Zero-Knowledge Proofs SOC InfoComm Camps on Computational Problem Solving

Leong Hon Wai Dept of Computer Science, NUS http://www.comp.nus.edu.sg/~leonghw/

Amazing, fascinating, mind-boggling.

(Zero Knowledge Proofs) Page 1

School of Computing

Hon Wai Leong, SoC, NUS

Copyright © 2007-8 by Leong Hon Wai

"Full-Knowledge" Proofs

Fact:

I have a proof of a theorem X.

Problem:

I want to convince you that *I have a proof of X*.

Traditional Method: I show you my proof of X. After verifying it, you are convinced.

"Zero-Knowledge" Proofs

Fact:

I have a proof of a theorem X.

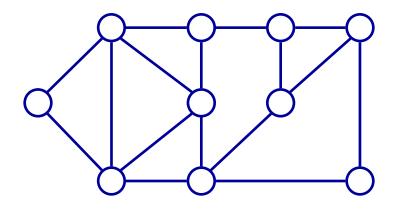
Problem:

I want to convince you that I have a proof of X, without letting you gain any information on my actual proof, other than the fact that "I have a proof of the theorem of X".

Issue:

Of course, I *cannot* show you my proof.

(Zero Knowledge Proofs) Page 3


Hon Wai Leong, SoC, NUS

Graph Colouring Example (GC)

Example:

I want to convince you that the graph below is 3-colorable.

Fact: I have a 3-coloring of the graph with colors {1,2,3}.

10 nodes, 16 edges

Hon Wai Leong, SoC, NUS

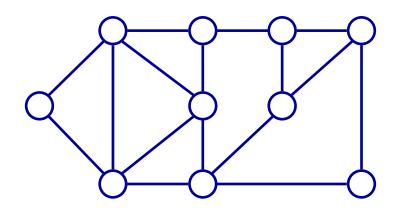
GC Example: Full-Knowledge

Example:

I want to convince you that the graph below is 3-colorable.

Fact: I have a 3-coloring of the graph with colors {1,2,3}.

Traditional Proof: Show you the 3-coloring.

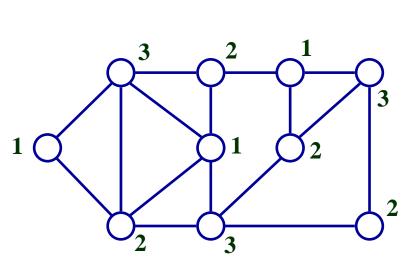


GC Example – ZK-Proof

Example:

I want to convince you that the graph below is 3-colorable. But, don't want you to know anything about how it is done

Fact: I have a 3-coloring of the graph with colors {1,2,3}.


10 nodes, 16 edges

Hon Wai Leong, SoC, NUS

GC Example: ZK-Protocol (1)

Example:

I want to convince you that the graph below is 3-colorable. But, don't want you to know anything about how it is done Fact: I have a 3-coloring of the graph with colors {1,2,3}.

10 nodes, 16 edges

PROTOCOL: One Stage

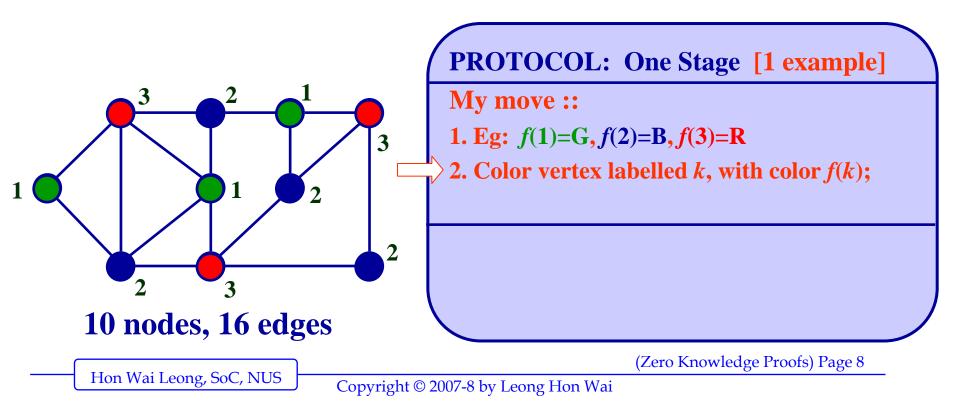
My move ::

- **1.** Randomly permute $f : \{1,2,3\} \rightarrow \{R, G, B\}$
- 2. Color vertex labelled *k*, with color *f*(*k*);
- 3. Cover up all the vertices of the graph.

Your move ::

Randomly choose one edge e;

Check the two end-vertices of the edge *e*;

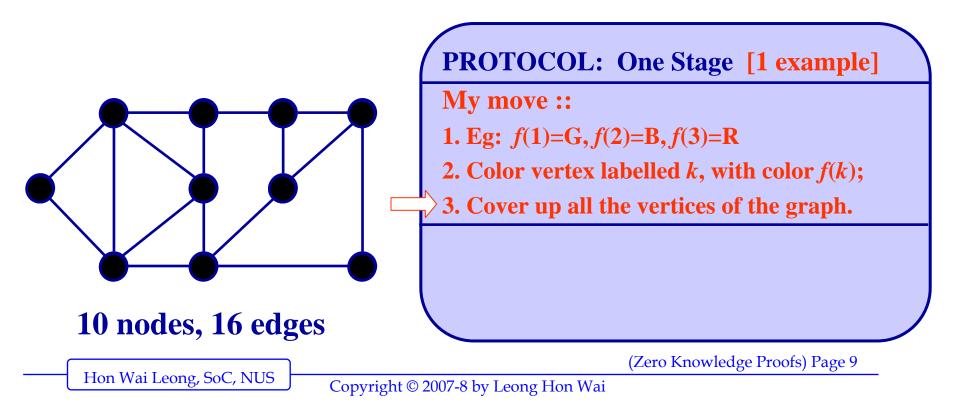

(Zero Knowledge Proofs) Page 7

Hon Wai Leong, SoC, NUS

GC Example: ZK-Protocol – (2)

Example:

- I want to convince you that the graph below is 3-colorable. But, don't want you to know anything about how it is done
- **Fact:** I have a 3-coloring of the graph with colors {1,2,3}.

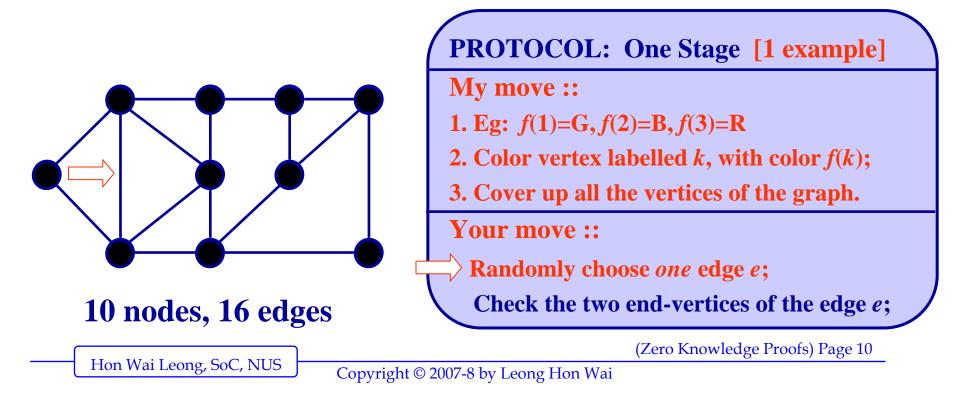


GC Example: ZK-Protocol – (3)

Example:

I want to convince you that the graph below is 3-colorable. But, don't want you to know anything about how it is done

Fact: I have a 3-coloring of the graph with colors {1,2,3}.

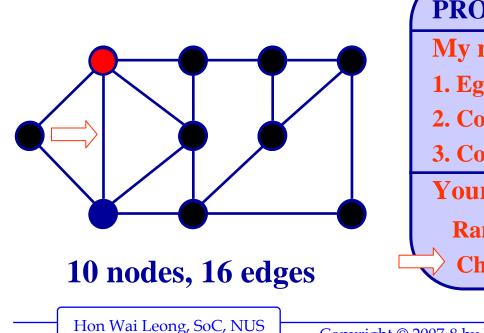


GC Example: ZK-Protocol – (4)

Example:

I want to convince you that the graph below is 3-colorable. But, don't want you to know anything about how it is done

Fact: I have a 3-coloring of the graph with colors {1,2,3}.



GC Example: ZK-Protocol – (5)

Example:

I want to convince you that the graph below is 3-colorable. But, don't want you to know anything about how it is done

Fact: I have a 3-coloring of the graph with colors {1,2,3}.

PROTOCOL: One Stage [1 example]

My move ::

1. Eg: *f*(1)=G,*f*(2)=B,*f*(3)=R

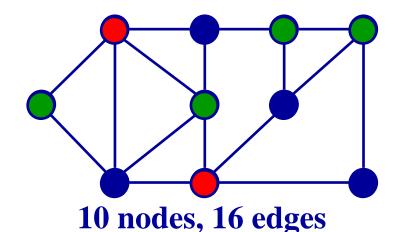
2. Color vertex labelled *k*, with color *f*(*k*);

3. Cover up all the vertices of the graph.

Your move ::

Randomly choose one edge e;

Check the two end-vertices of the edge *e*;


Analysis: After 1 Phase...

- □Are you convinced?
 - ***** Of course NOT.
 - ***** You have only seen 1 edge (out of 16 edges)
- **How to convince you?**
 - Allow you to open more edges?
 NO! Why not?
- Question: What if I cheated?
 * I may "get lucky"
 * I may get caught.

Analysis: What if I cheated...

If I do not have a 3-coloring, but I cheated.

Example: I have the *bad* **coloring shown below... On at least 1 edge, both nodes have the** *same color*.

If I cheated on the coloring:

Prob (I cheated and get caught) $\geq 1 / 16$ Prob (I cheated, but got lucky) $\leq 15 / 16$

□ After 1 phase, Pr(I cheated, but got lucky) $\leq \left(\frac{15}{16}\right)$

(Zero Knowledge Proofs) Page 13

Analysis: After many Phase...

□ What if we do 16 phases

* And each time the "revealed colors" were different!

Pr(I cheated, but got lucky each time) $\leq \left(\frac{15}{16}\right)^{16} < 0.5$

□ What about after 16*100 phases?

0.35607

Pr(I cheated, but got lucky each time) $\leq (0.5)^{100} = 7.889 \times 10^{-31}$

□ What about after 16*1000 phases?

Pr(I cheated, but got lucky each time) $\leq (0.5)^{1000}$

 $=9.332 \times 10^{-302}$

Analysis: the general case

For a graph with *m* edges,

□ After 1 phase,

 $\Pr(\text{I cheated, but got lucky}) \le \left(\frac{m-1}{m}\right)$

□ After *m* phases

Pr(I cheated, but got lucky each time) $\leq \left(\frac{m-1}{m}\right)^m < 0.5$

□ After 1000*m* phases?

Pr(I cheated, but got lucky each time) $\leq (0.5)^{1000}$

$$=9.332 \times 10^{-302}$$

Approaches

1/e = 0.36788

Analysis: Zero Knowledge?

Do you know how the graph is colored
 After 1000m phases
 Can you accumulate the "knowledge"
 from all the different edges from different phases? Zero-Knowledge Proof

Is amazing, mind-boggling!

Used in authentication (eg: among banks)

Thank you!

School of Computing

(Zero Knowledge Proofs) Page 17

Hon Wai Leong, SoC, NUS

Copyright © 2007-8 by Leong Hon Wai