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Uncertainty
Let action At = leave for airport t minutes before flight
Will At  get me there on time?

 Problems:
1. partial observability  (road state, other drivers' plans, etc.)
2.  noisy sensors (traffic reports)
3.  uncertainty in action outcomes (flat tire, etc.)
4.  immense complexity of modeling and predicting traffic

Hence a purely logical approach either
1. risks falsehood: “A25 will get me there on time”, or
2. leads to conclusions that are too weak for decision making:

“A25 will get me there on time if there's no accident on the bridge and it doesn't rain and my 
tires remain intact etc etc  .”

(A1440 might reasonably be said to get me there on time but I'd have to stay overnight in the 
 airport …)
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Methods for handling uncertainty

Default or nonmonotonic  logic:
 Assume my car does not have a flat tire

Assume A25 works unless contradicted by evidence
Issues: What assumptions are reasonable? How to handle 

 contradiction?

Rules with fudge factors  :
A25 |→0.3  get there on time
Sprinkler |→ 0.99 WetGrass 
WetGrass |→ 0.7 Rain

Issues: Problems with combination, e.g., Sprinkler causes Rain  ??

Probability 
 Model agent's degree of belief

 Given the available evidence,
A25  will get me there on time with probability 0.04
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Probability

Probabilistic assertions summarize  effects of
laziness  : failure to enumerate exceptions, qualifications, etc.
ignorance  : lack of relevant facts, initial conditions, etc.

Subjective probability:
Probabilities relate propositions to agent's own state of 
knowledge

e.g., P(A25  | no reported accidents) = 0.06

These are not  assertions about the world

Probabilities of propositions change with new evidence:
e.g., P(A25  | no reported accidents, 5 a.m.) = 0.15
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Making decisions under uncertainty

 Suppose I believe the following:
P(A25 gets me there on time | …) = 0.04 
P(A90 gets me there on time | …) = 0.70 
P(A120 gets me there on time | …) = 0.95 
P(A1440 gets me there on time | …)  = 0.9999 

 Which action to choose?
Depends on my preferences for missing flight vs. time spent 

 waiting, etc.
Utility theory  is used to represent and infer preferences
Decision theory  = probability theory + utility theory
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Syntax
Basic element: random variable

Similar to propositional logic: possible worlds defined by assignment of values 
to random variables.

 
Boolean  random variables
e.g., Cavity  (do I have a cavity?)

Discrete  random variables
e.g., Weather is one of <sunny,rainy,cloudy,snow>

Domain values must be exhaustive and mutually exclusive
 

Elementary proposition constructed by assignment of a value to a random 
variable: e.g., Weather = sunny, Cavity = false  (abbreviated as ¬cavity)

 
Complex propositions formed from elementary propositions and standard logical 
connectives e.g., Weather = sunny ∨ Cavity = false 
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Syntax

Atomic event: A complete specification of the state 
 of the world about which the agent is uncertain

E.g., if the world consists of only two Boolean variables 
Cavity and Toothache, then there are 4 distinct atomic 

 events:
Cavity = false ∧Toothache = false
Cavity = false ∧ Toothache = true
Cavity = true ∧ Toothache = false
Cavity = true ∧  Toothache = true

Atomic events are mutually exclusive and 
 exhaustive
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Axioms of probability

For any propositions A, B 
0 ≤ P(A) ≤ 1
P(true) = 1 and P(false) = 0
P(A ∨ B) = P(A) + P(B) - P(A ∧ B  )
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Prior probability
Prior or unconditional probabilities  of propositions
e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to 

 arrival of any (new) evidence

Probability distribution  gives values for all possible assignments:
P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)

Joint probability distribution for a set of random variables gives the probability 
 of every atomic event on those random variables

P(Weather,Cavity) = a 4 ×  2 matrix of values:

Weather = sunny rainy cloudy snow 
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064  0.08

Every question about a domain can be answered by the joint distr  ibution
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Conditional probability

Conditional or  posterior probabilities
e.g., P(cavity | toothache  ) = 0.8
i.e., given that toothache  is all I know

 Notation for conditional distributions:
P(cavity | toothache) = 2-element vector of 2-element vectors
 

If we know more, e.g., cavity  is also given, then we have
P(cavity | toothache, cavity  ) = 1

New evidence may be irrelevant, allowing simplification, 
 e.g.,

P(cavity | toothache. sunny) = P(cavity | toothache) = 0.8
This kind of inference, sanctioned by domain knowledge, is cruci  al
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Conditional probability

 Definition of conditional probability:
P(a | b) = P(a ∧ b) / P(b) if  P(b  ) > 0

Product rule  gives an alternative formulation:
P(a ∧ b) = P(a | b) P(b) = P(b | a) P(a  )

 A general version holds for whole distributions, e.g.,
P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)

(View as a set of 4 × 2 equations, not matrix mult  .)

Chain rule  is derived by successive application of product rule:
P(X1, …,Xn) = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1)

= P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1)
= …
= πi= 1 P(Xi | X1, … ,Xi-1  )n
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Inference by enumeration

 Start with the joint probability distribution:

 
For any proposition φ, sum the atomic events where it is 
true: P(φ) = Σω:ω╞φ P(ω  )
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Inference by enumeration

 Start with the joint probability distribution:

 
For any proposition φ, sum the atomic events where it is 
true: P(φ) = Σω:ω╞φ P(ω  )
P(toothache  ) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

 Start with the joint probability distribution:

 
For any proposition φ, sum the atomic 
events where it is true: P(φ) = Σω:ω╞φ
P(ω  )
P(toothache) = 0.108 + 0.012 + 0.016 + 
0 064 = 0 2
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Inference by enumeration

 Start with the joint probability distribution:

 Can also compute conditional probabilities:
P(¬cavity | toothache) = P(¬cavity ∧ toothache)

P(toothache)
= 0.016+0.064

0.108 + 0.012 + 0.016 + 0.064
 = 0.4
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Normalization

Denominator can be viewed as a 
normalization constant  α

P(Cavity | toothache) = α · P(Cavity, 
toothache) 
= α · [P(Cavity, toothache, catch) + P(Cavity, 

toothache, ¬catch)]
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Inference by enumeration, contd.

Typically, we are interested in 
the posterior joint distribution of the query variables Y 
given specific values e for the evidence variables E 

Let the hidden variables be H = X - Y - E 

Then the required summation of joint entries is done by summing out the hidden 
 variables:

P(Y | E = e) = αP(Y,E = e) = αΣhP(Y,E= e, H = h  )

The terms in the summation are joint entries because Y, E and H together 
 exhaust the set of random variables

 Obvious problems:
1. Worst-case time complexity O(dn) where d is the largest arity 
2. Space complexity O(dn)  to store the joint distribution
3. How to find the numbers for O(dn) entries?
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Independence
A and B are independent iff
P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B  )

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

32 entries reduced to 12 (8+4);
for n independent biased coins, O(2n) →O(n) 

 Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are 
 independent. What to do?
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Conditional independence
P(Toothache, Cavity, Catch) has 23 –  1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn't 
 depend on whether I have a toothache:

(1) P(catch | toothache, cavity) = P(catch | cavity)

 The same independence holds if I haven't got a cavity:
(2) P(catch | toothache, ¬cavity) = P(catch | ¬cavity)

 
Catch is conditionally independent of Toothache given Cavity  :
P(Catch | Toothache, Cavity) = P(Catch | Cavity  )

Equivalent statements:
P(Toothache | Catch, Cavity) = P(Toothache | Cavity  )
P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity  )
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Conditional independence contd.

 Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch, Cavity  )
= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity  )
= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity  )

 I.e., 2 + 2 + 1 = 5 independent numbers

In most cases, the use of conditional independence reduces 
the size of the representation of the joint distribution from 
exponential in n to linear in n. 

Conditional independence is our most basic and robust form 
of knowledge about uncertain environments. 
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Bayes' Rule

Product rule P(a∧b) = P(a | b) P(b) = P(b | a) P(a  )
⇒ Bayes' rule: P(a | b) = P(b | a) P(a) / P(b  )

 or in distribution form 
P(Y|X) = P(X|Y) P(Y) / P(X) = αP(X|Y) P(Y)

Useful for assessing diagnostic probability from causal 
 probability:

P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect  )

E.g., let M be meningitis, S  be stiff neck:
P(m|s) = P(s|m) P(m) / P(s) = 0.5 × 0.0002 / 0.05 = 0.0002 

 Note: posterior probability of meningitis still very small!
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Bayes' Rule and conditional independence

P(Cavity | toothache ∧ catch) 
= α · P(toothache ∧ catch | Cavity) P(Cavity) 
= α · P(toothache | Cavity) P(catch | Cavity) P(Cavity) 
 

This is an example of a naïve Bayes  model:
P(Cause,Effect1, … ,Effectn) = P(Cause) πiP(Effecti|Cause   )

Total number of parameters is linear in n 
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Summary

Probability is a rigorous formalism for uncertain 
 knowledge

Joint probability distribution specifies probability of 
every atomic event
Queries can be answered by summing over atomic 

 events
For nontrivial domains, we must find a way to 

 reduce the joint size
Independence and conditional independence

 provide the tools


