

The Tourist Problem: And Fun with Graph Modelling

Hon Wai Leong

Department of Computer Science National University of Singapore leonghw@comp.nus.edu.sg

Experience the fun of problem solving

The Tourist Problem

□ Organization

- * The Tourist Problem
- Analysis and Simplifications
- **Problem Modelling (with** *Graphs***)**
- Solving the Graph Model
- Mapping back the Solution
- ***** Moral of the Story

Experience the fun of problem solving

The Tourist Problem...

Given: A list of tourist, each with his/her list of places to visit.

To do: Schedule bus rides for them so that

each tourist visits all the places in his/her list.

An Instance of Tourist Problem		
Tourist	Places of Interest	
Aaron	SZG, BG, JB	
Betty	CG, JG, BG	
Cathy	VC, SI, OR	
David	JG, CG, OR	
Evans	CG, JG, SZG	
Frances	BG, SZG, JB	
Gary	CG, OR	
Harry	JG, CG	

The Tourist Problem (Entities)

- ☐ Good to know the entities we are dealing with...
 - ***** The Tourists:

$$T = \{A, B, C, D, E, F, G, H\}$$

***** The Attractions (Places):

$$P = \{BG, CG, JB, JG, OR, SI, VC, SZG\}$$

Places of Attraction			
Place	Common Name	Place	Common Name
BG	Botanical Gardens	CG	Chinese Gardens
JB	Jurong Birdpark	JG	Japanese Gardens
OR	Orchard Road	SI	Sentosa Island
SZG	Spore Zoological Gardens	VC	VivoCity

The Tourist Problem (Analysis...)

Some Simplifications: Consider

* Aaron { SZG, BG, JB }
Frances { SZG, BG, JB }

Also consider

An Instance of Tourist Problem

Tourist	Places of Interest
Aaron	SZG, BG, JB
Betty	CG, JG, BG
Cathy	VC, SI, OR
David	JG, CG, OR
Evans	CG, JG, SZG
Frances	BG, SZG, JB
Gary	CC, OR
Harry	JG, CG

Simplification Rule:

If $P(T_1) \subseteq P(T_2)$, then tourist T_1 can just "follows" tourist T_2 . Thus, we can omit T_1 from consideration.

Oh, can also omit Harry

* Betty { CG, JG, BG }
Harry { CG, JG

The (Reduced) Tourist Problem...

Given: A list of tourist, each with his/her list of places to visit.

To do: Schedule bus rides for them so that each tourist visits all the places in his/her list.

An Instance of Tourist Problem		
Tourist	Places of Interest	
Aaron	SZG, BG, JB	
Betty	CG, JG, BG	
Cathy	VC, SI, OR	
David	JG, CG, OR	
Evans	CG, JG, SZG	

$$T = \{A, B, C, D, E\}$$

$$P = \{BG, CG, JB, JG, OR, SI, VC, SZG\}$$

The Tourist Problem – v0

Given: A list of tourist, each with his/her list of places to visit.

To do: Schedule bus rides for them so that

each tourist visits all the places in his/her list.

Solution: (Singapore 1-Day Tour)

Put all the tourists on one bus. Visit all eight places in 1 day.

An Instance of Tourist Problem		
Tourist	Places of Interest	
Aaron	SZG, BG, JB	
Betty	CG, JG, BG	
Cathy	VC, SI, OR	
David	JG, CG, OR	
Evans	CG, JG, SZG	

What's Good: It works! One bus, one-day.

What's Bad: Too rushed. NO time to see anything!

Not interesting!

The Tourist Problem – v0.5

Given: A list of tourist, each with his/her list of places to visit.

To do: Schedule bus rides for them so that

each tourist visits all the places in his/her list, and

C1: Each tourist visits at most one place a day.

Simple Solution:

Schedule one trip to every place every day.

An Instance of Tourist Problem		
Tourist	Places of Interest	
Aaron	SZG, BG, JB	
Betty	CG, JG, BG	
Cathy	VC, SI, OR	
David	JG, CG, OR	
Evans	CG, JG, SZG	

What's Good: It works! Finish in 3 days. (minimum!)

What's Bad: Wasteful! 24 bus trips.

Also, not so interesting!

The Tourist Problem – v0.8

Given: A list of tourist, each with his/her list of places to visit.

To do: Schedule bus rides for them so that each tourist visits all the places in his/her list,

C1: Each tourist visits at most one place a day, and

C2: There is at most one bus trip to each place

Simple Solution:

Schedule one trip per day, each to a different place.

What's Go	od: It w	orks! 8	R trins.
What S OU	ou. It w	UINS. () uips.

What's Bad: It takes 8 days!

An Instance of Tourist Problem		
Tourist	Places of Interest	
Aaron	SZG, BG, JB	
Betty	CG, JG, BG	
Cathy	VC, SI, OR	
David	JG, CG, OR	
Evans	CG, JG, SZG	

But wait... Did you see something interesting?

The Tourist Problem – v1.0

Given: A list of tourist, each with his/her list of places to visit.

To do: Schedule bus rides for them so that

each tourist visits all the places in his/her list,

C1: Each tourist visits at most one place a day,

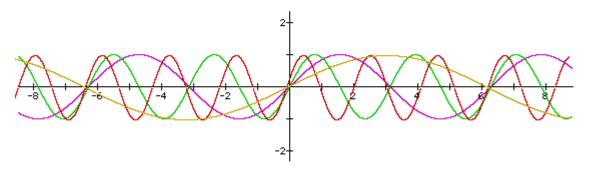
C2: There is at most one bus trip to each place, and

C3: minimize the number of days to complete mission.

Observation:

On the same day, cannot schedule SZG and BG can schedule SZG and OR

How to model all these constraints?

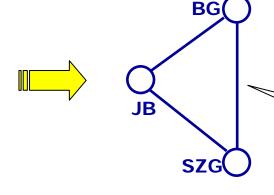

An Instance of Tourist Problem		
Tourist	Places of Interest	
Aaron	SZG, BG, JB	
Betty	CG, JG, BG	
Cathy	VC, SI, OR	
David	JG, CG, OR	
Evans	CG, JG, SZG	

The Graph Model

□ What is a graph?

$$\Leftrightarrow$$
 eg: $y = sin(bx)$

y=sinbx b=1 b=2 b=3 b=0.5

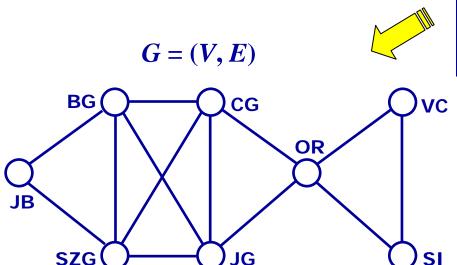

□ No. Not this type of graph.

The Graph Model

- \Box Graph G = (V, E)
 - \diamond V is a set of vertices, nodes (circles)
 - \clubsuit *E* is a set of edges (connections)

Nodes are Places

An Instance of Tourist Problem	
Tourist	Places of Interest
Aaron	SZG, BG, JB
Betty	CG, JG, BG
Cathy	VC, SI, OR
David	JG, CG, OR
Evans	CG, JG, SZG

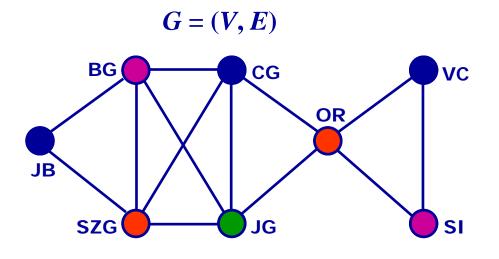


Edges represent "conflicts"

In our graph, nodes are places, and edges in the graph means conflicts.

Graph Model for the Tourist Problem

An Instance of Tourist Problem		
Tourist	Places of Interest	
Aaron	SZG, BG, JB	
Betty	CG, JG, BG	
Cathy	VC, SI, OR	
David	JG, CG, OR	
Evans	CG, JG, SZG	



The graph G = (V, E) captures all the conflicts for our tourist problem instance.

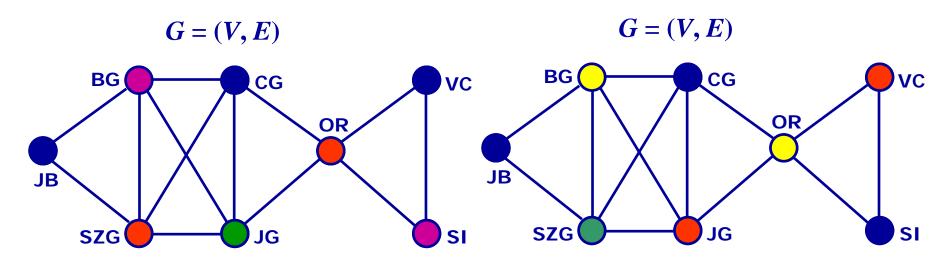
Graph Model for the Tourist Problem

□ What's good about the graph model?

- very simple!
- **easy to spot conflicts and** *non-conflicts*

On Day 1, can schedule SZG, OR [Any more? Why?]

On Day 2, can schedule JB, CG, VC


On Day 3, can schedule BG, SI

On Day 4, can schedule JG

Graph Coloring Problem

□ Given a graph G = (V, E), colour the vertices in V so that any two vertices that are connected by an edge in E will have *different* colors.

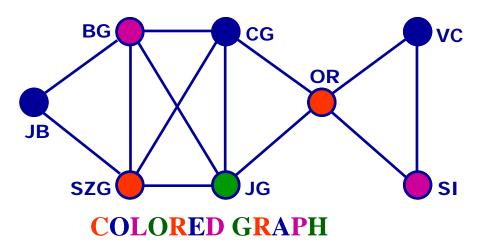
We want to minimize the number of colors.

Number of colors used to color the graph G

Number of days needed to complete the schedule

Activity Period #1:

Graph Colouring Exercises (10 minutes)


Review of Activity

- ☐ Is Graph Colouring fun?
 - Did you really used different colours?
- ☐ How many colours was did you use?
 - *** Q1 and Q2**
- \square What about the cycles (Q3):
 - \mathbf{Q} Q3(a) \mathbf{C}_6 (a cycle of length 6)?
 - \star C₆ (a cycle of length 6)?
- **■What about the final graph?**

Get Solution to Tourist Problem - 1

 \square Colored graph \Rightarrow "Bus Schedule"

$$G = (V, E)$$

Day	Place
1	SZG, OR
2	JB, CG, VC
3	BG, SI
4	JG
	1 2 3

1. What about the list of tourists on each bus?

Can we get it from the graph model?

NO. Why NOT.

The Tourist Problem...

An Instance of Tourist Problem

Tourist Places of Interest

Aaron SZG, BG, JB

Betty CG, JG, BG

Cathy VC, SI, OR

David JG, CG, OR

Evans CG, JG, SZG

Frances BG, SZG, JB

Gary CG, OR

Harry JG, CG

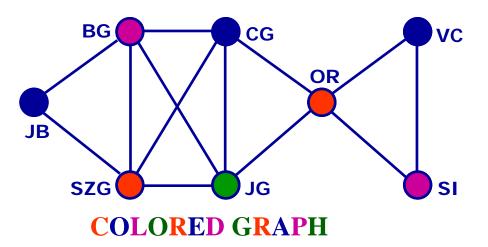

Alternative Representation

Tourist	BG	CG	JB	JG	OR	SI	SZG	VC
Aaron	X		X				X	
Betty	X	X		X				
Cathy					X	X		X
David		X		X	X			
Evans		X		X			X	
Frances	X		X				X	
Gary		X			X			
Harry		X		X				

Get Solutions to Tourist Problem (2)

 \square Colored graph \Rightarrow "Bus Schedule"

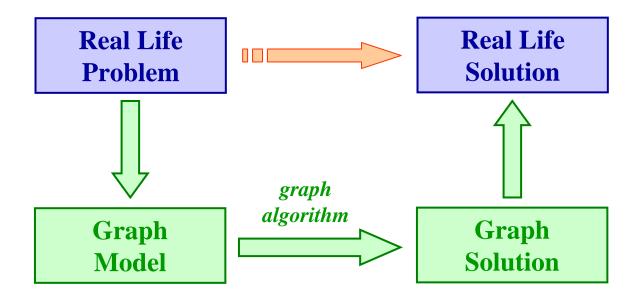
$$G = (V, E)$$


Color	Day	Place
	1	SZG, OR
	2	JB, CG, VC
	3	BG, SI
	4	JG, VC

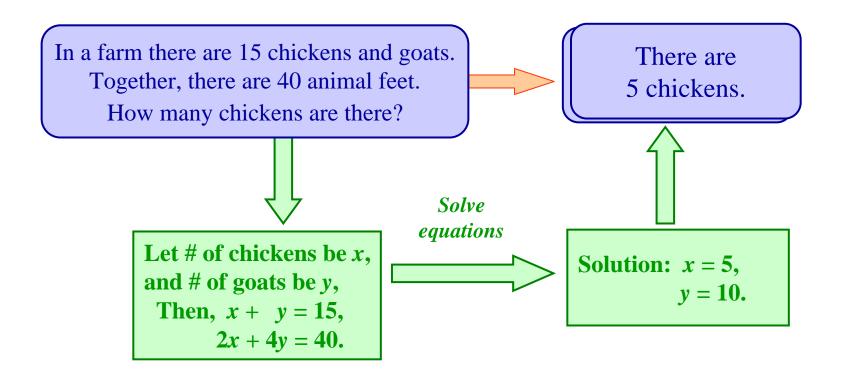
- 1. What about the list of tourists on each bus?
- 2. What if you only have 2 buses?
 - can color vertex VC green.

Get Solutions to Tourist Problem (3)

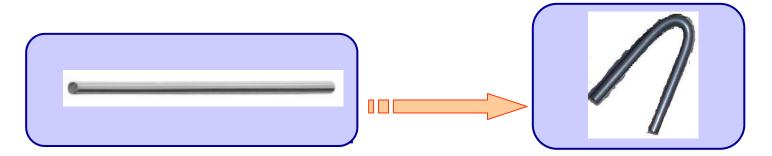
 \square Colored graph \Rightarrow "Bus Schedule"


$$G = (V, E)$$

Day	Place
1	SZG, OR
2	JB, CG, VC
3	BG, SI
4	JG
	2


- 1. What about the list of tourists on each bus?
- 2. What if you only have 2 buses?
- 3. Can we re-order the colors?
- 4. Can we use fewer colors (fewer days)?

Graph Modelling...

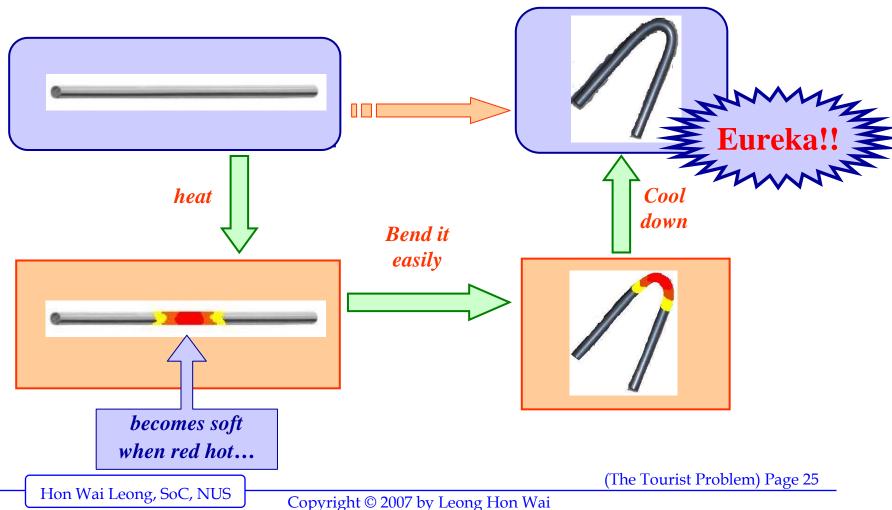

Modelling...

■Nothing new. You do it *all* **the time.**

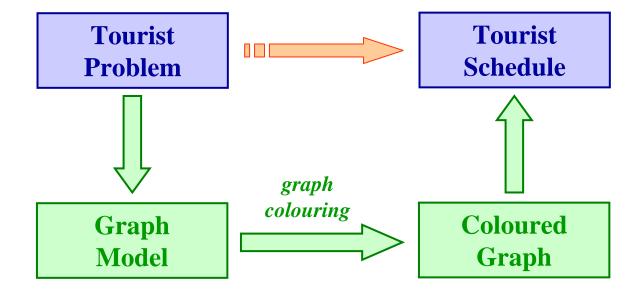
Modelling: Another example

□Bend a steel bar

(Direct method)



Man bending steel rod



Modelling: Another example (2)

□ Bend a steel bar (using *transformation*)

Tourist Problem & Graph Colouring

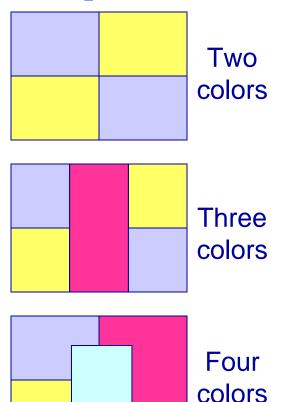
Modelling in Tourist Problem

Recap: Our Graph modelling...

Graph Model	Tourist Problem		
Nodes	places		
Edges / Conflicts	tourist want to visit both places		
Colors	bus trips to places		
Others	The tourists		

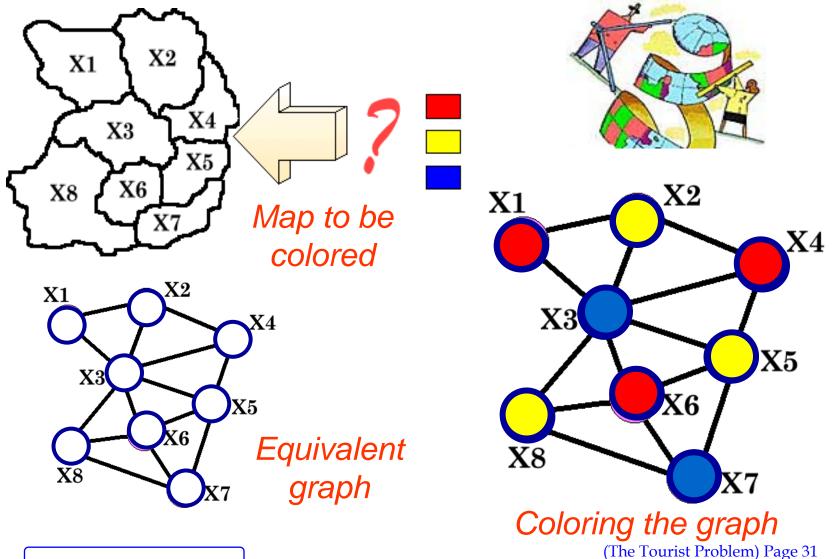
Moral of the Story

- **☐** The Tourist Problem:
 - **Some problems are EASY. (don't complicate them)**
 - Get a simple solution first.
 then analyze it, improve it, refine it.
 - Solution depend on the questions asked
 - ***** It is important to ASK QUESTIONS.
 - Theoretical modelling and analysis are beneficial
- **□** Modelling
 - Abstract modeling simplifies problem and solution!
 - Abstract model is transferable.
 - **Models don't answer everything.**

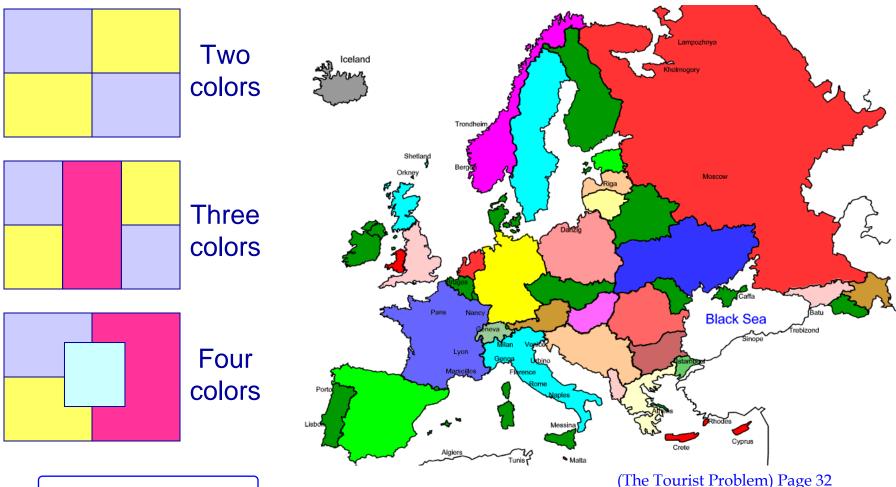

Graph Coloring & Applications

- ☐ Where *else* is Graph Coloring used?
 - The Tourist Problem [done]
 - Map Coloring
 - Fish in a Tank
 - Frequency assignment in wireless networks
 - * Time Table Scheduling
 - * And a whole lot more...

Experience the fun of problem solving


The Map Coloring Problem

We want to color countries, oceans, lakes, and islands on a map so that no two adjacent areas have the same color.



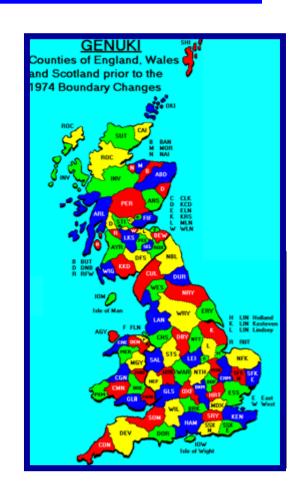
Map and Graph Coloring

The Map Coloring Problem

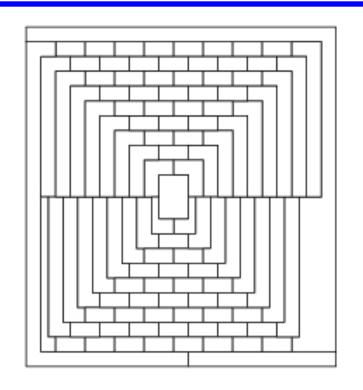
We want to color countries, oceans, lakes, and islands on a map so that no two adjacent areas have the same color.

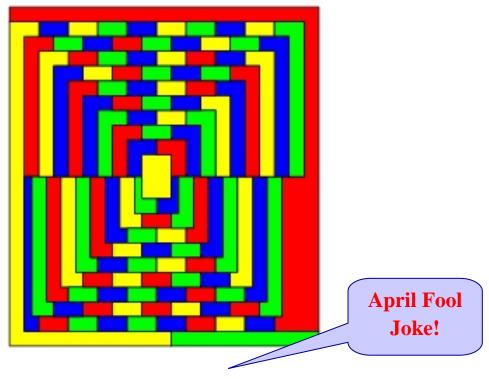
Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai


The Four Color Theorem

Can *all* map be coloured using only four colours?


150 years of history...


- □ 1852 Conjecture ($Guthrie \rightarrow DeMorgan$)
- □ 1878 Publication (*Cayley*)
- **□** 1879 First proof (*Kempe*)
- **□** 1880 Second proof (*Tait*)
- □ 1890 Rebuttal (*Heawood*)
- □ 1891 Second rebuttal (*Petersen*)
- □ 1913 Reducibility, connexity (*Birkhoff*)
- \square 1922 Up to 25 regions (*Franklin*)
- □ 1969 Discharging (*Heesch*)
- □ 1976 Computer proof (Appel & Haken) @UIUC
- □ 1995 Streamlining (Robertson & al.)
- □ 2005 COQ proof (Gonthier)

I took a Combinatoric course with Ken Appel in Fall 1979

Does four colour suffices?

Martin Gardner published in Scientific American (*April* 1975) this map of 110 regions. He claimed that the map *requires five colors* and constitutes a counterexample to the four-color theorem.

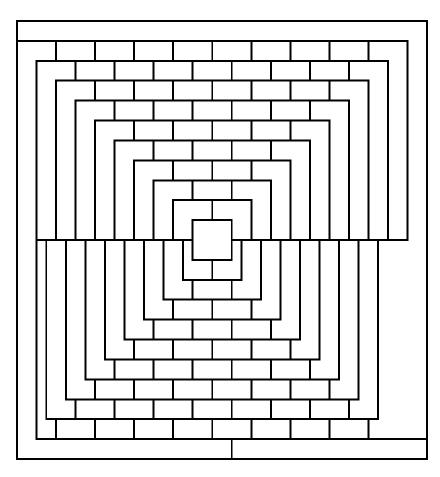
However, the coloring of Wagon, obtained algorithmically using <u>Mathematica</u>, clearly shows that this map is, in fact, four-colorable.

Source: http://mathworld.wolfram.com/Four-ColorTheorem.html

Activity Period #2:

Map Colouring &
Fish in a Tank
(10 minutes)

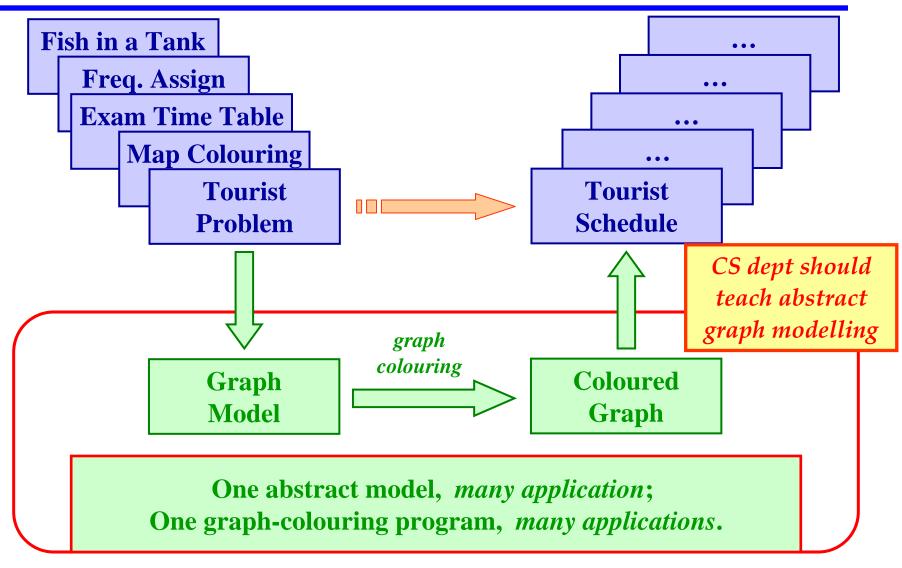
Review of Hands-on Activity #2


- **☐** How many colours did the map need?
 - * You should never need more than 4 colours
- ☐ Did you know about the "Four-Colour Theorem":

□ How many fish tanks did you need?

Activity 5: Color These Maps

Use as few colors as possible


Real map: One color already used

Made-up map

Summary of Problem Modelling

	Tourist Problem	Fish in a tank	Frequency Assignment	Map Coloring
Nodes	places	fishes	radio stations	Countries
Edges / Conflicts	tourist want to visit both places	cannot be placed in same tank	interference if placed too near	share a common border
Colors	bus trips to places	fish tanks	signal frequencies	color
Others	The tourists			

Why CS dept teach abstract problems?

References...

On Graph Coloring and Applications:

- 1. http://www.geom.uiuc.edu/~zarembe/graph3.html
- 2. http://www.colorado.edu/education/DMP/activities/graph/ddghnd03.html
- 3. Lots of other links available

On the Four Color Theorem:

- 1. http://en.wikipedia.org/wiki/Four_color_theorem
- 2. http://www.maa.org/reviews/fourcolors.html
- 3. http://www.math.gatech.edu/~thomas/FC/fourcolor.html
- 4. http://www.mathpages.com/home/kmath266/kmath266.htm

End of Talk on Tourist Problem!

