure)

= fix using caching of previous results (extra space)

17 Mar 2005 CS 3243 - Logical Inference 70

Prolog Execution

Prolog needs to choose which goal to pursue first,
although logically it doesn’t matter. Why?

Treats goals in order, leftmost first.

A - B,C,D. 3 goals in
B-EF. this clause

-? A

B is tried first, then C, then D.

E and F are pushed onto the stack, before C and D.
Why?

17 Mar 2005 CS 3243 - Logical Inference 71

Prolog Execution

Prolog also needs to choose which clause to
pursue first.

Treats clauses in order, top-most first.

G. 4 clauses in
A :- B,C,D. SEmEE

B :- E,F.
B:-G.

To satisfy goal B, prolog tries E,F before G.

17 Mar 2005 CS 3243 - Logical Inference

Procedural Prolog Programming

Order of Prolog clauses and goals crucial,
can affect running times immensely
Order of goals tell which get executed first

Order of clauses tell which control branches are
tried first.

17 Mar 2005 CS 3243 - Logical Inference 73

A Singaporean example

likes(hari,X) :- makan(X), consumes(hari,X).
likes(min,X) :- likes(hari,X).

_ likes(min, X)
makan(meeSiam). l X = X1
makan(rojak)' likes(hari, X1)
minum(rootBeerFloat). l X1 = X2

consumes(hari,meeSiam). makan(X2), consumes(hari,X2)

X2 = meeSW= rojak

consumes(hari,meeSiam). consumes(hari,rojak).
Fail

17 Mar 2005 CS 3243 - Logical Inference 74

Summary

Whew! That was a loooooooong lecture. What did we learn?

Enumeration: DPLL rules are similar to CSP heuristics.
Resolution is proof by refutation, used in PL.

Other forms of reasoning: Modus Ponens which requires
Horn form.

FOL uses unification to find solutions, requires Skolem
constants and functions.

Forward (undirected) and Backward (directed) chaining
patterns to apply an inference mechanism.

17 Mar 2005 CS 3243 - Logical Inference 75

	Inference in PL and FOL
	Outline: PL Inference
	Proof methods
	Efficient propositional inference
	The DPLL algorithm
	The DPLL algorithm
	The WalkSAT algorithm
	The WalkSAT algorithm
	Hard satisfiability problems
	Hard satisfiability problems
	Hard satisfiability problems
	Proof methods
	Resolution
	Resolution example
	The power of false
	Applying inference rules
	Inference
	Completeness
	Resolution
	Resolution
	Completeness of Resolution
	Completeness of Resolution (cont)
	Other Reasoning Patterns
	Forward and backward chaining
	Forward chaining
	Forward chaining algorithm
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Proof of completeness
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Inference in first-order logic
	Outline
	Universal instantiation (UI)
	Existential instantiation (EI)
	Reduction to propositional inference
	Reduction contd.
	Reduction con’td.
	Problems with propositionalization
	Unification
	Unification
	The unification algorithm
	The unification algorithm
	Generalized Modus Ponens (GMP)
	Soundness of GMP
	Example knowledge base
	Example knowledge base contd.
	Forward chaining algorithm
	Forward chaining proof
	Forward chaining proof
	Forward chaining proof
	Properties of forward chaining
	Efficiency of forward chaining
	Backward chaining algorithm
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Prolog Inference
	Properties of backward chaining
	Prolog Execution
	Prolog Execution
	Procedural Prolog Programming
	A Singaporean example
	Summary

