

Bin Packing (1-D)

These slides on 1-D bin packing are adapted from slides from Professor C. L. Liu (then of Tsing Hua University, Taiwan).

Items to be packed

Bin Packing (1-D)

Bin Packing Problem

Optimal Packing

$$N_0 = 4$$

Next Fit Packing Algorithm

Bin Packing Problem

- .5 .7 .5 .2 .4 .2 .5 .1 .6

$$N_0 = 4$$

Next Fit Packing Algorithm

$$\frac{N}{N} \leq 2$$

$$N = 6$$

Bin Packing (1-D)

Approximation Algorithms:
Not optimal solution,
but with some performance guarantee
(eg, no worst than twice the optimal)

Even though we don't know what the optimal solution is!!!

Next Fit Packing Algorithm

$$a_1 + \dots + a_i > 1$$

$$a_i + \dots + a_i > 1$$

$$a_i + \dots + a_k > 1$$

$$a_l + \dots + a_m > 1$$

Let
$$a_1 + a_2 + \dots = \Sigma$$

$$2 \Sigma \geq N-1$$

$$N_0 \ge \Sigma \ge \frac{N-1}{2} \ge \frac{N}{2}$$

$$\frac{N}{N_0} \leq 2$$

Next Fit Packing Algorithm (simpler proof)

Let
$$a_1 + a_2 + \dots = \Sigma$$

 $2\Sigma > N-1$
 $2N_0 \ge 2\Sigma \ge N-1$

$$s(B_{N-1}) + s(B_N) > 1$$

$$2(s(B_1)+s(B_2)+...+s(B_N)) > N-1$$

First Fit Packing Algorithm

Next Fit Packing Algorithm

N=5

First Fit Packing Algorithm

$$\frac{N}{N_{\theta}} \le 1.7$$
 (Proof omitted)